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SUMMARY

Advances in 3D imaging technology are transforming how radiologists search for cancer1,2 and 

how security officers scrutinize baggage for dangerous objects.3 These new 3D technologies often 

improve search over 2D images4,5 but vastly increase the image data. Here, we investigate 3D 

search for targets of various sizes in filtered noise and digital breast phantoms. For a Bayesian 

ideal observer optimally processing the filtered noise and a convolutional neural network 

processing the digital breast phantoms, search with 3D image stacks increases target information 

and improves accuracy over search with 2D images. In contrast, 3D search by humans leads to 

high miss rates for small targets easily detected in 2D search, but not for larger targets more visible 

in the visual periphery. Analyses of human eye movements, perceptual judgments, and a 
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computational model with a foveated visual system suggest that human errors can be explained by 

interaction among a target’s peripheral visibility, eye movement under-exploration of the 3D 

images, and a perceived overestimation of the explored area. Instructing observers to extend the 

search reduces 75% of the small target misses without increasing false positives. Results with 

twelve radiologists confirm that even medical professionals reading realistic breast phantoms have 

high miss rates for small targets in 3D search. Thus, under-exploration represents a fundamental 

limitation to the efficacy with which humans search in 3D image stacks and miss targets with these 

prevalent image technologies.

In Brief

Will 3D imaging technologies always lead to improvements for the visual search targets? Lago et 

al. show that, when humans search 3D image stacks, they under-explore with eye movements, 

overestimate the area they have searched, and often miss small targets that are salient in 2D 

images.

Graphical Abstract

RESULTS AND DISCUSSION

Humans show a remarkable ability to find targets in cluttered scenes. A large body of 

literature has investigated the strategies and computations that enable successful search6–12 

and the limitations that lead to errors.13–19 A majority of these investigations involve human 
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observers searching for targets in 2D images. Today, technological advances in 3D imaging 

are changing how human experts search in important perceptual tasks ranging from 

radiology1,2,20–24 and security25 to science26,27 and natural disaster management. In many 

applications, human observers read the resulting 3D images as a stack of 2D slice images. 

Expert observers scroll through the volume to determine the presence or absence of a 

target23,28,29 that might only occupy a subset of the slices. The 3D image stacks provide 

additional depth information about the target objects of interest and better segmentation of 

the background structures and improve human perceptual decisions.4,30 But are there 

circumstances for which search with 3D images might negatively affect perceptual 

performance? We investigated human efficacy at searching in 3D image stacks relative to 

search in 2D images and assessed whether there are bottlenecks in the human visuo-

cognitive capabilities for 3D search.

We used images created in the laboratory (power-law, filtered-noise backgrounds ~1/f2.8; 

Figure 1A) to evaluate 2D and 3D search effects. These synthetic images allow isolating the 

effect of visual search while controlling for image differences that arise from image-

generation variations in 2D versus 3D real-world imaging systems. We evaluated search 

performance for a large target (a 3D Gaussian; 2 standard deviations = 0.44 degrees of visual 

angle, °) or a small target (sharp-edged sphere with diameter = 0.13°). The large target is 

analogous to a mass in breast X-ray images, although the small target mimics a calcification. 

A radiologist would look for both types of targets. The target-present images (50% of the 

trials) for the 2D search condition consisted of the slice in the 3D image stack containing the 

center slice of the 3D target. In all tasks, within a block of trials, observers were informed 

which target might be present.

We first considered the performance trade-off between the benefits of additional target slices 

in 3D image stacks and the detriments of a vast increase in search space. In typical 3D 

imaging modalities, most targets are large enough to occupy multiple slices, adding visual 

information about the target relative to a single 2D image. However, the 3D image stacks 

also increase the possible locations at which the target might be, and this higher positional 

uncertainty is known to degrade perceptual performance.31–34 These trade-offs can be 

quantified for the lab-created images by the ideal Bayesian observer,35–38 which optimally 

uses the visual information to make inferences about the target’s presence. For an ideal 

observer in this search task, the benefits from additional target slices outweigh the 

detrimental effects of location uncertainty. Thus, 3D search improves ideal observer search 

accuracy for both target types over 2D search (Figures 1B and 1C).

For seven trained human observers, searching with no time limits, accuracy also increased 

significantly for the large target in 3D images relative to 2D images (Figures 1B and 1C; 

proportion correct: ΔPC = PC3D–PC2D = 0.17, t(6) = 4.815, p = 0.003; difference in indices 

of detectability, Δd’ = 1.01). But in contrast to the ideal Bayesian observer, human detection 

deteriorated significantly for the small target in 3D search (ΔPC = 0.16, p < 0.001, t(6) = 

5.125 or Δd’ = 1.63, p = 0.002; 2-way interaction between target and search type, F[1, 

4,732] = 153.34, p < 0.0001; Figures S1A and S1B for true-positive rate [TPR] and false-

positive rate [FPR]). The observers’ decision confidence also significantly decreased for 3D 

search with small targets (t(6) = −4.24; p = 0.005), but not for large targets (Figure S1C). 
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The human 3D deterioration detecting the small target generalized to search tasks with 

different target contrasts and scenarios in which observers do not know a priori which of the 

two targets might be present (Figures S1D and S1E).

