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Abstract

Dysregulated protein synthesis is frequently involved in oncogenesis and cancer progression.
Translation initiation is thought to be the rate-limiting step in protein synthesis, and the mRNA 5’
cap-binding protein eukaryotic translation initiation factor 4E (elF4E) is a pivotal factor that
initiates translation. The activities of elF4E are regulated at multiple levels, one of which is
through its phosphorylation at Serine 209 by the mitogen-activated protein kinase-interacting
kinases (MNKs, including MNK1 and MNK?2). Benefiting from novel mouse genetic tools and
pharmacological MNK inhibitors, our understanding of a role for elF4E phosphorylation in tumor
biology and cancer therapy has greatly evolved in recent years. Importantly, recent studies have
found that the level of elF4E phosphorylation is frequently upregulated in a wide variety of human
cancer types, and phosphorylation of elFAE drives a number of important processes in cancer
biology, including cell transformation, proliferation, apoptosis, metastasis and angiogenesis. The
MNK-elF4E axis is being assessed as a therapeutic target either alone or in combination with
other therapies in different cancer models. As novel MNK inhibitors are being developed,
experimental studies bring new hope to cure human cancers that are not responsive to traditional
therapies. Herein we review recent progress on our understanding of a mechanistic role for
phosphorylation of elF4E in cancer biology and therapy.
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1. The cap-binding protein elF4E and translational control

MRNA translation (protein synthesis) is the most energy-consuming step in gene expression
and is highly regulated [1]. Translational control provides a fast adaptive response to
environmental cues and is essential for maintaining protein homeostasis in cells [2]. mMRNA
translation in eukaryotes can includes three steps: initiation, elongation and termination[2,
3]. Protein synthesis is controlled primarily at the step of mRNA translation initiation [2].
Most eukaryotic mMRNAs are translated by a cap-dependent mechanism. All the nuclear
transcribed mRNAs are capped at their 5” end by an N7-methylated guanosine linked to the
first nucleotide of the mMRNA [4].

Translation initiation in eukaryotes begins with the binding of the eukaryotic translation
initiation factor 4F (elF4F) complex to the m’GTP cap structure of the mRNA [5]. The
elF4F complex consists of elFAE, elF4G and elF4A. Eukaryotic translation initiation factor
4E (elF4E) is a highly conserved protein that recognizes and binds to the cap. The concave
surface of elF4E is combined with the cap, and the convex surface interacts with elF4G, the
scaffold protein[5]. elF4A is the RNA helicase that unwinds the secondary structure of
5’UTR (untranslated region) and promotes ribosome binding and scanning of 5’UTR. elF4F
complex assembly is the rate limiting step for translation initiation and it depends largely on
the availability of elFAE. The poly(A)-binding protein (PABP) also associates with the
elF4F complex via elF4G, and binds the poly-A tail of most eukaryotic mMRNA molecules,
thus forming a circular mMRNA[6, 7]. It is thought that the circularization mediated by
PABP / elFAF enhances translation [7, 8]. The elF4F complex interacts with elF3 to recruit
the 43S pre-initiation complex to the cap.

The elF2-GTP complex binds to the methionyl transfer RNA and forms a ternary complex
with the 40S ribosomal subunit [9]. Other initiation factors such as elF5, elF1 and elF1A
bind to the ternary complex and form the 43S pre-initiation complex. The pre-initiation
complex scans the mRNA across the 5 UTR in a 5’ to 3 direction until the methionyl tRNA
finds the start codon, usually (but not always) AUG. After attachment to the mRNA, the 43S
complex scans to the initiation codon, whereupon it forms a 48S initiation complex. After
identifying the start codon, the elF2-GTP complex undergoes hydrolysis, triggering the
release of itself as well as other elFs from the 48S complex [10]. Dissociation of these
factors allows for the binding of the 60S ribosomal subunit and the formation of the 80S
ribosomal complex, which concludes the translation initiation process.

