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A B S T R A C T   

In the absence of sufficient testing capacity for COVID-19, a substantial number of infecteds are expected to 
remain undetected. Since the undetected cases are not quarantined, they can be expected to transmit the 
infection at a much higher rate than their quarantined counterparts. That is, in the absence of extensive random 
testing, the actual prevalence and incidence of the SARS-CoV-2 infection can be significantly higher than that 
being reported. Thus, it is imperative that the information on the percentage of undetected (or unreported) cases 
be incorporated in the mechanism for estimating the key epidemiological parameters, like rate of transmission, 
rate of recovery, reproduction rate, etc., and hence, for forecasting the transmission dynamics of the epidemic. 

In this paper, we have developed a new dynamic version of the basic susceptible-infected-removed (SIR) 
compartmental model, called the susceptible-infected (quarantined/ free) - recovered- deceased [SI(Q/F)RD] 
model, to assimilate the impact of the time-varying proportion of undetected cases on the transmission dynamics 
of the epidemic. Further, we have presented a Dirichlet-Beta state-space formulation of the SI(Q/F)RD model for 
the estimation of its parameters using posterior realizations from the Gibbs sampling procedure. 

As a demonstration, the proposed methodology has been implemented to forecast the COVID-19 transmission 
in California and Florida. Results suggest significant amount of underreporting of cases in both states. Further, 
posterior estimates obtained from the state-space SI(Q/F)RD model show that average reproduction numbers 
associated with the undetected infectives [California: 1.464; Florida: 1.612] are substantially higher than those 
associated with the quarantined infectives [California: 0.497; Florida: 0.359]. The long-term forecasts of death 
counts show trends similar to those of the estimates of excess deaths for the comparison period post training data 
timeline.   

Introduction 

As per the scientific brief of the World Health Organization (WHO) 
published on its website on 9 July 2020, transmission of SARS-CoV-2 
occurs primarily between people through direct, indirect, or close con-
tact with infected people through infected secretions such as saliva and 
respiratory secretions, or through their respiratory droplets, which are 
expelled when an infected person coughs, sneezes, talks or sings; refer to 
[1]. That is, in order to break the chains of transmissions of SARS-CoV-2, 
the objective of the preventive measures should be to minimize the 
contact of susceptibles with infected people. The first step towards this 
goal is to identify the infecteds so that they can be kept in quarantine till 
they are no longer infectious. However, high variability in the level and 
the nature of symptoms in infecteds, coupled with a significant length of 

incubation period, poses a difficult challenge to frame a targeted testing 
strategy which can serve the purpose effectively. In the presence of high 
proportion of asymptomatic cases, limiting testing to only symptomatic 
individuals will fail to serve the objective of detecting and quarantining 
all infecteds. Situation becomes more challenging as even asymptomatic 
cases are capable of transmitting infection [2,3]. Although contact 
tracing can help in identifying the chains of transmission linked to 
detected cases, presence of a high proportion of asymptomatic cases 
flags concerns about the reliability of the strategy. So, apart from testing 
symptomatic individuals (mild or severe), and identifying and testing 
high risk individuals having history of contact with infected people, the 
situation demands aggressive random testing to isolate even the 
asymptomatic cases from the population. In the absence of adequate 
amount of random testing, a significant number of infecteds, especially 
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asymptomatic individuals, may remain undetected (i.e., number of cases 
will remain significantly underreported). Since the undetected cases are 
not quarantined, they are expected to remain infectious in the popula-
tion for a relatively much longer period as compared to those who are 
detected and quarantined. Lack of any visible symptom in the unde-
tected cases increases the likelihood of susceptibles spending prolonged 
period in their proximity. Thus, the undetected cases can exhibit a 
strikingly higher reproduction rate as compared to that of their quar-
antined counterparts. 

Despite repeated appeals and advisories to all countries from the 
WHO to employ extensive random testing, only few countries have 
shown intentions to conduct adequate number of COVID-19 tests [4]. 
Rate of positive tests at a place can give an indication about the ade-
quacy, or inadequacy, of the number of tests being carried out in the 
region. New Zealand has set an extraordinary example in quickly con-
taining the epidemic by efficiently adhering to the strategy of aggressive 
testing and isolation of infecteds to break the chains of infection. As on 
25 August 2020, New Zealand had reported a total of 1690 confirmed 
cases of which 1539 had recovered, 129 were active and 22 had died. 
These are very encouraging figures, especially when compared with 
those of the countries like USA, Brazil, UK, India, Russia, and many 
others. Till 19 August 2020, the overall percentage of positive tests in 
New Zealand was reported to be 0.23% [5]. While in the USA, the 
percentage of positive tests has remained quite high since the beginning, 
with the overall positive percentage staring at 9%. Also, there is a lot of 
variation between the percentages of positive tests reported by different 
states in the United States- which varies between 0.53% (Vermont) to 
100% (Washington) as reported on 26 August 2020 by the Johns Hop-
kins University [6]. As per the recommendation of the WHO, the rates of 
positivity in testing should remain at 5% or lower for at least 14 days at a 
stretch before governments decide about relaxing the containment/ 
lockdown measures. This advisory from the WHO is based on the 
rationale that very high positive rates may indicate that people with only 
severe symptoms are getting tested and all the asymptomatic cases, or 
cases with mild symptoms, are being left out. That is, a high rate of 
positivity may imply that the testing capacity of the state/country is 
insufficient to gauge the actual size of the outbreak, leading to a sig-
nificant proportion of cases being unreported. 

Underreporting of cases in the USA has been confirmed and reported 
by some published scientific studies. Wu et al. [7] have used a semi- 
Bayesian probabilistic bias analysis to account for incomplete testing 
and imperfect diagnostic accuracy. As per their estimate, there were 
6,454,951 true cumulative infections compared to 721,245 confirmed 
cases (reported) as of 18 April 2020 in the United States. The actual 
number of infections was reported to be 3 to 20 times higher than the 
confirmed cases for different states. Lau et al. [8] used a simple intuitive 
method based on crude case fatality risk and adjusted case fatality risk to 
evaluate extent of underreporting in various COVID-19 epicentres across 
the world. Their study was based on early-stage data of COVID-19 and 
they reported severe underreporting of cases in most of the countries 
worldwide. For the USA, they found the estimate of actual number of 
infections to be around 53.8 times the reported number of confirmed 
cases. This extraordinarily high estimate of underreporting can be 
explained by the fact that their study was based on the data reported till 
17 March 2020. In general, underreporting is expected to be high at the 
initial stage of any epidemic owing to the lack of proper system at place, 
and the lack of knowledge and awareness about the infection. Based on 
their findings, Lau et al. [8] suggested that due to limited testing ca-
pacities, mortality numbers may serve as a better indicator for COVID- 
19 case spread in many countries. 