Why do humans show such deficits in 3D search for small targets not present in an ideal 

observer? Response times by themselves cannot explain the human results. The response 

times for 3D search of small targets had the longest response times (t(6) = −10.24; p < 

0.001; Figure 1D) and resulted in the lowest accuracy.

We evaluated the hypothesis that the deterioration of accuracy when searching for the small 

target in 3D images is related to the human observers’ greater reliance on visual processing 

in the visual periphery when compared to 2D search. Such a scenario would occur if 

observers explored 2D images more exhaustively with their fovea than the 3D image stacks. 

The under-exploration and greater utilization of peripheral processing in 3D search are 

posited as the limiting factors in detecting the small target.

To evaluate the role of peripheral processing in the searches, we estimated the percentage of 

the entire image scrutinized by an area around each measured fixation location during search 

(i.e., the useful field of view [UFOV] 2.5° radius circle;39 Figure 1E). Figure 1F shows that 

the percentage of the image covered by the observers’ UFOV for the 3D search is 

significantly less (~1/4) than for 2D (see Figure S1F for saccade frequency analysis).

We also partitioned human missed target trials into two categories: search and recognition 

errors.40,41 Recognition errors are related to foveal processing and refer to instances in 

which the target was fixated but was still missed in the final decision. Search error trials are 

related to peripheral processing and refer to cases where the target was not fixated and 

missed in the final decision. We found that the increase in human misses for the small target 

in 3D search is almost exclusively related to a rise in search errors (Figure 1G). However, 

the 3D search does not increase the search errors for the larger target (Figure 1G). We 

hypothesized that the dissociation in results across target types is related to differences in 

their visibility in the visual periphery. We conducted separate measurements of human 

observers’ ability to detect the presence of briefly presented (500 ms) large or small targets 

across a range of foveal eccentricities at cued locations while maintaining steady fixation. 

The results confirmed that the small target is highly detectable near the fovea, but its 

detectability drastically degrades with increasing retinal eccentricity (Figure 1H). In 

contrast, the detectability of the large target decreases less abruptly with retinal eccentricity. 

Thus, the detrimental effect of 3D images on search accuracy is not present on targets that 

are more detectable in the visual periphery. For these targets, the visual periphery guides eye 

movements42 to fixate the regions more likely to contain the target, and thus, even in 3D 

search, there are few search errors.

To provide further support that the human results can be explained by the peripheral 

visibility of a target and the under-exploration of eye movements, we implemented a 

computational model. The model processes the image in parallel43–45 but with varying 

spatial processing across the visual field. It uses an optimal linear combination of spatial 

frequency and orientation-tuned receptive fields at each eccentricity to detect the target.46,47 
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The model’s visual degradation with distance from fixation was adjusted (2 fitting 

parameters: scaling of Gabor receptive fields with eccentricity and internal noise; STAR 

Methods) to fit the average human detectability as a function of eccentricity for both targets 

(Figure 1H). For the search tasks, the model lines up its fovea with the actual fixations and 

scrolls of each individual on a given slice (~121,500 fixations across all observers’ trials; 

Figure 2A; Video S1). The model makes trial decisions by comparing the fixation/scroll with 

the strongest evidence for target presence against a decision threshold. The foveated search 

model (FSM) correctly predicts the human results: for 3D search (relative to 2D) reduced 

errors for the large target (Figure 2B) but increased the errors for the small target (Figure 

2C). The FSM also shows a similar trend for error types (Figure 2D) as for humans. The 

modeling results provide further support that the human 3D misses are related to eye 

movement under-exploration and the targets’ peripheral visibility.

Given human observers’ tendency to under-explore 3D image stacks, can their eye 

movement strategy be influenced to reduce the search deficits? We conducted a study with 

four trained observers to test the premise that experimentally extending the eye movement 

exploration would reduce the 3D miss rates. Observers first completed a normal 3D search 

where they could terminate the search at any time. Observers then participated in a new 

condition in which they were not allowed to terminate their search until they either reported 

a target present or explored a percentage of the search area comparable to that in 2D search 

(40%; Figure 3A). When observers extended their visual search of 3D image stacks (Figures 

3B and 3C), the search errors were vastly mitigated with the small targets (ΔPC = 0.15; p = 

0.017), although introducing no difference for the large targets (p = 0.181). The extended 

search comes at the cost of an ~3.5-fold increase in search times (Figure 3D).