As it is of low abundance, elFAE serves as a key checkpoint in controlling the rate of mMRNA
translation [11]. elF4E abundance and activity are regulated by several mechanisms [12].
First of all, the level of elF4E is regulated at the level of transcription and mRNA stability.
Some study suggests that elF4E is a myc target gene as it has an E-box in its promoter.
Secondly, the elF4E-binding proteins (4E-BPs) compete with elF4G to bind to elF4E. Once
bound to 4E-BPs, elF4E cannot bind to elF4G and initiate translation. This can be relieved
after 4E-BP phosphorylation by the mechanistic target of rapamycin (mTOR) signaling
pathway [13, 14]. Thirdly, elF4E activity can be regulated by its phosphorylation at Serine
209 [15] (see below).
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Protein synthesis is frequently dysregulated in human diseases such as cancer [16]. Recent
studies have found that elF4E is often overexpressed and hyperphosphorylated in human
cancers, which is correlated with disease progression and prognosis [17]. Experimental
studies have found that phosphorylation of elF4E plays a fundamental role in tumor biology.
Here, we review recent progress on a role for elF4E phosphorylation in tumor biology and
its potential as a therapeutic target for cancer therapy.

Phosphorylation of elF4E by MNKs

2.1 The MAPK-MNK signaling pathway

The activity of elF4E is regulated through its phosphorylation by two MAP kinase-
interacting kinases (MNKs, i.e. MNK1 and MNK?2) at a single residue Ser20° [18, 19].
MNK1 and MNK2 belong to the serine/threonine protein kinase family and are activated by
extracellular signal-regulated kinases (ERKSs) or p38 MAPK under the stimulation of
extracellular factors, such as mitogens, osmatic stress, heat shock and proinflammatory
cytokines[20]. Extracellular signal-regulated kinases (ERKs, including ERK 1 and ERK2)
are activated downstream of oncoproteins such as receptor tyrosine kinases, Ras and Raf,
and in turn drive MNK1 activation and elF4E phosphorylation. The p38 MAP kinases a and
[ are activated by stress signals such as arsenite and anisomycin and various cytokines [15].

In human cells, four MNK isoforms have been identified: MNK1a, MNK1b, MNK?2a and
MNK2b. The four isoforms are similar in their N-termini and each contain a nuclear
localization signal and an elF4G binding site[20]. MNKSs are associated with the C-terminus
of elF4G, allowing the kinase to be close enough to phosphorylate elF4E[21]. However,
their C-terminal regions are different. MNK1a and MNK2a contain MAPK binding sites,
which are lacking in the MNK1b and MNK2b. The MAPK-binding domain of MNK1a
interacts with p38 MAPK and ERK1/2, whereas the MAPK-binding domain of MNK2a only
binds to ERK1/2[20]. MNK1 has low basal activity in resting cells and is activated by ERK
and p38 MAPK in response to mitogens and stress responses. In contrast, MNK2 has high
basal activity, but is mainly regulated by ERKSs and responds weakly to p38 MAPK.
Previous evidence suggests that MAPK activates MNK1 to induce elF4E phosphorylation,
while MNK?2 is primarily involved in constitutive phosphorylation of elF4E under basal
conditions[22]. (Figure 1).

2.2. The MNK and mTORCL1 pathways converge on elF4E to regulate mRNA translation

The mechanism/mammalian target of rapamycin (mTOR) is a highly evolutionarily
conserved serine/threonine kinase that is a member of the phosphatidylinositol 3-kinase-
related kinase (PIKK) family, which acts on downstream of phosphatidylinositol 3-kinase
(PI3K) / the AKT pathway [23]. mTOR forms two polyprotein complexes: mMTORC (mTOR
complex)1 and mTORC2. Both complexes contain mTOR kinase, but the associated
regulatory proteins are different. mTORCL1 is defined by a regulatory protein associated with
MTOR (RAPTOR) [24, 25] and has the key downstream substrates including 4E-BPs
(including 4E-BP1, 2 and 3). 4E-BPs are translational repressors that bind to elF4E and
block its binding to elF4G. The activities of 4E-BPs are regulated via phosphorylation by
mTORC1[13,14]. After phosphorylation by mTORCL1, 4E-BPs dissociate from elF4E, thus
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allowing the formation of elF4F complex and cap-dependent translation initiation. elF4E is
therefore a key converging point whereby the MNK and mTORC1 pathways control mMRNA
translation. Importantly, emerging evidence suggests significant crosstalk between MNK and
mTORC1 pathways. For example, Brown et al. found that [26] MNK deletion can reduce
basal mMTORC1 signaling and MNK activation contributes to rapamycin resistance in cancer
cells by sustaining mTORC1 activity following rapamycin treatment. Consistently, MNK
inhibition alone only mildly suppresses the lymphoma cell growth, but the combined MNK
and mTORCL1 inhibition totally abrogates the growth, suggesting combined inhibition of
mTORC1 and MNK exhibits synergistic effects in cancer therapy [27].

