Table 3. Performance of machine learning algorithms for model 1.
| Accuracy % | Precision % | Recall % | F1-score % | |
|---|---|---|---|---|
| LR | 93.92 | 94.41 | 93.92 | 94.1 |
| KNN | 89.5 | 71.73 | 76.24 | 72.69 |
| SVML | 95.02 | 95.43 | 95.03 | 95.16 |
| SVMK | 92.82 | 92.99 | 92.82 | 92.88 |
| NB | 81.77 | 81.79 | 81.77 | 81.23 |
| DT | 92.26 | 92.3 | 92.27 | 92.28 |
| RF | 94.48 | 94.48 | 94.48 | 94.48 |
| XGBOOST | 93.36 | 92.75 | 92.82 | 92.76 |