But then, why do observers naturally terminate their search early if they could keep 

searching and greatly reduce their errors for the small target? There might be multiple 

reasons, including observers’ inability to estimate the performance benefits of extending the 

search, failure to account for the visibility of the targets in the visual periphery, or a 

secondary goal to minimize sensory-motor energetic costs.48,49 A follow-up experiment 

provided some clues as to why observers under-explore. Six new observers searched for the 

targets in 2D and 3D search and, after each trial, provided an estimate of the percentage of 

the total area they had explored. Results (Figure 3E) showed that observers accurately 

estimated the percentage of the 2D image areas covered but vastly overestimated the area 

covered in 3D image stacks. This may be one reason why subjects terminate their 3D search 

before more fully exploring the images.

To assess the results’ generality to more real-world scenarios, we conducted a similar study 

with 12 radiologists. We used twenty-eight digital breast tomosynthesis (DBT) phantom 

images50,51 (Figure 4A) that included simulated targets (50% presence) that are typically 

spatially large (mass; size = 0.5°) and those that are small (microcalcification; size = 0.06°). 

We used the same images for 2D and 3D search to isolate the effects due to search from 

other variables related to the generation of the images by different imaging systems. For the 

2D search, images consisted of the central slice of the 3D image stack.
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The comparison of radiologists to an optimal Bayesian observer is not possible because the 

model requires knowledge of the images’ statistical properties, which are not available for 

the DBT breast phantoms. Thus, we computed performance for the best current 

convolutional neural network (CNN) to segment organs in medical images (nn 3D U-net)52 

after training to detect our simulation targets. We found that the CNN’s detection for both 

mass and microcalcification improved for 3D relative to 2D search (Figures 4B and 4C). In 

contrast, radiologists’ performance for the microcalcification degraded significantly between 

the 3D and 2D search (ΔPC = 0.209, t(11) = − 4.5220, p < 0.001; Δd’ = −1.5, p < 0.001), but 

not for the larger mass target (ΔPC = 0.04, t(11) = 0.64; p = 0.54; Δd’ = −0.19; 2-way 

interaction for target type and search type; F[1, 668] = 19.91; p < 0.0001; Figures S2A and 

S2B for a breakdown in TPR and FPR). The confidence of radiologists decreased 

significantly for the 3D small target decisions relative to 2D (t(11) = 4.76; p < 0.001), but 

not the large target (Figure S2C). Radiologists spent more time in 3D search (Figure 4D) but 

covered a smaller fraction of all the images regions for the 3D search relative to the 2D 

search (Figure 4E; t(11) = −8.35; p < 0.001 for masses; t(11) = −9.21; p < 0.001 for 

microcalcifications; Figure S2D for eye movements).

One possible explanation for radiologists’ tendency to under-explore the 3D image stacks is 

their awareness that the readings were part of a laboratory study. An analysis of the data 

volume1 (64–128 slices) and reading times in clinical scenarios (2 to 3 min per case) 

suggests that radiologists typically under-explore 3D image stacks in clinical practice. And 

yet a survey we administered to 21 radiologists suggests a vast overestimation of the area 

they explore in clinical practice. They reported 94% (±3.5%) of the area for 2D 

mammograms and 90% (±4.1%) for 3D DBT images.

Together, our findings do not imply that 3D imaging techniques always lead to inferior 

human detection performance for small targets relative to 2D methods. Other differences 

arise between real-world 2D and 3D images related to the image acquisition and 

reconstruction processes. However, a recent study with radiologists found a degradation for 

small targets in real DBT images, suggesting that some of the visuo-cognitive bottlenecks 

revealed in the current paper are at play.4 Thus, our study motivates the need to find 

solutions to mitigate miss errors with small targets. With a prolonged practice focused only 

on the 3D search for small targets, observers might learn to search more exhaustively. 

Encouraging observers to extend their search might reduce errors. The prolonged search is 

impractical in terms of the associated added time cost. One practical solution is to present a 

2D image along with the 3D image stack. This would allow radiologists to take advantage of 

the performance benefits of the 3D stacks for large targets and rely on the 2D image to find 

small targets easily missed in the 3D image stacks. A synthesized 2D image can be created 

from the 3D image stack and presented to the observer. Such a solution is typical in most 

clinics using DBT images.53,54 Alternatively, computer vision/artificial intelligence 

aids55–57 and multiple readers58–60 can also reduce search errors.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Information and requests for resources should be directed to and will be 

fulfilled by the Lead Contact, Miguel P. Eckstein (miguel.eckstein@psych.ucsb.edu).

Materials Availability—No materials are available for this study.