2.3 Biological functions of elF4E phosphorylation

3.

MNKSs regulate mMRNA translation through elF4E phosphorylation. It, however, remains
poorly understood how the phosphorylation of elF4E affects its function. Biophysical
studies show that phosphorylation of elF4E markedly reduces its affinity for capped RNA,
primarily due to an increased rate of dissociation [28, 29]. However, studies using the
elF4ES209A cells show that elF4E phosphorylation positively regulates the translation of a
variety of mMRNAs that are involved in tumorigenesis, suggesting that elF4E phosphorylation
may have differential effects on mRNA translation [30]. For example, phosphorylation of
elF4E enhances translation of specific mMRNAs involved in cell proliferation and survival,
such as Cyclin D1 and D3, c-Myc, Snail, Mmp3, Hdm2 (Mdm2 in mouse), Survivin and
Bcl-2 (B-cell lymphoma 2) [30-32]. Moreover, phosphorylation of nuclear elF4E plays an
important role in exporting a set of MRNAs from the nucleus to the cytoplasm (including
Cyclin D1, Hdm2, and Odc) [33, 34]. However, phosphorylation of elFAE is not required for
cell survival, proliferation and development, as elF4ES209A and MNK1/2 double knockout
mice are viable and fertile [22,30].

In the nervous system, phosphorylation of elF4E also plays an important role in synaptic
plasticity [17], mood modulation, nociceptive plasticity and circadian rhythms. The genetic
and pharmacological inhibition of mouse elF4E phosphorylation leads to anxiety and
depression-like behaviors[35, 36]. Recent studies also revealed that MNK-elF4E signaling is
a critical signaling pathway for the generation of nociceptive plasticity leading to acute pain
responses to inflammation and the development of hyperalgesic priming and chronic
pain[37, 38]. Moreover, elF4E phosphorylation promotes the mRNA translation of the clock
genes Period 1and 2, thus facilitating circadian clock resetting and contributing to precise
timekeeping[39].

elF4E phosphorylation in tumor biology

The regulation of cell proliferation and survival by elF4E phosphorylation has only been
observed in cancer but not in normal tissues, and aberrant levels of elF4E phosphorylation
are found in a variety of human cancers, such as nasopharyngeal carcinoma, astrocytoma
and melanoma. Increasing evidence supports that elFAE phosphorylation is involved in a
number of key processes in tumor biology including cell proliferation, transformation,
apoptosis, tumor metastasis and angiogenesis (Figure 2).
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3.1 elF4E phosphorylation and cell proliferation

elFAE overexpression can lead to increased levels of Cyclin D1 and c-Myc proteins, which
are key mediators of cell proliferation[40]. Cyclin D1 is required for cells to enter the S
phase, and its increased expression is related to cell proliferation[41]. c-Myc is ubiquitously
expressed during embryogenesis and in post-developmental tissues with high proliferative
capacity [42]. MNK inhibition reduces the synthesis of Cyclin D1 and represses the
proliferation of breast cancer cells[43]. Conversely, MNKZ1 overexpression is associated with
high levels of c-Myc expression in acute myeloid leukemia (AML), and inhibition of MNK1
activity by the inhibitor CGP57380 or kinase dead mutants of MNK1 significantly impairs
proliferation of hematopoietic cells [44]. Similarly, the level of elFAE phosphorylation is
positively correlated with p-catenin signaling (including p-Catenin, Cyclin D1, c-Myc).
CGP57380 downregulates p-catenin and suppresses the proliferation of nasopharyngeal
carcinoma (NPC) cells [45]. However, it is worth mentioning that CGP57380 is a highly
non-specific inhibitor and the results obtained with it can only suggest the involvement of
elF4E phosphorylation in a given process, but only more specific inhibitors and/or gene
editing can confirm a more definitive role for elF4E phosphorylation.

