Skip to main content
. 2021 Apr 15;133:104375. doi: 10.1016/j.compbiomed.2021.104375

Table 8.

Optimizing CNN hyperparameters using COVIDx. For each independent parameter, we trained several architectures on COVIDx to examine the effects of various hyperparameters on the accuracy of COVID-19 CXR classification.

CNN Epoch Batch Size Loss Function Acc (%) MCC (%) F1 (%)
VGG-16 10 32 Cross Entropy 92.08 85.20 86.99
20 93.35 87.56 90.10
30 93.41 87.74 91.61
40 94.24 89.25 91.99
30 8 93.86 88.56 91.03
16 94.30 89.38 92.00
32 Label Smoothing 94.05 88.88 91.35
VGG-19 10 32 Cross Entropy 92.53 86.04 87.29
20 93.98 88.77 91.57
30 93.60 88.06 89.24
40 93.29 87.46 88.72
30 8 94.49 89.73 92.14
16 94.93 90.56 92.79
32 Label Smoothing 93.79 88.40 90.10
ResNet-18 10 32 Cross Entropy 93.10 87.08 88.43
20 93.60 88.06 90.07
30 93.29 87.48 90.05
40 93.86 88.53 90.87
30 8 94.17 89.11 91.17
16 94.43 89.60 92.49
32 Label Smoothing 94.30 89.35 91.58
ResNet-34 10 32 Cross Entropy 94.05 88.89 91.41
20 94.62 89.97 93.32
30 94.74 90.19 92.53
40 94.43 89.63 93.38
30 8 94.87 90.44 92.43
16 95.31 91.28 94.50
32 Label Smoothing 94.62 89.96 92.50
ResNet-50 10 32 Cross Entropy 94.93 90.55 92.62
20 94.81 90.34 93.37
30 95.12 90.92 93.72
40 94.81 90.35 93.14
30 8 93.03 87.01 91.99
16 95.57 91.76 95.35
32 Label Smoothing 95.12 90.91 93.36
EfficientNet-B0 10 32 Cross Entropy 95.69 91.99 94.52
20 95.19 91.02 93.38
30 95.69 92.01 95.48
40 95.00 90.72 95.00
30 8 94.68 90.16 93.25
16 95.38 91.40 94.88
32 Label Smoothing 95.82 92.24 96.16