Data and Code Availability—All of the raw data from this article are accessible via 

Mendeley Data (https://doi.org/10.17632/tjy4h67z4j.1). Analysis scripts can be provided by 

requesting them to the Lead Contact. Other necessary software is listed in the Key Resources 

Table.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Seven undergraduate students and four graduate students from the University of California, 

Santa Barbara, participated in the 2D and 3D search study with filtered noise. All 

participants were verified to have normal or corrected-to-normal vision. Undergraduates 

received course credit in exchange for participation. A second group of twelve expert 

radiologists, naive to the hypothesis, were recruited from the Hospital of the University of 

Pennsylvania and Pennsylvania Hospital. Radiologists’ experience ranged from 1 month to 3 

years of DBT reading with a volume of 50 to 500 cases read per year. The gender balance 

for the study performed at UC Santa Barbara was 28% male and 72% female, with ages 

ranging from 20 to 29 years. For the radiologist psychophysical study, it was 75% male and 

25% female, with ages ranging from 27 to 34. All participants provided informed written 

consent and were recruited and treated according to approved human subject research 

protocols by the University of California, Santa Barbara (12-16-0806). Finally, the survey 

was conducted with 21 radiologists from the Sansum Clinic in Santa Barbara, Pennsylvania 

Hospital, and Hospital of the University of Pennsylvania.

METHOD DETAILS

Psychophysical Search Task with 1/f2.8 filtered noise—Seven observers searched 

for a target in 2D and 3D images with a 50% probability of the target being present on each 

trial. They were instructed to search for a known signal embedded within a correlated 

Gaussian noise field. The stimuli images were created using a 3D correlated Gaussian noise 

field (μ = 128, σ = 25) with a 3D power spectrum S(f) derived from X-ray breast 

mammograms, specifically NPS(f)= 1/f2:8 using frequency indices. The size of a 3D 

volumetric image was 1024 × 820 × 100 voxels. Subjects saw 800 trials in total. 2D and 3D 

search sessions were intermixed and counterbalanced. Each observer participated in 5 

sessions of 80 trials per condition (2D and 3D) for a total of 160 trials per session. Two 

different targets were generated, designed to have high and low visibility in the periphery 

(large and small target, respectively). The searched target was randomized across trials. The 

larger target was a 3D Gaussian-shaped target (2σ = 20 voxels or 0.44 degrees of visual 

angle), and the smaller target was a sphere (diameter = 6 voxels or 0.13 degrees of visual 

angle), contrast for both targets was set to 65%; see Figure S3A for more information. While 

the correlated noise field and large target are mainly present at lower frequencies, the small 
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target has a higher presence on higher frequencies due to its sharp edges. For each trial, 

before the presentation of the test image, a high contrast copy of the target that might be 

present in the trial (large or small) was shown to observers and remained visible during the 

trial. After pressing the space bar, the image was displayed.

In the 3D case, the volume was displayed as a stack of 2D images, and the first slice was 

initially displayed. The observers could scroll freely using the mouse with no time limit or 

other constraints. A non-overlapping scroll bar was presented on the right side of the screen 

showing the slice that was currently being displayed. In the 2D trials, only one slice was 

present (the one corresponding to the central slice of the target, if present), and the scrolling 

was disabled. At any time, to finalize the trial, observers had to press the space bar. 

Observers used an 8-scale confidence rating to indicate their decision about the presence 

(ratings 5–8) or absence (ratings 1–4) of the target. Subsequently, a feedback screen showing 

the correct response and the target location (in case of a target-present trial) was displayed. 

Before the experiment, we trained observers to navigate through volumetric images using 10 

practice trials. We did not use the practice trials for the analysis.

The stimuli were displayed in a medical-grade monitor (Barco MDRC-1119 LCD) with a 

resolution of 1280 × 1024 pixels at a distance of ~75 cm (pixels per degree of visual angle 

was 45). The monitor was calibrated to have linear contrast with 0.05 cd/m2 at gray level 0 

and 111 cd/m2 at gray level 255. The experiment took place in a darkened room. The screen 

area outside the image was set to a neutral gray level of 128. Figure S3B shows the outline 

of the search experiment. A real-time eye tracker (Eyelink 1000, SR Research) was used at 

all times, including a calibration screen at the beginning of each experimental session. 

Fixations were detected using the default parameters: eye velocity and acceleration 

thresholds of 30 deg/s and 9,500 deg/s2, respectively. The timing of the scrolling behavior 

was also recorded at a sampling rate of 60Hz. We used Psychtoolbox to develop this 

experiment.61

Detectability versus retinal eccentricity psychophysical task—This experiment 

measured the detectability of both targets with respect to the distance to the fixation point 

(eccentricity). The same seven observers that participated in the search experiment 

participated in this experiment. This forced-fixation experiment was designed as a location-

known exactly and signal-known-exactly task in which the observers were instructed to 

fixate at a cross while fiduciary marks indicated the possible location of the target (Yes/No 

task; 50% probability of target presence). After pressing the space bar, the stimulus was 

shown for 500ms. Eye-position was monitored in real-time. If a change in eye position 

exceeded 1 degree of visual angle, the trial was interrupted. Observers responded using an 8-

scale confidence rating about the absence or presence of the target. Small and large target 

trials were intermixed randomly, with 50% prevalence. The target contrasts were the same as 

the original search experiment. Figure S3C shows the outline of one trial of this experiment. 

