Skip to main content
. 2021 Apr 15;21:410. doi: 10.1186/s12885-021-08137-4

Table 2.

The results from the OPLS-DA and statistical analyses

OPLS-DA model diagnostics
Predictive component R2X R2Y Q2
0.0995 0.477 0.28
Orthogonal components R2X(o)
0.548
0.107
cv-ANOVA p value 0.0001
Misclassification table
Members Correct
preCHT 1 100%
postCHT 23 100%
List of the important metabolites from the OPLS-DA model
Name ppm p(corr) p value Median ratio [%]
Metabolites increased after induction chemotherapy
1 Lipids 0.9 0.76 < 0.000 12.73
1.3 0.57 < 0.000 18.58
5.3 0.69 < 0.000 17.38
Metabolites decreased after induction chemotherapy
2 Alanine 1.48 0.33 0.0008 14.21
3 NAG 2.07 0.12 0.0002 9.03
4 Glucose 3.24 0.31 0.04 9.4
3.42 0.43 0.042 8.11
3.44 0.48 0.038 8.46
3.51 0.43 0.036 9.54
3.56 0.46 0.04 9.33
3.72 0.55 0.039 9.59
3.76 0.43 0.031 8.3
3.83 0.39 0.019 8.57
3.9 0.48 0.028 9.34
5.2 0.32 0.025 9.57

R2X — an amount of variation in the data that is correlated to class separation; R2Y — a fraction of the class membership (Y) variation modeled using the data matrix (X), this parameter tells how good is the separation between two classes; R2X(o) — an amount of variation in the data that is uncorrelated (orthogonal) to the class separation; Q2 — a predictive ability of the OPLS-DA model; p(corr) — describes reliability of a variable, the closer to one the better; p value – from the WSR test, Median ratio — shows the between class differences in the peak integrals and is calculated as: 100 - (lower median)/(higher median)*100. NAG — N-acetyl-glycoprotein.