Skip to main content
. 2021 Apr 15;133:104375. doi: 10.1016/j.compbiomed.2021.104375

Table 7.

Optimizing CNN hyperparameters using COVIDcxr. For each independent parameter, we trained several architectures on COVIDcxr to examine the effects of various hyperparameters on the accuracy of COVID-19 CXR classification.

CNN Epoch Batch Size Loss Function Acc (%) MCC (%) F1 (%)
VGG-16 10 32 Cross Entropy 77.08 68.15 76.26
20 77.60 66.71 77.43
30 80.73 72.29 80.53
40 83.33 75.51 83.31
30 8 85.42 79.20 85.43
16 84.38 76.61 84.27
32 Label Smoothing 79.17 69.62 78.91
VGG-19 10 32 Cross Entropy 78.65 68.38 78.89
20 82.81 74.25 82.96
30 84.90 77.74 84.92
40 84.38 76.66 84.35
30 8 84.90 78.36 84.96
16 82.81 74.90 82.74
32 Label Smoothing 85.42 78.30 85.51
ResNet-18 10 32 Cross Entropy 81.25 73.69 81.25
20 82.29 74.21 82.45
30 85.94 79.40 86.14
40 85.42 78.16 85.37
30 8 81.25 73.56 81.39
16 82.29 74.20 82.37
32 Label Smoothing 84.38 76.95 84.46
ResNet-34 10 32 Cross Entropy 81.25 72.10 81.20
20 81.25 71.93 80.91
30 79.69 70.02 79.70
40 81.25 71.94 81.23
30 8 86.46 80.12 86.54
16 85.94 79.00 85.87
32 Label Smoothing 83.85 76.08 83.85
ResNet-50 10 32 Cross Entropy 81.77 73.18 82.09
20 84.90 77.32 84.93
30 82.81 75.31 83.12
40 85.42 78.12 85.45
30 8 86.46 80.49 86.52
16 86.98 80.84 87.16
32 Label Smoothing 83.85 76.21 84.05
EfficientNet-B0 10 32 Cross Entropy 83.33 75.36 83.65
20 84.38 76.67 84.41
30 88.02 82.01 88.00
40 85.42 78.10 85.42
30 8 88.02 82.06 87.89
16 86.98 80.45 86.99
32 Label Smoothing 88.54 82.83 88.62