3.2 elF4E phosphorylation and cell transformation

Cell transformation is the process whereby normal cells acquire the properties of cancer
cells, which may occur as a primary process in normal tissue, or when malignant
degeneration occurs in a previously existing benign tumor. elF4E overexpression and its
phosphorylation may contribute to cancer cell transformation. As a proto-oncogene, elFAE
overexpression leads to immortalization of NIH 3T3 murine fibroblasts and transformation
of human epithelial cells by selectively and disproportionately increasing the expression of
proteins related to growth, angiogenesis, and survival factors [46]. Moderate reduction of
elF4E expression can reverse many phenotypes associated with RAS-induced malignant
transformation [47]. Elevated elF4E phosphorylation was first found in src-transformed cell
lines[48]. Importantly, elF4E double mutation (ST209/210AA) substantially eliminates its
ability to transform cells as compared with wild-type elF4E [33].

Furic et al. have also shown that elFAES209A MEFs are resistant to RAS and C-MYC
induced transformation, demonstrating that its phosphorylation of elF4E is indispensable for
its transforming activity [30]. Furthermore, transformation is also inhibited in MNK1/2
double knockout MEF that overexpress elF4E, demonstrating sufficiency of MNK1/2 for
elF4E phosphorylation. By using adoptive transfer methods, Wendel et al. have showed
ectopic expression of elF4ES209A mutant failed to cause tumor transformation in the Myc
driven B-cell leukemia/lymphoma model (Ep-Myc). Accordingly, high levels of
phosphorylated elF4E effectively upregulate the expression of MCL-1 in human
lymphomas[49]. In another study by Ueda et al., MNK1/2 double knockouts can also inhibit
RAS-mediated oncogenesis[50]. Taken together, these results indicate that phosphorylation
of elF4AE by MNKSs can promote cell transformation.

3.3 elF4E phosphorylation and cell apoptosis

A hallmark of cancer is the ability of malignant cells to evade apoptosis, which is a rapid
and irreversible process to eliminate dysfunctional cells. Mcl-1 is a Bcl-2 family protein that

Cell Signal. Author manuscript; available in PMC 2021 September 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Yang et al.

Page 6

controls apoptosis, and it is involved at an early stage in a cascade of events that lead to the
release of cytochrome ¢ from mitochondria, thus promoting cell survival. Mcl-1 is a mRNA
substrate of elF4E and its expression can be reduced by inhibiting elFAE phosphorylation
[49]. MEFs overexpressing elF4E or MNK1 contain more Mcl-1 mRNA in the
polyribosome fractions compared with controls, while the total mMRNA levels remain
unchanged [49]. elFAE overexpression can lead to increased Cyclin D1 levels, which have
anti-apoptotic effects [51]. Caspase 3, a key regulator of cell apoptosis, promotes
repopulation of surviving tumor cells via activation of the caspase 3/PKC&/p38/MNK1
signaling pathway in irradiated pancreatic tumor cells. Accordingly, pharmacologic
inhibition of MNK1 with CGP57380 and Ribavirin can significantly repress tumor cell
repopulation and tumor cell survival [52]. Thus, elF4E phosphorylation decreases tumor cell
apoptosis and promotes survival.

3.4 elF4E phosphorylation and tumor metastasis

Metastasis is the spread of cancer cells to new areas of the body by way of the lymph system
or bloodstream and it is one of the leading causes of failure in cancer treatment and death of
patients. In many advanced tumors, epithelial-to-mesenchymal transition (EMT) renders
tumor cells highly malignant and is required for metastasis. Phosphorylation of elF4E is
correlated with the increase of mesenchymal markers such as N-cadherin, fibronectin and
vimentin that are mediators of cell invasiveness, thus promoting EMT, tumor invasion, and
metastasis [31]. Transforming growth factor-beta (TGF-) induces elF4E phosphorylation,
which in turn stimulates translation of matrix metalloproteinase 3 (Mmp3) and Snail
mRNAs and induces EMT [31]. elF4ES209A mice are resistant to lung metastasis in a
mammary tumor model and cells isolated from these mice showed impaired invasion /in vitro
[32]. Consistently, MNKZ1 signaling promotes translation of SMAD2 mRNA as well as
TGF-p-induced cell motility and vimentin (a marker for EMT) expression in glioblastoma
cells [53]. Conversely, MNK inhibitors can inhibit EMT, cell invasiveness and metastasis in
the nasopharyngeal cancer[45].

