Skip to main content
. 2021 Apr 15;133:104375. doi: 10.1016/j.compbiomed.2021.104375

Table 6.

CNN Architectures on COVIDx and COVIDcxr. We trained the popular CNN architectures on both datasets for 30 epochs using the optimized data augmentation pipeline.

CNN Dataset Acc (%) AUC (%) MCC (%) Precision (%) Recall (%) F1 (%)
VGG-16 COVIDcxr 80.73 94.68 72.29 82.03 81.35 80.53
VGG-19 84.90 95.67 77.74 85.31 85.26 84.92
ResNet-18 85.94 96.72 79.40 86.84 86.31 86.14
ResNet-34 79.69 94.91 70.02 80.26 80.03 79.70
ResNet-50 82.81 95.90 75.31 84.90 83.29 83.12
EfficientNet-B0 88.02 _ 82.01 87.98 88.03 88.00
VGG-16 COVIDx 93.41 98.70 87.74 94.40 89.41 91.61
VGG-19 93.60 98.55 88.06 95.29 85.53 89.24
ResNet-18 93.29 98.86 87.48 95.03 86.73 90.05
ResNet-34 94.74 99.10 90.19 95.85 89.95 92.53
ResNet50 95.12 99.22 90.92 96.08 91.76 93.72
EfficientNet-B0 95.69 _ 92.01 96.24 94.76 95.48