We measured the detectability at eccentricities of 0, 3, and 6 degrees of visual angle for the 

small target and at 0, 3, 6, 9, and 12 degrees for the large target. Each observer participated 

in 1,000 and 800 trials, respectively, for large and small targets across eccentricities (total of 

8,000 trials). We used the same eye tracker and monitor setup as for the search 

psychophysical experiment. We used Psychtoolbox to develop this experiment.61
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Extended search psychophysical task—Four new observers participated in this 

experiment. In the control condition (normal search), observers freely searched small and 

large targets only in 3D image stacks. In a separate, extended search condition, participants 

had to explore at least 40% of the 3D image stack to terminate the trial, if their response was 

target absent. This restriction was not enforced when they responded that the target was 

present, allowing participants to terminate the trial at any time in these trials. Additionally, to 

allow observers to better track the regions that they have explored, circular shaded areas 

(2.5-degree radius) appeared around observer fixations when participants revisited a slice. At 

any time, participants could see their current explored percentage relative to the minimum 

explored percentage required to terminate the trial. By pressing a key, the percentage left to 

reach the threshold (from 0% to 100%) was shown on the screen. Participants were not 

informed that this threshold was set to 40%. Each observer participated in 100 trials for both 

large and small targets and was only performed for 3D search. We used the same eye tracker 

and monitor setup as for the search psychophysical experiment. We used PsychoPy to 

develop this experiment.62

Estimated search psychophysical task—Six participants participated (one out of 

seven from the 2D/3D search experiment and the same four from the extended search) in 

another variation of the 2D/3D search experiment, which included an additional question at 

the end of each trial. After responding to the absence or presence of the target, participants 

were asked to estimate the percentage of image/volume they had explored. They responded 

using a slider that ranged from 0% to 100%. Observers participated in 200 trials across all 

conditions. We used the same eye tracker and monitor setup as for the search psychophysical 

experiment. We used PsychoPy to develop this experiment.62

Image coverage evaluation—To calculate the percentage of the images explored during 

the search, we “painted” the image with 2.5-degree-radius circles centered on each fixation. 

In 3D images, we only “painted” these circles on the slice at the moment of each fixation. 

3D scrolls counted as new fixations for the total computation. The final percentage is 

calculated by dividing the number of pixels (or voxels in 3D) covered by the circles by the 

total number of pixels (or voxels in 3D).

Psychophysical Search Task with radiologists—Twelve radiologists participated in 

the study. They sat ~75 cm away from a vertical medical-grade monitor placed in a darkened 

room. Images used in the radiologist study were generated by the OpenVCT virtual breast 

imaging tool from the University of Pennsylvania.50,64,65 This tool generates full phantom 

DBT images, including different tissues (skin, Cooper’s ligaments, adipose, and glandular) 

in a realistic manner. The phantom is projected using clinical acquisition geometry and 

clinical automatic exposure control settings (Selenia Dimensions, Hologic, Marlborough, 

MA). Reconstruction was performed at 100μm in-plane resolution and 1mm slice spacing 

(Briona Standard; Real Time Tomography, LLC, Villanova, PA). We used 700ml phantoms 

compressed in ML direction at 6.33mm thickness with glandular tissue prevalence of 15%–

25%. The size of each 3D virtual DBT was 2048×1792×64 voxels. The stimuli were 

displayed in a 5Mpx grayscale DICOM calibrated monitor (2560×2048 pixels), keeping 

their aspect ratio. Two lesions were simulated and inserted in a random location on 50% of 
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the trials. A small lesion, similar to a microcalcification, was simulated as a solid sphere of 

0.3mm diameter (0.06 degrees of visual angle). A large lesion, similar to a mass, was 

simulated as a combination of several 3D ellipsoids with an average diameter of 7mm (0.5 

degrees of visual angle). Density stepped from the center to the sides of the lesion to 

simulate blending with the background. For 2D stimuli, the central slice of the lesion was 

selected on signal-present trials, the central slice of the reconstruction was selected on 

signal-absent trials.

Radiologists were asked to search for a given signal (microcalcification or mass) in the 

phantom DBT. The experiment had 56 trials, 28 of them corresponding to the 2D single slice 

case, and 28 to the complete 3D volume. Each condition had 14 signal-absent trials and 14 

signal-present trials. The prevalence between microcalcification and masses was also 50%. 

All four conditions were randomly intermixed. An eye tracker recorded the participant’s eye 

movements in real-time at a frequency of 500Hz (EyeLink Portable Duo, SR Research). We 

used Psychtoolbox to develop this experiment.61

Radiologist survey—An online survey was sent to a group of twenty-one radiologists. 

The survey asked radiologists to estimate the percentage of the image explored during the 

reading of a 2D Digital Mammogram and a 3D Digital Breast Tomosynthesis.