Accurate forecasts of the size and the progression of an epidemic 
would be imperative for policy makers to effectively strategize alloca-
tion of resources, implementation of interventions, and promotion of 
awareness among the public. However, reliable forecasting of true in-
cidences of infections and deaths due to an epidemic becomes an 
arduous challenge in the presence of high percentage of undetected 

cases. Methodologies to estimate the true burden of an epidemic in the 
observed period, i.e., to estimate the level of underreporting in the 
observed period, exist in the literature. However, there is a dearth of 
research for developing models to forecast the true trajectory of an 
epidemic by dynamically adjusting for underreporting of cases. For 
example, as discussed earlier, Wu et al. and Lau et al. [7,8] have assessed 
the extent of underreporting till a fixed past date, but have not presented 
any methodology to forecast the true number of cases in the presence of 
progressively changing rates of underreporting. The primary objective 
of this paper is to construct a robust statistical compartmental epidemic 
model which can forecast the true incidences of infections and deaths 
due to an epidemic even in the presence of time-varying proportion of 
undetected (or unreported) cases. The popular compartmental epidemic 
models used widely for forecasting number of infections and deaths, like 
the susceptible-infected-removed (SIR) model, the susceptible-exposed- 
infected-removed (SEIR) model, and their extensions, do not incorporate 
the impact of undetected cases on the epidemiological parameters. In 
this paper, we have developed a comprehensive methodology to esti-
mate the true parameters of an epidemic and forecast its transmission 
dynamics in the presence of time-varying proportion of unreported 
cases. A new compartmentalised epidemic model, called the susceptible- 
infected (quarantined/ free) - recovered- deceased [SI(Q/F)RD] model, 
has been developed to assimilate the effects of undetected cases on the 
transmission dynamics of an epidemic. Further, the deterministic SI(Q/ 
F)RD model has been adopted in a Dirichlet-Beta state-space (Bayesian 
hierarchical) formulation to induce stochastic uncertainties in the 
computations. The Bayesian hierarchical formulation has been imple-
mented in JAGS through the R package ‘R2Jags’ to obtain posterior 
estimates of the unknown parameters. 

To demonstrate the implementation of the methodology, we have 
considered the cases of two of the worst COVID-19 affected states of the 
USA, California, and Florida, which have very high percentages of 
positive tests. Since the level of testing, and protocols/ procedure of 
reporting of number of deaths may vary between different state juris-
dictions, the level of underreporting of deaths and cases can also be 
expected to vary between states. This is the reason that we have per-
formed state-wise analyses rather than analysing the combined data of 
USA. We have assumed that the presence of undetected cases because of 
insufficient testing is the sole (or at least the major) reason behind the 
underreporting of cases. It should be noted that the underreporting of 
cases can occur because of various other reasons also, like poor 
communication between the government administration and health 
centres, conscious data manipulation to conceal administrative failures, 
anomalies in protocols for declaring epidemic related deaths, lack of 
proper digital infrastructure to keep reliable records, to name a few. 
However, our assumption practically holds true for a developed country 
like the USA, where other reasons like lack of proper communication or 
digital infrastructure can be conveniently crossed off. 

Methodology 

To realize the objective of our study, we propose the following 
methodological framework, which has been further implemented on the 
COVID-19 time-series data of California and Florida in the next section. 

Method to estimate time-varying proportion of unreported infecteds- a 
prerequisite for the proposed model 

True counts of daily number of infecteds can be estimated using a 
reliable estimate of case fatality rate (CFR). CFR based on population 
level data can be alarmingly misleading if the reported data on the 
number of cases is expected to suffer from underreporting. If we assume 
that the level (or proportion) of underreporting of deaths and infecteds 
are same, the CFR estimated from the reported data will be a reliable 
estimate of the true population CFR. However, this is rarely observed, 
and the proportions of underreporting of deaths and infecteds usually 
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differ considerably. In such situations, an estimate of CFR based on an 
individual patient level (follow-up) data is deemed as most reliable [9]. 
So, a simple rule of thumb to know if the levels of underreporting of 
deaths and infecteds can be assumed to be the same is to compare the 
delayed CFR obtained from the reported data with the one obtained 
from the individual patient level data. If they vary significantly, we can 
infer that the levels of underreporting are different for the number of 
deaths and the number of infecteds. In such a situation, it is advisable to 
use the CFR obtained from the individual patient level data as the best 
estimate for the true CFR of the epidemic. Once a reliable estimate of the 
CFR is obtained, it can be used to calibrate daily data for the number of 
true infecteds using the estimated counts of true deaths and the average 
delay between infection and death. That is, if the average duration be-
tween infection (or detection/ reporting of infection) and death associ-
ated with COVID-19 is known to be, say, h days, and suppose that Dt 
number of people have died of the infection on a particular day t, then 
ICt-h+1 = (Dt/CFR) number of new cases are expected to be infected h 
days prior to day t. 

If daily reported data on the number of recovered cases (Rt) is 
available, it can be inflated relative to the estimate of the proportion of 
underreporting of the daily case counts as follows. 

qt = 1 − pt =
IC

t − It

IC
t

(1)  

RC
t = Rt

/
pt− r+1 = Rt

/
(1 − qt− r+1) (2) 

where, qt is the proportion of unreported infecteds at time t, pt is the 
proportion of detected (reported) cases at time t, IC

t is the estimate of true 
value of new infecteds at time t, It is the reported number of new 
infecteds at time t, RC

t is the estimate of true count of recovered cases at 
time t, Rt is the reported number of recovered cases at time t and r is the 
average duration from infection to recovery of patients. If the daily 
number of recovered cases is not reported, or if it is not reliable, a viable 
calibration can be done using r and (1- CFR) as RC

t-r+1 = IC
t (1-CFR). 

Compartmental structure of the proposed SI(Q/F)RD epidemic model 

The SI(Q/F)RD compartmental epidemic model has been designed to 
incorporate the impact of undetected cases on the progression of the 
epidemic. That is, the overall compartment of infecteds is divided into 
two sub-compartments- ‘Detected and Quarantined’ and ‘Undetected 
and Free’- such that different transmission rates are associated with each 
sub-compartment. It is assumed that a proportion of the infecteds are 
detected (p) and quarantined (mostly symptomatic cases), while the rest 
of the infecteds (mostly asymptomatic cases) are undetected and roam 
freely among the susceptibles. Thus, the undetected cases can be 

expected to infect the susceptibles at a higher rate (β2) than that of their 
quarantined counterparts (β1). The proportion of detected cases, p, can 
vary with time if testing policy changes over the period of the epidemic, 
and can be taken as a function of time t, say, pt. The overall compart-
mental structure of this model is presented in Fig. 1. Since the quaran-
tined infecteds consist mostly of symptomatic cases, quarantined 
infecteds can be expected to be at a higher risk of death on an average. 
Consequently, different death rates can be assumed for quarantined and 
undetected cases. Different recovery rates can also be assumed for 
quarantined and undetected cases if any scientific evidence supports 
such hypothesis. Otherwise, we can assume that both sub-groups of 
infecteds have equal average recovery rate. 

The set of differential equations quantifying the progressive transi-
tions between different compartments shown in Fig. 1 can be expressed 
as follows. 

dθs
t

dt
= −

[
β1θQ

t + β2θF
t

]
θS

t (3)  

dθI
t

dt
=
[
β1θQ

t + β2θF
t

]
θS

t − γ1θQ
t − γ2θF

t − d1θQ
t − d2θF

t (4)  

dθR
t

dt
= γ1θQ

t + γ2θF
t = γθI

t (if γ1 = γ2 = γ) (5)  

dθD
t

dt
= d1θQ

t + d2θF
t (6)  

where, θQ
t = ptθI

t , θF
t = (1 − pt)θI

t , and θS
t + θI

t + θR
t + θD

t = 1 (7) 

Here, θS
t , θI

t , θQ
t , θF

t , θR
t , and θD

t are the true but unobserved (latent) 
prevalence of susceptibles, infecteds, infected & quarantined, infected & 
undetected (free), recovered, and deceased respectively. In other words, 
they are the probabilities of a person being in the respective compart-
ments at time t. Also, let θt =

(
θS

t , θI
t , θ

R
t , θ

D
t
)T be the latent population 

prevalence. 
Solution of this set of differential equations can be obtained using 

Runge-Kutta approximation. Let f(θt− 1, β, γ, d) denotes the solution of 
the set of differential equations for time t, where the function takes the 
values of the vectors θt− 1, β = (β1, β2)

T, d = (d1, d2)
Tand γ = (γ1, γ2)

T as 
the arguments. Then the fourth order Runge-Kutta approximation for 
the solution of these differential equations can be expressed as follows. 