3.5 elF4E phosphorylation and angiogenesis

Tumor angiogenesis is the process of generating new blood vessels, which is required to
provide sustained supply of oxygen and nutrients to tumor cells, as well as to excrete
metabolic wastes from the tumor tissue. Overexpression of elFAE increases the secretion of
vascular endothelial growth factor (VEGF) without affecting its mMRNA levels[54]. Similarly,
fibroblast growth factor 2 (FGF-2) mRNA is also loaded onto polysomes in cells that
overexpress elF4E, resulting in increased FGF-2 secretion[55]. VEGF and FGF-2 are key
regulators of tumor progression by promoting angiogenesis.

However, few studies focused directly on a role for elF4E phosphorylation in angiogenesis.
Angiogenesis is known to play an important role in the progression of hepatocellular
carcinoma (HCC) and resistance to chemotherapy. Blockage of elF4E phosphorylation by
the MNK inhibitor cercosporamide impairs hepatocellular carcinoma (HCC) angiogenesis
by inhibiting the formation, migration, proliferation and survival of capillary networks of
HCC endothelial cells [56]. Vascular recovery or angiogenesis after radiation therapy plays
an important role in tumor recurrence. elFAE phosphorylation may mediate caspase 3
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regulated VEGF-a expression. Importantly, by activating the NF-xB/COX-2/PGE2 axis and
p-elF4E/VEGF-A signaling, caspase 3 helps to establish a pro-angiogenic microenvironment
in post-irradiation dying glioma cells. Accordingly, caspase 3 inhibition disrupts the
proangiogenic effect of glioma cells and reduces tumorigenicity [57]. Thus, decreasing
elF4E phosphorylation can increase the sensitivity of tumor cells to chemotherapy or
radiotherapy.

4. Targeting elF4E phosphorylation in experimental cancer therapy

As phosphorylation of elF4E plays an important role in many fundamental processes of
tumor biology, repressing elF4E phosphorylation can be used as a potential strategy to treat
cancer patients. One strategy is to pharmacologically inhibit MNKSs, since they are the only
kinases that can phosphorylate elFAE. The candidate compounds are CGP57380,
cercosporamide and 5-(2-(phenylamino) pyrimidin-4-yl) thiazole-2(3H)-one derivatives.
CGP57380 is a potent MNKZ1 inhibitor with an 1C50 of 2.2 UM in vitro [58]. However, it can
also inhibit many other kinases [59]. For example, CGP57380 inhibits phosphorylation of
multiple substrates of the MAPK/MNK/RSK and PI3K/mTOR/S6K1 pathways /17 vitro,
which can inhibit the assembly of polysomes and target multiple components known to
regulate cap-dependent translation [60]. It also targets CK1 with similar potency as MNK1
and inhibits protein kinases including Aurora B, DYRK, SGK, BRSK2, and LCK [59].
Cercosporamide, an antifungal agent, is also a potent MNK inhibitor. The IC50 of
cercosporamide is 116 nM for MNK1 and 11 nM for MNK2 in vitro [61]. Notably, oral
administration of cercosporamide to mice bearing tumor xenografts can inhibit elF4E
phosphorylation in xenograft tumors and in mouse liver tissue as quickly as 30 min after
administration[61]. The 5-(2-(Phenylamino) pyrimidin-4-yl) thiazole-2(3H)-one derivatives
were synthesized by screening a library of kinase inhibitors [62]. Mechanistic studies have
confirmed that these inhibitors can reduce elF4E phosphorylation and induce apoptosis in
tumor cell lines by reducing the expression of anti-apoptotic proteins Mcl-1 [62].

