Table 4. Performance of machine learning algorithms for model 2.
| Accuracy % | Precision % | Recall % | F1-score % | |
|---|---|---|---|---|
| LR | 65.42 | 60.67 | 60.22 | 59.14 |
| KNN | 64.57 | 56.85 | 56.91 | 56.85 |
| SVML | 64.64 | 65.75 | 64.64 | 63.54 |
| SVMK | 64.09 | 65.24 | 64.09 | 62.90 |
| NB | 62.08 | 57.93 | 57.46 | 55.66 |
| DT | 62.98 | 63.50 | 62.98 | 62.18 |
| RF | 63.54 | 63.91 | 63.54 | 62.92 |
| XGBOOST | 64.03 | 65.74 | 65.19 | 64.55 |