Fig. 1. SI(Q/F)RD model structure- pt is the proportion of infecteds detected and quarantined, 1-pt is the proportion of infecteds who are undetected and roaming 
freely among the susceptibles, β1 is the transmission rate associated with quarantined infecteds and β2 is the transmission rate associated with undetected infecteds, 
ϒ1 and d1 are the rate of recovery and the rate of death for quarantined cases and ϒ2 and d2 are the rate of recovery and the rate of death for undetected cases. 
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f (θt− 1, β, γ, d) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

θS
t− 1 +

1
6
[
kS1

t− 1 + 2kS2
t− 1 + 2kS3

t− 1 + kS4
t− 1
]

θI
t− 1 +

1
6
[
kI1

t− 1 + 2kI2
t− 1 + 2kI3

t− 1 + kI4
t− 1
]

θR
t− 1 +

1
6
[
kR1

t− 1 + 2kR2
t− 1 + 2kR3

t− 1 + kR4
t− 1
]

θD
t− 1 +

1
6
[
kD1

t− 1 + 2kD2
t− 1 + 2kD3

t− 1 + kD4
t− 1
]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(8) 

Complete expressions for calculating kSi
t , kIi

t , kRi
t , and kDi

t are presented 
in Appendix A. 

Dirichlet-Beta state-space formulation of the SI(Q/F)RD model 

We have defined a flexible state-space probabilistic model based on 
the deterministic SI(Q/F)RD model structure to account for the un-
certainties in the epidemiological parameters and the transmission dy-
namics of the epidemic. Osthus et al. [10] introduced a Dirichlet-Beta 
state-space model based on the basic SIR model. We have extended 
the Dirichlet-Beta state-space SIR model in conformity with the SI(Q/F) 
RD compartmental structure to estimate the transmission parameters, 
and forecast the progression of the epidemic. Let YS

t , YI
t , YR

t , and YD
t be 

the observed proportion of susceptibles, infecteds, recovered and 
deceased respectively. Then the Bayesian hierarchical state-space SI(Q/ 
F)RD model can be defined as follows. 

YI
t |θt, τ ∼ Beta

(
λIθI

t , λ
I ( 1 − θI

t

) )
(9)  

YR
t |θt, τ ∼ Beta

(
λRθR

t , λR( 1 − θR
t

) )
(10)  

YD
t |θt, τ ∼ Beta

(
λDθD

t , λ
D( 1 − θD

t

) )
(11) 

and,  

θt|θt− 1, τ ∼ Dirichlet(κf (θt− 1, β, γ, d)) (12) 

where, τ = {θ0, κ, β, γ, d, λI, λR, λD}, θ0 is the baseline value of the 
vector θt, and λI, λR, λD, κ > 0 control the variances of the distributions 
defined in Eqs. (9), (10), (11), and (12) respectively. All other notations 
have already been defined in the previous section. From equation (12), it 
is apparent that θt, t = 1,2⋯,T, is a first-order markov chain. Also, the 
Eqs. (9), (10) and (11) suggest that, for t ∕= s, YI

t is independent of YI
s, YR

t 

is independent of YR
s , and YD

t is independent of YD
s , given θI

t , θR
t , and θD

t 
respectively. 

Further, prior distributions of the model parameters can be defined 
as follows. 

θI
0 ∼ Beta

(
1,
(
YI

1

)− 1
)
, θR

0 ∼ Beta
(

1,
(
YR

1

)− 1
)
, θD

0

∼ Beta
(

1,
(
YD

1

)− 1
)
, θS

0 = 1 − θI
0 − θR

0 − θD
0 (13)  

Ri ∼ LogN
(

μri
, σ2

ri

)
, σ2

ri
= ln

(
V(Ri) + (E(Ri) )

2

(E(Ri) )
2

)

and μri

= ln(E(Ri) ) −
σ2

ri

2
, i = 1, 2 (14)  

γi ∼ LogN
(

μgi
, σ2

gi

)
, σ2

gi
= ln

(
V(γi) + (E(γi) )

2

(E(γi) )
2

)

and μgi

= ln(E(γi) ) −
σ2

gi

2
, i = 1, 2 (15)  

pt ∼ Beta
(
ap, bp

)
,∀t = 1, 2⋯..T (16) 

R1 and R2 are basic (average) reproduction rates associated with 
quarantined (Q) and undetected (F) infecteds, respectively. That is,Ri =

βi
(γi+di)

, i = 1,2.

κ ∼ Gamma(ak, bk), λI ∼ Gamma(aI , bI), λR ∼ Gamma(aR, bR), λD

∼ Gamma(aD, bD)

(17) 

The hyperparameters of these Gamma prior distributions can be 
assumed according to the size of variability to be allowed in the Beta and 
Dirichlet distributions defined in Eqs. (9)–(12). The higher the values of 
the parameters, κ, λI, λR and λD, the lower will be the variance of the 
respective Beta and Dirichlet distributions. If limited prior information is 
available regarding these parameters, a relatively flat Gamma prior 
distribution with a high expected value and a relatively higher vari-
ability is assumed while choosing the values of the hyperparameters 
ak, bk, aI, bI, aD, and bD. Hyperparameters of the prior distribution of pt 
are obtained by the method of moments using the mean and variance of 
the daily estimates of underreporting. Hyperparameters of the 
lognormal distributions defined in the expressions (14) and (15) can be 
either based on historical knowledge on a similar epidemic, or can be 
estimated from the observed data. In our study, we have used a time- 
series SIR (TSIR) model-based technique to estimate the hyper-
parameter for transmission rate, β [11]. The detailed methodology is 
described in the next sub-section. Values for the hyper parameters 
γ and d are calculated using required information from the published 
literature on COVID-19. γ1 = γ2 = γ(say) is taken as the inverse of the 
average recovery period. We have assumed equal recovery rates for both 
groups of infecteds. The components of d, viz., d1 and d2 are estimated as, 
d1 = CFR

h and d2 = IFR
h , where h is the average number of days from 

infection till death and IFR is the infection fatality rate. CFR is the ratio 
of the number of deaths divided by the number of confirmed cases of the 
disease. While, IFR is the ratio of deaths divided by the number of actual 
infections with SARS-CoV-2 and is generally expected to be lower than 
CFR. 

Detailed outline for fitting the state-space SI(Q/F)RD model 

Estimation of the hyperparameter β using TSIR model 
The two components of the vector β = (β1, β2)

T must be estimated 
separately, such that they conform to their definitions. To do so, we have 
made some assumptions about the reported data, based on certain 
practical considerations. Generally, it is difficult to enforce adequate 
testing capacity, quarantine measures, and other preventive measures 
during the initial period of any epidemic due to the lack of resources, 
awareness, and preparedness. Consequently, the transmission rate 
observed during that period can be safely considered as an initial esti-
mate of β2 (the transmission rate due to infecteds who are not quaran-
tined). Once the containment measures are imposed, the transmission 
rate based on the reported data is expected to change (reduce) and the 
average transmission rate observed over the entire period of reporting 
can be considered as an initial estimate of β (the overall average trans-
mission rate as a result of both quarantined and undetected infecteds). 
This logic can be implemented through TSIR model to estimate these 
hyperparameters as follows. 