As MNK1 and MNK?2 are the two kinases that phosphorylate elF4E, their genetic mutants
can also be used to study functions of MNKSs as well as elF4E phosphorylation [22]. The
Mnk1, Mnk2and Mnk1/2double knockout mice are powerful genetic tools to study MNK
functions /n vivo [22]. Moreover, as elFAE can be phosphorylated only on Serine 209,
elF4E5er209A mice were created [30]. These mouse genetic tools can be used to study
functions of MNKSs and elFAE phosphorylation /n vivo. In addition, the advent of CRISPR/
Cas9 gene editing technology has the potential to be used to investigate the direct role of
MNK1/2 in multiple tumors without relying on mostly non-specific inhibitors. Increasing
studies have demonstrated the efficacy of pharmacologically and/or genetically targeting
MNK kinase and elF4E phosphorylation in experimental cancer therapy, which are
summarized in Table 1.

4.1 Breast cancer

elF4E phosphorylation is overexpressed in many types of breast cancers. Chrestensen et al.
have shown that phosphorylation of elF4E was increased in breast cancer cell lines with
HER2 overexpression, and inhibition of MNKs by CGP57380 reduced proliferation of these
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cell lines [63]. Robichaud et al. have reported that e/F4E5€209A mice are resistant to lung
metastasis of breast cancer, and cells isolated from these mice exhibit impaired invasiveness
[31]. The same group has also found that elFAE phosphorylation can promote neutrophil
survival and accumulation, thus facilitating metastasis to the lung in a mouse model of breast
cancer [32]. These studies point to a key role for the MNKSs in the events underlying
metastasis and indicate that a small molecule targeting MNKSs can be used for treating breast
cancer metastasis. Interestingly, as MNK signaling is located downstream of EGFR/HER?2, it
can promote XIAP expression and NFKB activity when activated in the inflammatory breast
cancer [68]. Taken together, MNKSs inhibition can be a promising way for breast cancer
treatment.

4.2 Prostate cancer

PTEN is a tumor suppressor that is frequently mutated in the prostate cancer (PCa). In PCa
cells with intact PTEN expression, the PI3BK/AKT/mTOR pathway is effectively suppressed,
while the MNK-dependent phosphorylation of elF4E is elevated. Elevated levels of
phosphorylated elF4E are associated with prostate cancer progression in human patients
[30]. Accordingly, the e/F4E Ser209A mice are resistant to tumorigenesis in a prostate cancer
model[30]. D’ Abronzo et al. [79] have found that elF4E phosphorylation in localized PCa
samples strongly correlates with the expression of Ki67, a marker of cell proliferation.
Inhibition of MNK and elF4E phosphorylation are more effective than rapamycin in
suppressing proliferation of PTEN-expressing cells. Conversely, in PTEN mutated PCa cells,
the PIBK/AKT/mTOR pathway is constitutively active and the level of elFAE
phosphorylation is low. When PTEN is absent in the prostate, it leads to early onset of
prostatic intraepithelial neoplasia (PIN) and invasive cancer [106]. Inhibition of mTOR by
rapamycin can induce elF4E phosphorylation. Concomitant treatment with MNK inhibitors,
therefore, demonstrate additive effects on inhibition of protein synthesis and cell cycle
progression [107]. Together, these results support a role for elF4E phosphorylation in the
progression of prostate cancer.

4.3 Leukemia

An increasing body of evidence supports that dysregulation of the MNK-elF4E signaling
pathway is involved in hematologic malignancies. MNKZ1 activity is induced by several
AML fusion genes and plays an important role in myeloid differentiation [44]. Suppressing
the MNK-elF4E axis by CGP57380 can inhibit the function of blast crisis leukemia stem
cells (BC LSCs) by affecting the production of B-catenin without affecting the self-renewal
ability of hematopoietic stem cells [44, 82]. Additionally, The MNK inhibitor
cercosporamide has been shown to suppress MV4-11 AML xenograft tumor growth [83].
The MNK inhibitors therefore deserve further development and clinical evaluation in the
treatment of leukemia.