Calculating figures of merit for task performance—To compare performances, we 

calculated the True Positive Rate (TPR) and False Positive Rate (FPR). We calculated the 

proportion of correct trials as PC = (TPR + (1 – FPR))/2 for models and humans. The index 

of detectability d′ was calculated using the usual transformation for a yes/no task, where 

ϕ−1 is the inverse of the cumulative normal distribution function.66

d′ = ϕ−1(TPR) − ϕ−1(FPR) (Equation 1)

2D/3D Ideal Bayesian Observer—The ideal observer model was run on the same 

images with which the human observers were presented. The ideal observer calculates, for 

each location in the 2D or 3D image, the posterior probability of the target being present or 

absent given the image data to make optimal decisions.66–69 For search, the ideal observer’s 

first step reduces to correlating a 2D or 3D optimal template with the image at all locations 

that might contain the target.69,70 The ideal observer’ template w(x, y, z) is convolved (*) 

with the image71 g(x, y, z) and a decision variable λ was calculated for each pixel/voxel in 

the image as follows:

λ = w(x, y, z) ∗ g(x, y, z) (Equation 2)

The optimal linear template, w(x, y, z) is calculated by taking into account the shape of the 

target and the spatio-temporal correlations in the noise. The template is calculated from the 

3D image covariance matrix of the noise (Kg), which describes the noise variance and 

covariance between all pixels in the 3D image stack and a mathematical representation of 

each target. This optimal template calculation is typically expressed using 1D vectorized 

version of the 2D or 3D signal (s) and a 2D covariance matrix, Kg:
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wIO = Kg
−1s (Equation 3)

where wIO is a 1-D vectorized version of the optimal template.

The scalar template response (λ, Equation 2), at each location p, is used to calculate the 

likelihood of the template response given target presence ℒp
+  and target absence ℒp

−

using the expected mean and standard deviation of the ideal observer template responses 

under each hypothesis. A likelihood ratio LRp = ℒp
+/ℒp

− can be calculated for each location. 

A yes/no decision is reached by summing the evidence for the target (likelihood ratios) 

across locations ∑p = 1
P LRp and comparing the resulting decision variable to a threshold.

38,68–70 The likelihoods are given by Gaussian probability density functions with different 

means for target presence and target absence but the same variance. The 2D search ideal 

observer implementation can be derived similarly by considering single slices and 2-

dimensions, and consistent with previous implementations.69,72–75 To compare the ideal 

observer and human performance across conditions, we added internal noise to the ideal 

observer to match human performance in 3D for each target type. Other options, such as 

matching 2D performance of human and ideal observer, led to ceiling performance for the 

ideal observer in 3D search of the small signal.

3D Foveated Search Model (FSM)—This model observer accounts for the target 

detectability as a function of the target’s distance from the observer’s fixation point (retinal 

eccentricity). The model processes the entire image in parallel with a foveated visual system 

for each fixation point. The model processes the visual input with spatial frequency and 

orientation tuned feature extraction channels (Gabor functions). To model the decreasing 

spatial resolution with increasing retinal eccentricity, we scaled the Gabor channels as a 

function of distance from the target to the point of fixation. At 0 degrees retinal eccentricity 

(the fovea), the center frequencies of the channels are the six spatial frequencies of a 

standard channel model (0.5, 1, 2, 4, 8, and 16 cycles per degree of visual angle) and the 

eight different orientations.76 The center frequencies for all the Gabor channels are non-

linearly scaled as a function of the eccentricity, E, in degrees of visual angle.

scaling = 1 + αEβ (Equation 4)

Thus, the model loses access to high spatial frequencies as the retinal eccentricity increases 

(e.g., the highest spatial frequency channel ranged from 16 cycles per degree in the fovea to 

0.33 cycles per degree at 9 degrees eccentricity). At each eccentricity, the model uses the 

best linear combination of channels to detect the target. To reduce computational 

complexity, we utilized ten sets of different channels to cover eccentricities from the fovea to 

9 degrees of visual angle.

We calculated the proportion correct for a Yes/No task of the FSM model detecting each 

target (50% probability of target presence) at a single location at each eccentricity. The 

proportion correct was transformed into a d’ detectability index for the model at each 

eccentricity for each target. We fit the model to human measurements of d’ versus retinal 
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eccentricity target detection data for both target types simultaneously with a single set of 

parameters. We used a global optimization algorithm based on the MATLAB 

implementation of the Mesh Adaptive Direct Search (MADS) to fit the two Gabor-channel 

scaling parameters α and β. To degrade the model’s overall performance to match that of 

humans, we included internal noise, which perturbed the model’s decision variable. The 

internal noise was a random scalar value sampled from a Gaussian distribution with a 

standard deviation proportional to the standard deviation of the model decision variable: 

εint ∼ N 0, Kσλ
2  as a fitting parameter fixed across target types. Optimized parameters 

were found to be α = 0.7063, β = 1.6953, and K = 2.7813. The different sets of channels per 

eccentricity result in ten templates that process the visual field, one per each specific 

eccentricity.