In TSIR model, the response, being a count variable, is assumed to 
follow a certain discrete count process distribution, like the Poisson 
distribution or the Negative Binomial distribution. The basic structure of 
TSIR model can be defined as follows; refer to [12–14]. 

St+1 = St − It (18)  

λt+1 = β0
St

N
Iα

t (19)  

log(λt+1) = logβ0 +αlogIt + log
(

St

N

)

(20) 

where, St and It are the number of susceptibles and infecteds (or in-
fectives) at time t, N is the population size, β0 is the transmission rate and 

V. Deo and G. Grover                                                                                                                                                                                                                          



Results in Physics 24 (2021) 104182

5

λt+1 is the expected number of new infecteds at time t + 1. New number 
of infecteds is assumed to follow Negative Binomial (or Poisson) distri-
bution and a generalized Negative Binomial (or Poisson) linear model 

with log link is fitted with logIt as a covariate and log
(

St
N

)

as an offset 

variable. The exponent α is expected to be just under 1 (i.e., close to 1) 
and is meant to account for discretizing the underlying continuous 
process. However, we have used an alternative interpretation of α based 
on the basic SIR model defined in Eq. (21). This method is drawn from 
our prior work where we have proposed a new method for obtaining 
time-varying estimates of transmission rate using TSIR model [11]. The 
transmission rate is assumed to be time-varying, and hence, denoted as 
βt in the following expressions. 

dθS
t

dt
= − βtθ

I
t θ

S
t ,

dθI
t

dt
= βtθ

S
t θI

t − γθI
t , and

dθR
t

dt
= γθI

t (21) 

Using (21), the expression for expected number of new infecteds at 
time t + 1 (taking α = 1) with a time-varying transmission rate can be 
written as follows. 

λt+1 = βt
St

N
It (22) 

Comparing Eqs. (19) and (22), we can see that if α = 1 (or close to 1), 
βt = β0 (constant over time). However, if the value of α deviates 
considerably from 1, it has an impact on the effective rate of trans-
mission and makes it time-dependent. That is, in such cases α assimilates 
the empirical changes in transmission rate over time. Further, using Eqs. 
(19) and (22), we can write, 

β̂t = β0Iα− 1
t (23) 

Now, suppose T1 represents the initial period of the epidemic when 
proper quarantine protocols were not in place, and T represents the 
entire period for which the reported data on the epidemic is available. 
The estimates of α and β0 obtained by fitting the TSIR model shall be 
used in Eq. (23) to find estimates of transmission rate at each time t, β̂t , t 
= 1,2,3…, T. Average of these estimates over a time period will give us 
the estimate of average transmission rate for that period. That is, the 
estimates of the transmission rates will be taken as, β̂ = 1

T
∑

t∊T β̂t and 
β̂2 = 1

T1

∑
t∊T1

β̂t. Then an initial estimate of β1, the transmission rate 
associated with quarantined infecteds, can be obtained using the rela-
tion, β̂ = β̂1p+ β̂2(1 − p); where, p = 1

T
∑T

1pt. As a simpler, but logical, 
alternative to this step for finding β̂1 related to the COVID-19 epidemic, 
we can use the fact that the quarantined infecteds are expected to spread 
infection for approximately only one-third of the duration for which the 
undetected infecteds remain infectious among the susceptibles. This is 
because quarantined cases spread infections among the susceptibles 
mostly in the incubation period of around 4–5 days, prior to getting 
quarantined. While infecteds who are not quarantined are expected to 
spread infection for the entire average infectious period of 14 days. So, 
after estimating β̂2 using the method described above, we can take β̂1 =

β̂2
3 as the initial estimate. 

Estimation of parameters of the state-space SI(Q/F)RD model and 
forecasting 

Posterior realizations on the parameters of the state-space model 
have been generated using Gibbs sampling MCMC approach. We have 
adopted the model in JAGS format and have implemented it in R using 
the package R2jags. Mean of posterior realizations of a parameter has 
been taken as its posterior estimate. Further, 0.025 and 0.975 quantiles 
of the posterior realizations have been taken as the limits of 95% cred-
ible intervals (CI) of the posterior estimates. Let t0 be the time till which 
the observations are available, and suppose that we wish to forecast the 
values of the observed process 

(
YS

t , YI
t , YR

t , YD
t
)

from t0 + 1 till the time 

T. We have followed the following iterative procedure to achieve our 
goal. 

a. L posterior realizations are generated on the latent prevalence pro-
cess θt

(l), l = 1, 2⋯, L using Gibbs sampling approach, at each time 
point t = t0 + 1,2…..,T. Here L is a sufficiently large number, say 
1000 or more.  

b. At each t (=t0 + 1,2…..,T), and at each posterior realization of the 
prevalence process θt

(l), l = 1,2⋯,L, values of the observed process, 
say YI(l)

t , YR(l)
t and YD(l)

t are simulated from their conditional distri-
butions, 

[
YI

t
⃒
⃒θt

(l), τ(l)
]
, 
[
YR

t
⃒
⃒θt

(l), τ(l)
]

and 
[
YR

t
⃒
⃒θt

(l), τ(l)
]

which are 
defined in the Eqs. (9), (10) and (11), respectively.  

c. Further, using the posterior realizations of p(l)t , at each l and each t, 
YQ(l)

t = p(l)t .YI(l)
t and YF(l)

t = YI(l)
t − YQ(l)

t are also obtained. At each t, 
mean of the L simulated values serves as the estimate (forecasted 
value) of the respective variable (compartment proportion). 95% 
credible interval of each variable, at each time t, is also obtained 
using the 0.025 and 0.975 quantiles of the L values. 

Implementation and results 

Data used for the analyses 

Daily time-series data on total confirmed cases and total deaths for 
the states California and Florida has been obtained from the github re-
pository of the Centre for Systems Science and Engineering (CSSE), 
Johns Hopkins University, Maryland, USA (https://github.com/CSSE 
GISandData/COVID-19). Daily time-series data till 11 July 2020 was 
available at the time of the procurement of data, and the same has been 
used for the entire analyses. Data on weekly state-wise estimates of 
excess deaths associated with COVID-19 till 11 July 2020, calculated as 
a difference between expected and reported number of deaths from all 
causes, has been obtained from the website of Centers for Disease 
Control and Prevention (CDC) [https://www.cdc.gov/nchs/nvss/vsrr/ 
covid19/excess_deaths.html]. These weekly estimates of excess deaths 
have been used to calibrate daily number of true deaths. Details of the 
calibration procedure are provided in Appendix B. Data on the rates of 
positivity of COVID-19 testing for the two states, California, and Florida, 
was procured from the official website of Johns Hopkins University on 
29 July 2020 (https://coronavirus.jhu.edu/testing/testing-positivity). 