4.4 Lymphoma

Several important discoveries about the role of elF4E in tumor biology came from studies of
lymphoma models. The transcription factor c-Myc is correlated with B-cell
lymphomagenesis, and transgenic mice overexpressing Myc under the control of
immunoglobulin heavy chain enhancer transcription factor (Ep-Myc) develop B-cell
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lymphoma on average 3—-4 months. By intercrossing BT- £/f4e and Ep-Myc transgenic mouse
lines, Ruggero et al. show that the onset of lymphoma was significantly accelerated and was
evident at less than 1 month of age [108]. The anti-apoptotic protein Mcl-1 is a translational
target of phosphorylated elFAE and contributes to lymphomagenesis [49]. Accordingly, in
the Ep-Myc model, phosphorylated elFAE promotes tumorigenesis by inhibiting apoptosis.
Marzec et al. [27] employed a combination of the mTORCL1 inhibitor rapamycin and an
MNK inhibitor 4-Amino-5-(4-fluoroanilino)-pyrazolo[3,4-d]pyrimidine to treat T-cell
lymphoma (CTCL) cells. The combined therapy results in markedly increased suppression
of proliferation and more cell apoptosis compared with the treatment with rapamycin alone.

4.5 Pancreatic cancer

Pancreatic cancer is a highly malignant neoplasm. Studies have shown human pancreatic
ductal adenocarcinoma (PDAC) tumors are associated with the aberrant activities of the
MNK-elF4E axis [93]. Pharmacological and genetic inhibition of MNKSs can decrease
growth and EMT of PDAC cells. Furthermore, it has been reported that the cytostatic effect
of chemotherapeutic drugs can be synergistically enhanced by pharmacological or genetic
inhibition of elF4E phosphorylation in PDAC cells [92]. Repressing MNK kinases
significantly inhibit Sox2-mediated tumor cell repopulation after radiotherapy [52]. Taken
together, the MNK/elF4E pathway represents a promising target to treat pancreatic cancer.

4.6 Brain cancer

Glioblastoma multiforme (GBM) is the most common and deadly brain tumor originating
from glial cells. Individuals with grade IV astrocytoma have a median survival time of 17
weeks without treatments. Clinical evidence has demonstrated that the level of elF4E
phosphorylation is significantly elevated in astrocytoma compared with surrounding normal
brain tissue [109-111]. Ueda et al. [50] have shown that knockdown of MNKZ1 in the human
glioma cell line U87MG resulted in a significant reduction in tumor formation when injected
into athymic nude mice. Grzmil et al. [53] have demonstrated that pharmacologically
inhibiting MNK activity by CGP57380 or MNK1 knockdown can reduce GBM cell
proliferation and colony formation. Microarray analysis of total RNA and polysomal RNA
in MNK1-depleted GBM cells identified mRNAs involved in regulating the SMAD2-
dependent TGF-p pathway. Furthermore, pharmacologic MNK inhibition targets
mesenchymal glioma stem cells and prolongs survival in a mouse model of glioblastoma
[98]. These studies indicate that the MNK/elF4E axis represents a promising target in GBM
treatment.

5. Clinical studies on elF4E phosphorylation and MNKs in human cancer

High levels of elF4E phosphorylation are correlated with poor clinical prognosis in human
cancers. Clinical studies have found that elF4E was significantly over-phosphorylated in a
wide variety of human cancer tissues compared with the adjacent normal tissues [112].
Elevated levels of p-MNKZ1, p-elF4E and p-p70S6K proteins are associated with tumor
recurrence and poor prognosis in astrocytoma [110]. Overexpression of p-elFAE and co-
expression of p-MNK1, p-elF4E and p-p70S6K proteins are inversely proportional to the
overall survival of astrocytoma. Multivariate cox regression analysis further confirmed that
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overexpression of p-elF4E and co-expression of p-MNK1, p-elF4E and p-p70S6K proteins,
regardless of age and WHO grade, were associated with poor prognosis of astrocytoma.
Similarity, increased expression of elFAE and phospho-elF4E were found in
melanoma[113]. By analyzing 149 specimens of melanocytic lesions from 114 patients, they
found that phospho-elF4E overexpression was highly associated with malignancy, metastatic
potential and reduced survival.