To apply the FSM to the visual search task, we assumed a fixation point and processed the 

entire image with the foveated model. For each location (p) in the image, the dot product 

between the corresponding template (wε) at the eccentricity (ε) and the image (gp) data at 

that location were used to generate a response for the model (λp). The result is modified by 

an additive the internal noise εint:

λp = wεt gp + εint (Equation 5)

The 3D component of the model is constructed by building independent 2D foveated 

channelized templates, corresponding to each slice of the signal, and stacking them together 

to create a final 3D template. To model slice/depth integration, we measured the mean 

number of slices viewed during a fixation across observers and trials. Human observers 

scrolled, on average, across fives slices for each fixation. Thus, the model also utilized five 

slices: the signal’s central slice plus two slices above and below.

The scalar template response λp at each location p was used to calculate a likelihood of the 

response for that eccentricity given target presence or absence:

P(x, μ, σ) = 1
σ 2πexp−(x − μ)2

2σ2 (Equation 6)

ℒp = P λp, μ, σ

where μ and σ are the mean response and standard deviation of the template response, 

respectively. Finally, a likelihood ratio was then computed for each location by dividing the 

likelihood of the signal present by the likelihood of the signal absent.

LRp = ℒp
+

ℒp
− (Equation 7)
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Integration across fixations—We considered optimal integration of information, 

assuming statistical independence. The decision variable Λp in every location of the image is 

the result of the product of likelihood ratios for all the fixations N in the current slice.

Λp = ∏
n = 1

N
LRp, n (Equation 8)

Final perceptual decisions after multiple fixations—In order to achieve a final 

decision, we combined the template responses in different ways. For the ideal observer, we 

used the optimal rule: the sum of the likelihood ratios across slices and then compared the 

resulting variable against a decision threshold. For the foveated model, we used the 

maximum Λp across fixations and slices. Note that the distribution of Λp varies with the 

number of fixations (N) executed by the model. Consequently, the optimal decision 

threshold also varies with N. We estimated the optimal thresholds for every N by training the 

model on a separate set of trials and images for N = [0…30].

Human Fixations—We utilized the measured human fixations as input for the fixations of 

the model for the same trials/images. The performance was calculated for each human 

observer separately by having the model fixate in the corresponding fixations of the human 

observer for each trial. There was an exclusion of fixations of less than 50 ms, which were 

fewer than 1% of all fixations

Convolutional Neural Network applied Digital Breast Tomosynthesis 
Phantoms—The medical segmentation decathlon77 is a general-purpose 3D segmentation 

challenge for the following organs: liver, brain, hippocampus, lung, prostate, cardiac, 

pancreas, colon, hepatic, and spleen tumor segmentations. Due to the wide variety of tasks, 

networks trained for this challenge are easily generalizable to new tasks. Fabian et al.63 

implemented nn U-Net for this challenge and is currently the best performing network. It is 

based on a simple U-Net architecture and the training process is simplified by automating 

the selection of training parameters based on the properties of the dataset. The nn U-Net is 

optimized to work for 12 GB GPUs. This brings a restriction on the maximum patch size 

that can be processed by the network. Our DBT images are of size 2048×1664×64 and 

exceed the maximum size allowed by the network. Although nn U-Net provides a fallback 

option of using a cascade network, consisting of a low-resolution network followed by 

another network to refine the segmentation for images where the patch size in full resolution 

mode is much smaller than the image size, it is a much slower training process which would 

likely take ~20 days to train on a single GPU. In order to expedite the training process, we 

chose to crop the input image to make it conform to the requirements of the non-cascade 

network. The training input image was cropped to a size of 64×380×380. For the 2D cases, 

since the 3D network does not allow for a single slice, the central signal slice is replicated 

four times, resulting in input images of 4×380×380. The same network architecture is used 

for both 2D and 3D tasks. The network tries to minimize a combination of the Dice 

coefficient78 loss and cross-entropy loss. We used 524 images for training and 102 images 
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for evaluation. No changes were made to the network or the hyperparameters, which were 

suggested by the automation part of the network. The evaluation was performed in the same 

full-resolution images (2048×1664×64) as those viewed by the radiologists.

Since the goal was to compare the segmentation model against radiologists’ performance 

when detecting the target, traditional evaluation metrics like Dice or Jaccard coefficients 

were not used for evaluation. In order to obtain a comparable metric with humans, we 

defined our own evaluation metric. If the input to the network is of size (2048×1664×64), 

the output of the network is (2×2048×1664×64), where the two values corresponding to each 

pixel/voxel correspond to background and foreground (i.e., target) probabilities for that 

pixel. We selected only those pixels/voxels with a foreground probability of 1.0. Since the 

goal is to detect the presence of a target, we computed all the 3D connected components (Q) 

with six connectivity in the binary output image. Then, we computed the volume of each of 

the connected components. Finally, we selected the number of pixels/voxels of the 

maximum out of those Q volumes to be the representative of a given image. This process 

resulted in N values corresponding to the N 2D images or 3D image sequences. A decision 

threshold was utilized to determine whether an image/image stack was target present or 

absent. We varied a decision threshold and selected the threshold that maximized the 

proportion correct.