CFR and data calibration to account for underreporting 

To exclude the initial period of extremely uncertain reporting due to 
the lack of awareness both at the governement and the public level, we 
have used the data from 02 March 2020 onwards for all analyses. The 
weekly excess death estimates have been used to reconstruct the daily 
time-series data of deaths using the procedure discussed in Appendix-B. 
According to the results reported by Verity et al. [15] based on a patient 
level data from the mainland China, the mean duration from the onset of 
symptoms to death is 17.8 days (95% credible interval 16.9–19.2). They 
reported the best estimate of case fatality ratio in China as 1.38% 
(1.23–1.53), with substantially higher CFR in older age groups (0.32% 
[0.27–0.38] in those aged < 60 years vs. 6.4% [5.7–7.2] in those aged ≥
60 years, and up to 13.4% (11.2–15.9) in those aged 80 years or older). 
Their estimate for overall IFR in China is 0.66% [0.39–1.33], with an 
increasing profile with age. Yang et al. [16] reported that the median 
time from symptom onset to radiological confirmation of pneumonia is 
5 days (interquartile range [IQR] 3–7 days); from symptom onset to 
intensive care unit (ICU) admission is 11 days (IQR 7–14 days); and from 
ICU admission to death is 7 days (IQR 3–11 days). That is, as per their 
findings, the estimate of median time from the onset of symptoms to 
death can be taken as 11 + 7 = 18 days. This estimate of time-to-event of 
death is consistent with the results of Verity et al. [15]. According to 
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these results, the estimate of average duration from the onset of infec-
tion to death should be around 17.8 + 5 ≈ 23 days, where 5 days is the 
average incubation period. However, for estimating delayed CFR based 
on the reported data, and for estimating actual number of infecteds from 
the calibrated data on the number of deaths, we have taken average 
duration from infected/ reported to death as 18 days. This is because, in 
the absence of aggressive random testing, infecteds are generally tested 
on the onset of symptoms, i.e., after the incubation period. 

The delayed CFR values calculated based on reported data came out 
to be quite high for both states. For California, the delayed CFR was 
3.36%, while for Florida it came out to be 3.17% (Table 1). Both esti-
mates are quite higher than 1.38%, the estimate based on individual 
patient data as reported by Verity et al. [15]. In fact, some other reports 
have suggested even lower actual CFR of COVID-19. The Centre for 
Evidence-Based Medicine (CEBM) at the University of Oxford currently 
estimates the CFR globally at 0.51%, with all the caveats pertaining 
thereto; refer (https://www.virology.ws/2020/04/05/infection-fatalit 
y-rate-a-critical-missing-piece-for-managing-covid-19/). We have 
taken 1.38% as a conservative estimate of the standard CFR due to 
COVID-19 as the estimate of CFR based on a follow-up data of individual 
patients is deemed as the most reliable, especially during the initial 
stages of the epidemic. Thus, the results of CFR based on the reported 
data indicate possibilities of significant underreporting of cases in both 
states. Also, significantly high rates of positivity of COVID-19 testing in 
the two states- 7.47% in California and 18.96% in Florida- as compared 
to the recommended rate of less than or equal to 5%, suggests lack of 
adequate testing capacity. 

Using a delay of 18 days (between detection of infection and death), 
and a CFR of 1.38%, we have employed the method discussed in the 
methodology section to estimate the true count of daily infected cases 
(new cases). Due to the use of an 18-day lag in the formula, number of 
daily infected cases could be calculated only till 24 June 2020 (18 days 
prior to 11 July 2020). Data on the number of recovered cases has not 
been reported by the two states. So, we have calibrated the data on 
number of recovered cases using the formula given in Eq. (24). Instead of 
fixing the value of ρ as (1–CFR) = 0.9862, we have generated random 
values for ρ uniformly between 0.975 and 0.99 to introduce stochastic 
uncertainty. 

Rt = IC
t− r+1.ρ, where ρ ∼ Uniform(0.975, 0.99) and r = 14 (24) 

Here, IC
t represents the calibrated new number of infecteds at time t, 

and ρ is the average recovery rate. The average duration of recovery, r, is 
taken as 14 days based on the WHO report [17]. However, at this 
juncture we should also note that some other studies have reported 
higher average duration of recovery from COVID-19. Verity et al. [15] 
have estimated mean duration from onset of symptoms to hospital 
discharge to be 24.7 days [95% CI: 22.9–28.1]. Recovery time also 
varies according to the severity of symptoms. Since small recovery time 
implies faster recovery rate, our choice of 14-day average recovery 
period (from the onset of symptoms) can be called as a conservative 
estimate, and the forecasts of transmission dynamics based on it can also 
be expected to be slightly on the conservative side. Since the formula 
given in Eq. (24) cannot give us the estimates of the first 13 days, we 
have reconstructed the daily recovery data for these initial days using 
daily recovery rate equal to the inverse of the average duration of re-
covery. Again, to induce some stochastic uncertainty in the data, we 
have randomly generated the recovery rate, φt, between 0.042 (1/24) 
and 0.071 (1/14), for each day. Following formula has been applied to 

estimate the true count of recovered cases. 

Rt = IC
t .φt, where φt ∼ Uniform(0.042, 0.071), t < 14 (25) 

IC
t is the calibrated number of new infecteds at time t. For t < 14, the 

already calculated values of recovered cases at time (t + 13) using Eq. 
(24), Rt+13, is adjusted by subtracting Rt from it. 

For further analyses, the reconstructed/ calibrated data on the 
number of cases in each compartment is treated as the true data. The 
ratio of reported number of infecteds and true number of infecteds on 
each day gives us the estimates of daily proportion of reporting pt. 
Graphs of LOESS smoothed calibrated data on total number of deaths 
due to COVID-19 for the two states are presented in Fig. 2. Summary 
statistics of pt are provided in Table 2. 

Evaluating parameters and hyperparameters of the state-space SI(Q/F)RD 
model 

In California, the first official lockdown measure was implemented 
on 19 March 2020, while in Florida it was implemented from 01 April 
2020. So, the period till 18 March 2020 has been considered as the initial 
period of transmission for California, and the period till 31 March 2020 
has been taken as the initial period of transmission in Florida for 
obtaining the initial estimate of the transmission rate in the absence of 
proper quarantine measures for infecteds (β̂2). TSIR model has been 
fitted assuming both Poisson and Negative Binomial distributions for the 
count process. The Negative Binomial TSIR model was chosen over the 
Poisson TSIR model because of lower model deviance. These models 
have been fitted using IBM-SPSS version 24. Estimated coefficients of 
the Negative Binomial TSIR models for both states are provided in 
Table 3. Estimates of β2 for the two states have been obtained using these 
coefficient estimates in Eq. (23) and taking average over respective 
initial periods of the COVID-19 epidemic (02 March 2020–18 March 
2020 for California and 02 March 2020–31 March 2020 for Florida). 
Initial estimate of β1 has been taken as one-third of the estimate of β2. 
These estimates are also provided in Table 3. 

Using the estimates of CFR and IFR, and the average duration from 
the onset of symptom to death, as reported by Verity et al. [15], we get 
the estimates of d1 and d2 as d̂1 = 0.0138

18 = 0.000767 and d̂2 = 0.0066
18 =

0.000367.
The estimate of recovery rate has been taken as γ̂1 = γ̂2 = γ̂(say) =

1
14 = 0.071. d̂1, d̂2, γ̂1, and γ̂2remain same for both states. So, the initial 
estimates of average reproduction numbers, R1 and R2, have been ob-
tained as follows. 