The expression levels of p-MNK1 and p-elFAE proteins in nasopharyngeal carcinoma (NPC)
are significantly higher than those of non-cancerous nasopharyngeal epithelial proteins[114].
The RAS/MAPK pathway was also found hyperactivated in patients with undifferentiated
pleomorphic sarcoma, therefore it can predict a higher risk of disease recurrence and impair
overall survival[115]. MNK2 and p-elF4E overexpression are observed in patients with non-
small cell lung cancer and are correlated with proliferation, migration, invasion, and lower
survival rates in patients with NSCLC [116]. Overall, it is suggested that overexpression of
p-elF4E can serve as an independent biomarker for unfavorable prognosis and is a potential
therapeutic target in patients with different types of cancer.

One of the most important causes of death in cancer treatment is chemoresistance caused by
continuous chemotherapy. elF4E phosphorylation has been observed to be a common feature
of advanced breast cancer patients and cell lines (including ERa positive lines and HER2,
ERa and PR negative lines) and affects response to chemotherapy [67]. By comparing
patient samples and all tested breast cancer cell lines, Li et al. found that all samples showed
the lowest p-elF4E levels before chemotherapy. Meanwhile, MNK kinase inhibitors
CGP57380 and cercosporamide sensitize breast cancer cells to respond to chemotherapy /n
vitro and delay MCF7 and MDA-MB-231 tumor growth /n vivo [67]. This indicates that
elFAE phosphorylation in breast cancer cells plays a role in cancer response to
chemotherapy and increased elF4E phosphorylation has significant implications in
development of resistance to chemotherapeutic agents.

MNK single-nucleotide polymorphisms (SNPs) have been suggested as a predictive marker
for response to chemotherapy in colorectal cancer patients. In a study by Berger et al. [117],
MNK SNPs were analyzed in 567 patients with KRAS wild-type metastatic colorectal
cancer (MCRC) in randomized phase Il trials. AA genotype carriers of the MNKI1 rs8602
single-nucleotide polymorphism had a shorter progression-free survival than those harboring
any C. Additionally, AA carriers also had a decreased overall response rate than C carriers
treated with chemotherapy. These results suggest that MNKZ rs8602 polymorphism may
serve as a predictive marker in KRAS wild type mCRC patients and MNK1 may be a
promising drug target for these patients.

6. Conclusions

In conclusion, phosphorylation of the cap-binding protein elFAE is involved in a number of
key biological processes in tumorigenesis and progression, including cell proliferation,
transformation, apoptosis, tumor metastasis and angiogenesis. Clinical evidence supports
that hyperphosphorylation of elF4E is associated with poor prognosis of patients with
several cancer types. MNK inhibitors and elF4E Ser209 mutation can significantly suppress
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tumor proliferation and metastasis /77 vivoand /n vitroin a variety of cancer models. MNK
inhibition can significant enhance the efficacies of traditional chemotherapy and
radiotherapy. As significant interplays exist between MNK and mTORC1 pathways,
combined inhibition of these signaling pathways can be developed as novel therapeutic
strategies. The development of novel, potent, and specific MNK inhibitors is important and
deserves further investigation. Taken together, clinical use of small-molecule inhibitors
targeting elFAE phosphorylation to treat cancer is likely imminent.
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Figure 1. Schematic illustration of the cellular signaling pathwaysthat lead to el F4E
phosphorylation.
Extracellular stimuli and mitogens stress activate components of the MAPK pathway

including the ERK and p38 MAP kinases. In turn, MNK1 and MNK2 are activated by ERK
and p38 MAP kinases, bind to eIF4G and phosphorylate elF4E at Ser2%°. Phosphorylation of
elF4E promotes mRNA translation of a variety of mRNAs involved in tumor biology,
including Cyclin D1, Cyclin D3, C-myc, VEGF, SNAIL, MMP3, Survivin, Bcl-2, etc. As
hyperphosphorylation of elF4E is critical for its oncogenic activities, it can be repressed by
genetic mutation of Ser209 or using MNK inhibitors.
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Proliferation: Cyclin D1 and c-Myc
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Figure 2. el FAE phosphorylation regulates an oncogenic network.
elF4E phosphorylation regulates a translational network of mRNAs encoding

protumorigenic factors, which are involved in multiple oncogenic processes including cell
proliferation, apoptosis, metastasis, and angiogenesis.
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