QUANTIFICATION AND STATISTICAL ANALYSIS

The psychophysical data from readers was modeled as a dichotomous trial outcome coded as 

0 (incorrect response) or 1 (correct response). The data were analyzed in MATLAB (version 

2019a) using logistic regression (logit link function) and mixed-effects ANOVA in which 

cases and readers are modeled as random effects, and image modality (2D or 3D) and target 

size (large or small) are modeled as fixed effects. We modeled the main effects as well as 2-

way interactions between effects. The primary endpoint of the statistical analysis was the 

interaction between modality and target size, which was consistent with the dissociation in 

performance due to the limitations of peripheral visual processing. Additionally, for the 

purpose of comparing 2D and 3D search parameters within a given signal size, we also 

calculated paired comparison t tests across subjects. The sample size and statistical details of 

the experiments are indicated in each study in the Results section. For all statistical tests, we 

used the significance criteria of p < 0.05. We additionally used standard t tests for pairwise 

comparisons.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Humans searching 3D image stacks miss small targets that are salient in 2D 

images

• Optimal observers and deep neural networks do not show the deficits for 3D 

images

• Human eye movement under-exploration in 3D search explains the misses

• New 3D-imaging technologies should consider these human visuo-cognitive 

bottlenecks
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Figure 1. Human and Ideal Observer Results for 2D and 3D Search in Filtered Noise
(A) A sample 2D image (top) and slices of a 3D volume (bottom) of filtered noise images 

with fixations and scrolls of a search by a human observer.

(B) Proportion correct for target detection for human observers and an ideal Bayesian 

observer (IO) for the large target. To avoid ceiling effects, IO performance was degraded 

with internal noise to approximately match human performance in 3D for each target type. 

The same value of internal noise was then used for the IO’s 2D search (STAR Methods).

(C) Proportion correct for target detection for human observers and IO for the small target.

(D) Average search time measured for human observers.

(E) A sample of the image covered for a 2D trial (top) and a 3D trial (bottom) with a useful 

field of view (UFOV) of 2.5° radius.

(F) Average proportion of image covered by human observers’ UFOV.

(G) Search and recognition errors for human observers.

(H) Symbols: average human target detectability (d’) versus retinal eccentricity for small 

and large targets during brief presentations of 2D images (500 ms).

Continuous lines: fit of the foveated search model (FSM) (STAR Methods).

Error bars are ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001. See also Figure S1.
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Figure 2. FSM Results in Synthetic Noise Images for 2D and 3D Search
(A) FSM that incorporates receptive field sizes that scale with eccentricity and the eye 

movements and scrolling behavior measured in human observers. For illustration, the 

flowchart only shows the scaling with retinal eccentricity of a single spatial frequency 

channel and four orientations. See also Video S1 for the FSM’s eye movements.

(B) Proportion correct performance for human observers and the FSM for large target.

(C) Proportion correct performance for human observers and the FSM for the small target.

(D) Search and recognition errors during search for the FSM model for large and small 

targets.

Error bars are ±SEM.
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Figure 3. Human Results for Extended 3D Search and Estimated Coverage in 2D and 3D Search
(A) Schematic of one trial in the extended 3D search experiment. Participants could not 

respond absent until they explored a minimum of 40% of the image calculated with a 2.5°-

radius UFOV. To help observers keep track of the areas they searched, the computer shaded 

a 2.5° radius area around each observer’s fixations, which appeared after the observer 

scrolled to another slice.

(B) Proportion of correct target detection for the normal search and extended search.

(C) Proportion covered with a 2.5° UFOV.

(D) Average search times.

(E) Real and estimated coverage for participants using a 2.5° UFOV.

Error bars are ±SEM. *p < 0.05; ***p < 0.001.
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Figure 4. Radiologists and CNN Results for 2D and 3D Search with Digital Breast Tomosynthesis 
Phantoms
(A) Sample 2D and 3D of digital breast tomosynthesis (DBT) phantoms with sample 

fixations and scrolls of a radiologist.

(B) Proportion correct of convolutional neural network (CNN) and radiologists for detection 

of the simulated mass.

(C) Proportion correct of radiologists and CNN for detection of the simulated 

microcalcification.

(D) Average search time for radiologists.

(E) Proportion of image covered by radiologists (2.5° radius UFOV).

***p < 0.001. n.s., not statistically significant. Error bars are ±SEM. See also Figure S2.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw Data This paper https://doi.org/10.17632/tjy4h67z4j.1

Software and Algorithms

MATLAB R2019a The MathWorks RRID: SCR_001622

Python https://www.python.org RRID: SCR_008394

Eyelink 1000 Eyetracker SR Research, Mississauga, ON, Canada RRID: SCR_009602

Psychotoolbox 61 http://psychtoolbox.org/

PyschoPy 62 https://www.psychopy.org/

nn 3D U-net 63 https://github.com/MIC-DKFZ/nnUNet
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