California : R1 =
0.106

(0.071 + 0.000767)
= 1.477 and R2 =

0.319
(0.071 + 0.000367)

= 4.470  

Florida : R1 =
0.093

(0.071 + 0.000767)
= 1.296 and R2 =

0.28
(0.071 + 0.000367)

= 3.923 

These estimates of γ, R1 and R2 have been used to obtain informed 
hyperparameters of their prior distributions defined in Eqs. (14) and 
(15). To decide on the hyperparameters of the Beta prior distribution of 
the time-varying proportion of quarantined infecteds, pt, we have used 
the descriptive statistics of its estimates over the observed period. Till 
the observed time period, the Beta prior distribution of pt is assumed to 
have mean equal to p̂t, the estimate of pt based on the calibrated data, 
and variance equal to the overall variance of the estimates calculated at 
all time points. It was observed that after an initial period of around one 
month, the values of ̂pt tend to first increase and then settle around some 
central value. So, for forecasting beyond the observed time period, 
sample mean and sample variance of the estimates corresponding to the 
last ten days of the observed period have been taken as the mean and 

Table 1 
Delayed CFR estimates for the two states based on the reported data.  

State Total deaths till 16 
July 2020 

Total confirmed till 29 
June 2020 

Average Delayed 
CFR 

California 7535 223,931 0.0336 (3.36%) 
Florida 4802 151,389 0.0317 (3.17%)  
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variance of the Beta prior distribution of pt. Complete list of prior dis-
tributions, along with the values of hyperparameters, used for fitting the 
state-space SI(Q/F)RD models for the two states is presented below. 

California: 

R1 ∼ LogN(0.201, 0.377), E(R1) = 1.477, V(R1) = 1; β1 = R1(γ + d1)

(26)  

R2 ∼ LogN(1.473, 0.049), E(R2) = 4.47, V(R2) = 1; β2 = R2(γ + d2)

(27)  

γ ∼ LogN( − 2.736, 0.181), E(γ) = 0.071, V(γ) = 0.001 (28)  

pt ∼ Beta(at, bt), such that E(pt) = p̂t, V(pt) =
1
n

∑(
p̂t − p̂t

)2
∀t

∈ observed period (29)  

pt ∼ Beta(2.89, 2.21), E(pt) = 0.57, V(pt) = 0.04 ∀t ∈ f orecasting period
(30) 

Florida: 

R1 ∼ LogN(0.026, 0.467), E(R1) = 1.296, V(R1) = 1; β1 = R1(γ + d1)

(31)  

R2 ∼ LogN(1.335, 0.063), E(R2) = 3.923, V(R2) = 1; β2 = R2(γ + d2)

(32)  

γ ∼ LogN( − 2.736, 0.181), E(γ) = 0.071, V(γ) = 0.001 (33)  

pt ∼ Beta(at, bt), such that E(pt) = p̂t, V(pt) =
1
n
∑(

p̂t − p̂t

)2
∀t

∈ observed period (34)  

pt ∼ Beta(11.79, 18.38), E(pt) = 0.39, V(pt) = 0.007 ∀t

∈ forecasting period (35) 

Further, for models pertaining to both states, we assume, 

κ ∼ Gamma(2, 0.0001), λI ∼ Gamma(2, 0.0001) (36)  

λR ∼ Gamma(2, 0.0001), λD ∼ Gamma(2, 0.0001) (37)  

Posterior estimates and forecasts from the state-space SI(Q/F)RD model 

The Dirichlet-Beta state-space SI(Q/F)RD model is fitted to the 
calibrated data using the parameters and hyperparameters obtained in 
the previous sub-section. The model has been implemented in JAGS 
platform using R2jags package. Three parallel markov chains were run, 
each with 20,000 iterations of which first 10,000 were discarded. After 
thinning at an interval of 10, 1000 posterior simulations were saved 
from each chain, i.e., total 3000 posterior simulations were saved for 
each parameter. Posterior estimates of time-invariant parameters along 
with their standard deviations and 95% credible intervals for the two 
states are presented in the Tables 4 and 5. Plots of the predicted values of 
the observed process on the number of infecteds (YI

t ) and the number of 

Fig. 2. LOESS smoothed calibrated data on total number of deaths due to COVID-19. Scattered circles represent the calibrated data points before smoothing.  

Table 2 
Summary statistics of pt, the estimated time-varying proportion of cases reported 
out of the actual number of cases, as obtained from the calibrated data.  

Summary of estimates of pt California Florida 

pt values/ period considered Mean Variance Mean Variance 

First 30 days of the observed 
period 

0.034 
(3.4%)  

0.0015 0.061 
(6.1%)  

0.008 

Last 10 days of the observed 
period 

0.57 
(57%)  

0.04 0.39 
(39%)  

0.007 

Values lying between the first 
and the third sample quartiles 

0.26 
(26%)  

0.01 0.23 
(23%)  

0.007  

Table 3 
Estimated coefficients of the TSIR models for the two states, with respective p- 
values of the Wald Chi-square statistic, and the resultant estimates of β2 and β1. 
Based on the p-values of the Wald-test, all coefficient estimates are significant.  

State Parameter Estimate Wald statistic p-value 

California logeβ0  3.892  0.022** 
α 0.459  0.005* 
Initial period 02 March 2020–18 March 2020 
β2  0.319 
β1  0.106  

Florida logeβ0  3.395  0.008* 
α 0.463  0.001* 
Initial period 02 March- 31 March 2020 
β2  0.280 
β1  0.093 

*Significant at 1% level of significance 
**Significant at 5% level of significance  

Table 4 
Posterior estimates of the parameters of the state-space SI(Q/F)RD model, along 
with their standard deviations and 95% credible intervals- California.  

Parameter Posterior 
mean 

Posterior standard 
deviation 

95% credible interval 

R1  0.497  0.262 [0.068, 1.004] 
R2  1.464  0.155 [1.214, 1.813] 
γ   0.069  0.006 [0.056, 0.081] 
κ   336063.593  47259.956 [243264.879, 

431918.329] 
λD   1355.195  718.277 [397.588, 2632.883] 

λI   1012524.750  734717.729 [1349.955, 
2006982.462] 

λR   1633152.503  334437.988 [1073803.103, 
2360304.964] 

β̂1 = R̂1(γ̂ + d1) 0.035 

β̂2 = R̂2(γ̂ + d2) 0.102  
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deaths (YD
t ), corresponding region of 95% credible intervals, and true 

(calibrated) counts till the observed time, are exhibited for the two states 
in Figs. 3 and 4. Predicted final size of the COVID-19 epidemic for each 
state, in terms of the total number of infections and deaths, is presented 
in Table 6. 

