Table 7.
Optimizing CNN hyperparameters using COVIDcxr. For each independent parameter, we trained several architectures on COVIDcxr to examine the effects of various hyperparameters on the accuracy of COVID-19 CXR classification.
CNN | Epoch | Batch Size | Loss Function | Acc (%) | MCC (%) | F1 (%) |
---|---|---|---|---|---|---|
VGG-16 | 10 | 32 | Cross Entropy | 77.08 | 68.15 | 76.26 |
20 | 77.60 | 66.71 | 77.43 | |||
30 | 80.73 | 72.29 | 80.53 | |||
40 | 83.33 | 75.51 | 83.31 | |||
30 | 8 | 85.42 | 79.20 | 85.43 | ||
16 | 84.38 | 76.61 | 84.27 | |||
32 | Label Smoothing | 79.17 | 69.62 | 78.91 | ||
VGG-19 | 10 | 32 | Cross Entropy | 78.65 | 68.38 | 78.89 |
20 | 82.81 | 74.25 | 82.96 | |||
30 | 84.90 | 77.74 | 84.92 | |||
40 | 84.38 | 76.66 | 84.35 | |||
30 | 8 | 84.90 | 78.36 | 84.96 | ||
16 | 82.81 | 74.90 | 82.74 | |||
32 | Label Smoothing | 85.42 | 78.30 | 85.51 | ||
ResNet-18 | 10 | 32 | Cross Entropy | 81.25 | 73.69 | 81.25 |
20 | 82.29 | 74.21 | 82.45 | |||
30 | 85.94 | 79.40 | 86.14 | |||
40 | 85.42 | 78.16 | 85.37 | |||
30 | 8 | 81.25 | 73.56 | 81.39 | ||
16 | 82.29 | 74.20 | 82.37 | |||
32 | Label Smoothing | 84.38 | 76.95 | 84.46 | ||
ResNet-34 | 10 | 32 | Cross Entropy | 81.25 | 72.10 | 81.20 |
20 | 81.25 | 71.93 | 80.91 | |||
30 | 79.69 | 70.02 | 79.70 | |||
40 | 81.25 | 71.94 | 81.23 | |||
30 | 8 | 86.46 | 80.12 | 86.54 | ||
16 | 85.94 | 79.00 | 85.87 | |||
32 | Label Smoothing | 83.85 | 76.08 | 83.85 | ||
ResNet-50 | 10 | 32 | Cross Entropy | 81.77 | 73.18 | 82.09 |
20 | 84.90 | 77.32 | 84.93 | |||
30 | 82.81 | 75.31 | 83.12 | |||
40 | 85.42 | 78.12 | 85.45 | |||
30 | 8 | 86.46 | 80.49 | 86.52 | ||
16 | 86.98 | 80.84 | 87.16 | |||
32 | Label Smoothing | 83.85 | 76.21 | 84.05 | ||
EfficientNet-B0 | 10 | 32 | Cross Entropy | 83.33 | 75.36 | 83.65 |
20 | 84.38 | 76.67 | 84.41 | |||
30 | 88.02 | 82.01 | 88.00 | |||
40 | 85.42 | 78.10 | 85.42 | |||
30 | 8 | 88.02 | 82.06 | 87.89 | ||
16 | 86.98 | 80.45 | 86.99 | |||
32 | Label Smoothing | 88.54 | 82.83 | 88.62 |