Discussion 

Some key insights from the results 

Estimates of the proportion of reported cases, pt, based on the cali-
brated data impress upon the seriousness of the problem of under-
reporting. The first 30 days since the outbreak of the COVID-19 epidemic 
in the two states (i.e., for the month of March as per the timeline of this 
study) experienced extremely high level of underreporting, with the 
estimated average percentages of underreporting being 96.6% for Cali-
fornia, and 93.9% for Florida. Similar results have been reported by Lau 
et al. [8]. Based on the reported data till 17 March 2020, they estimated 
the true number of infecteds to be 53.8 times higher than the reported 
number of cases in the United States- i.e., 98.1% of the total cases 
remained unreported. Similar situation was also reported by Wu et al. 
[7], and as per their findings the ratios of estimated cases to confirmed 
infections in California and Florida till 18 April 2020 were around 17.5 
(94.3% underreported cases) and 10 (90% unreported cases), respec-
tively. With time, the proportion of reported cases increased steadily, 
and after a couple of months it stabilizes around an average value of 57% 
for California, and 39% for Florida. That is, due to the lack of adequate 
testing capacity in these states, around 43% of the total infected cases in 
California and 61% of the total infected cases in Florida, on an average, 
are expected to remain unreported. These average values of pt calculated 

at the later stage of the pandemic, are representative of the nature and 
capacity of long-term testing policy of the states. For the same reason, 
the hyperparameters of the prior distributions of pt for the purpose of 
forecasting have been based on these later-stage averages. Such high 
percentages of infecteds remain undetected, are not quarantined, and 
remain infectious for a much longer period than their quarantined 
counterparts, moving freely among the susceptibles. The SI(Q/F)RD 
epidemic model proposed in this paper is based on this hypothesis and 
the hypothesis is strongly supported by the posterior estimates of the 
transmission parameters obtained from the Dirichlet-Beta state-space SI 
(Q/F)RD model. Posterior estimates of average reproduction rates 
associated with the quarantined infecteds are 0.497 (sd: 0.262) and 
0.359 (sd: 0.224), while those associated with the undetected infecteds 
are 1.464 (sd: 0.155) and 1.612 (sd: 0.097), for California and Florida 
respectively. This clearly indicates that successful detection and quar-
antining of almost all infecteds would have resulted in quick decline in 
the number of active cases and would have drastically reduced the final 
size of the epidemic in both states. However, quarantining almost all 
infecteds in the presence of a large proportion of asymptomatic cases 
would require extensive amount of random testing. This is clearly 
missing in both states under consideration, as also suggested by the high 
rates of positivity of tests, and high reported CFR values for the two 
states. 

Comparing forecasted deaths with post-analyses published estimates of 
excess deaths 

Since the true number of infecteds, detected plus undetected, remain 
latent in the population, it is not possible to compare forecasted values 
with the true values. However, comparing cumulative number of deaths 
forecasted by the state-space SI(Q/F)RD model with the estimated 
values of excess deaths can serve as a potent alternative to assess pre-
dictive efficiency of the model. Estimates of epidemiological parameters 
and predictions obtained from the state-space SI(Q/F)RD model in our 
study are based on the daily time-series data on the number of cases 
reported till 11 July 2020 and the weekly estimates of excess deaths 
available till the same date. Predictive accuracy of the model will be 
determined by its ability to forecast true values beyond the training 
period of the model. From this perspective, we have plotted the fore-
casted time-series of cumulative number of deaths obtained from the 
fitted SI(Q/F)RD model alongside the weekly estimated excess deaths 
due to COVID-19 till 14 November 2020. The estimates of excess deaths 
due to COVID-19 was retrieved from the website of CDC (https://www. 
cdc.gov/nchs/nvss/vsrr/covid19/ excess_deaths.html) on 4 December 
2020. Striking difference in the estimated values of average reproduc-
tion numbers associated with detected (quarantined) cases and unde-
tected cases suggest that the assumption regarding future values of 
proportion of detected cases plays a crucial role in ascertaining high 
predictive accuracy of the model. In other words, accuracy of the 

Table 5 
Posterior estimates of the parameters of the state-space SI(Q/F)RD model, along 
with their standard deviations and 95% credible intervals- Florida.  

Parameter Posterior 
mean 

Posterior standard 
deviation 

95% credible interval 

R1  0.359  0.224 [0.052, 0.880] 
R2  1.612  0.097 [1.416, 1.799] 
γ   0.063  0.004 [0.054, 0.071] 
κ   500800.490  94547.445 [327261.995, 

679843.447] 
λD   1022.341  303.916 [539.044, 1629.331] 

λI   999169.436  753473.727 [4778.595, 
2403835.884] 

λR   1807366.511  365988.299 [1164580.155, 
2616920.665] 

β̂1 = R̂1(γ̂ + d1) 0.0229 

β̂2 = R̂2(γ̂ + d2) 0.102  

Fig. 3. Predictions of number of infecteds and number of deaths in California. The blue shaded ribbon is the region of 95% credible intervals. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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predictions from the proposed SI(Q/F)RD model relies greatly on the 
validity of the assumption regarding future testing policy in the region- i. 
e., on whether the testing capacity relative to the number of true cases is 
expected to increase, remain unchanged or decrease over time. To stress 
upon this argument, observed time-series of the rates of positivity of 
COVID-19 tests are also plotted alongside the comparative plots of the 
forecasted number of deaths. Figs. 5 and 6 present these plots for Cali-
fornia and Florida, respectively. In both figures, the left panel shows the 
comparative trends of cumulative number of deaths (forecasted and 
excess), and the right panel presents the rate of positive tests over time. 
The trend line in blue in the right panel shows the average percentage of 
tests that were positive over the last seven days, i.e., a seven-day moving 
average of percentage of positive tests. The time-series plots of rates of 
positive tests for the two states were sourced from the website of Johns 
Hopkins University on 08 December 2020 [https://coronavirus.jhu. 
edu/testing/testing-positivity]. 

In case of California, there is a considerable difference between the 
predicted number of deaths and the estimated excess deaths due to 
COVID-19. However, the difference is majorly in the scale of the values, 
and the two trend lines look similar in shape over time. Possible reason 

for the difference in the scale can be explained by analysing the trend 
line of the rate of positive tests. The percentage of positive tests in 
California was extremely high during March-April, but although it 
started dropping exceptionally towards the end of April, it remained 
around 10% till July. However, September onwards, the rate of posi-
tivity came down below 5%, the WHO recommended threshold. The 
steep rise in the total number of tests performed daily, as shown by the 
pink towers in the graph, clearly explains this change. That is, California 
experienced a drastic change in testing capacity in the period of fore-
casting. Since, the hyperparameters of the model corresponding to the 
proportion of detected cases were defined based on the status of rate of 
positivity till July, the model tends to give overestimated forecasts of 
total number of deaths. Increasing the proportion of detected cases in 
the model as per the increase in testing capacity of the region would 
result in reduction in the total number of forecasted deaths. This is 
because the estimated rate of transmission for the detected (quaran-
tined) cases is relatively much lower than that of the undetected cases. 

The scenario of the rate of positive tests over time looks entirely 
different for Florida. Percentage of positive tests dipped below 5% for 
only two brief periods and it remained high for most of the time. That is, 
except for few short periods, the testing capacity has remained below 
par. Insufficient testing is also indicated by the fact that the trend line of 
the rate of positive tests is mostly parallel to the changes in the peaks of 
the total number of tests conducted per day. It suggests that the in-
crements in the number of tests were not sufficient to reduce the rate of 
positivity of tests. Ideally, the rate of positivity of tests should decrease 
with the increase in the number of tests if the testing capacity is suffi-
cient- as can be seen in the case of California. In other words, no sig-
nificant change in the testing policy of Florida is observed in the 

Fig. 4. Predictions of number of infecteds and number of deaths in Florida. The blue shaded ribbon is the region of 95% credible intervals. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 6 
Predicted final size of the COVID-19 epidemic in the two states.  

State Total 
confirmed 
Cases 

Total detected 
Cases 
(Quarantined) 

Total undetected 
Cases (Not 
quarantined) 

Total 
number of 
deaths 

California 2,384,143 1,328,158 1,055,985 58,292 
Florida 4,793,903 1,873,747 2,920,156 58,937  

Fig. 5. California- Left panel shows comparison of cumulative number of deaths predicted by the SI(Q/F)RD model with the estimates of excess deaths due to COVID- 
19. Right panel shows trend line of seven-day moving average of percentage of positive tests, along with daily total number of tests and daily total number of 
positive tests. 
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forecasting period. This further implies that the hyperparameters 
defined for the proportion of detected cases in the state-space SI(Q/F)RD 
model remained valid for most of the forecasting period. Consequently, 
the forecasted values of cumulative number of deaths are much closer to 
the estimates of total excess deaths in case of Florida. These observations 
reaffirm the consequential impact of underreporting due to inadequate 
testing capacity on the transmission dynamics of the pandemic, which 
forms the conceptual backbone of the proposed state-space SI(Q/F)RD 
model. 

Conclusion 

We have provided a comprehensive framework of data calibration 
and flexible epidemic modelling for forecasting the transmission dy-
namics of epidemics in the presence of underreporting. The structure of 
the proposed SI(Q/F)RD model allows for adjusting the trajectory of the 
epidemic in terms of time-varying levels of underreporting. The 
Dirichlet-Beta state-space formulation of the SI(Q/F)RD model provides 
a dynamic approach to the estimation and prediction of both time- 
invariant and time-varying transmission parameters of the epidemic. 
Further, the proposed method based on TSIR for estimating hyper-
parameters of prior distributions of transmission rates (or reproduction 
rates) enriches the state-space model with strong prior information. 
Posterior estimates of the transmission parameters of the COVID-19 
pandemic obtained for California and Florida exhibit the need to 
incorporate different transmission rates for detected (quarantined) and 
undetected (not quarantined) cases in epidemic models. Thus, the state- 
space SI(Q/F)RD model can also be used to gauge the difference in the 
progression and final size of an epidemic under diverse testing strategies 
with distinct potential for detecting cases. Since the estimates of trans-
mission rates and reproduction numbers associated with undetected 
infecteds are significantly higher than those of the detected ones, 
adequate testing capacity for efficiently quarantining infecteds is of 

utmost importance in the fight against pandemics like COVID-19. The 
proposed methodological structure can play a pivotal role in assessing 
and forecasting the true burden of any epidemic, even in the presence of 
time-varying level of underreporting of cases. Reliable projections at the 
early stage of an epidemic will be indispensable to policy makers for 
successfully planning the allocation of resources, and implementing 
effective containment measures. 

Limitations and further scope of research 

We have taken the rate of death as a fixed (known) parameter in the 
state-space SI(Q/F)RD model. Obtaining its posterior estimates may 
improve the overall predictions from the model. Further, the model can 
be extended by introducing time-varying transmission rates using 
modifier functions [11], which will make it more flexible. 
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Appendix A 

Expressions for kSi
t , kIi

t , kRi
t , and kDi

t 

kS1
t = − [β1pt + β2(1 − pt)]θI

t θ
S
t  

kS2
t = − [β1pt + β2(1 − pt) ][θI

t + 0.5kI1
t

][
θS

t + 0.5kS1
t

]

kS3
t = − [β1pt + β2(1 − pt)][θI

t + 0.5kI2
t ]
[
θS

t + 0.5kS2
t

]

kS4
t = − [β1pt + β2(1 − pt)][θI

t + kI3
t ]
[
θS

t + kS3
t

]

Fig. 6. Florida- Left panel shows comparison of cumulative number of deaths predicted by the SI(Q/F)RD model with the estimates of excess deaths due to COVID- 
19. Right panel shows trend line of seven-day moving average of percentage of positive tests, along with daily total number of tests and daily total number of 
positive tests. 
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kI1
t = [β1pt + β2(1 − pt) ]θI

t θ
S
t −

[
γ1pt + γ2(1 − pt)]θI

t − [d1pt + d2(1 − pt) ]θI
t  

kI2
t = [β1pt + β2(1 − pt) ][θI

t + 0.5kI1
t

][
θS

t + 0.5kS1
t

]
− [γ1pt + γ2(1 − pt) ]

[
θI

t + 0.5kI1
t

]
− [d1pt + d2(1 − pt) ]

[
θI

t + 0.5kI1
t

]

kI3
t = [β1pt + β2(1 − pt) ][θI

t + 0.5kI2
t

][
θS

t + 0.5kS2
t

]
− [γ1pt + γ2(1 − pt) ]

[
θI

t + 0.5kI2
t

]
− [d1pt + d2(1 − pt) ]

[
θI

t + 0.5kI2
t

]

kI4
t = [β1pt + β2(1 − pt) ][θI

t + kI3
t

][
θS

t + kS3
t

]
− [γ1pt + γ2(1 − pt) ]

[
θI

t + kI3
t

]
− [d1pt + d2(1 − pt) ]

[
θI

t + kI3
t

]

kR1
t = [γ1pt + γ2(1 − p2) ]θI

t  

kR2
t = [γ1pt + γ2(1 − p2) ][θI

t + 0.5kI1
t ]

kR3
t = [γ1pt + γ2(1 − p2) ][θI

t + 0.5kI2
t ]

kR4
t = [γ1pt + γ2(1 − p2) ][θI

t + kI3
t ]

kD1
t = [d1pt + d2(1 − p2) ]θI

t  

kD2
t = [d1pt + d2(1 − p2) ][θI

t + 0.5kI1
t ]

kD3
t = [d1pt + d2(1 − p2) ][θI

t + 0.5kI2
t ]

kD4
t = [d1pt + d2(1 − p2) ][θI

t + kI3
t ]

Appendix B 

Calibrating daily number of deaths using weekly excess deaths due to COVID-19 

Extent of underreporting of deaths has been estimated using the estimates of excess deaths. Excess deaths due to an epidemic (COVID-19 in our 
case) can be estimated as the difference between the total number of deaths reported in the period of epidemic (from all causes) and the expected 
number of baseline deaths due to all other causes in the absence of COVID-19. One popular method to calculate the expected number of baseline deaths 
in the absence of COVID-19 is to fit a Poisson regression to the time-series (weekly) data of death counts, and then projecting the baseline death counts 
till the required future point in time. An over-dispersed Poisson generalized linear models with spline terms is used to model trends in counts, ac-
counting for seasonality; refer to [18–20]. The model is also adjusted for year-to-year baseline variation and any pre-existing epidemic, like influenza 
epidemic. In our study we have used weekly estimates of excess deaths published by the Centers for Disease Control and Prevention (CDC) for the two 
states under consideration for the analyses [18]. The estimated excess death counts in the presence of COVID-19 are taken as the estimates of actual (or 
true) number of deaths due to the pandemic. The reported daily deaths due to COVID-19 are summed over weeks to find weekly reported deaths. The 
difference between the weekly excess deaths and weekly reported deaths gives us the estimate of the unreported deaths due to the pandemic. For 
further analysis, the weekly estimate of unreported deaths due to COVID-19 is distributed among each day of the corresponding week as per the 
proportion of the number of pandemic related deaths reported on a day out of the total number of deaths due to the pandemic reported in that week. If 
all days of a week have zero reported deaths, the total number of unreported deaths is equally distributed among all seven days. Combining the 
additional death counts assigned to each day to the already reported death counts for the day gives us the calibrated daily time-series data on actual 
number of deaths due to COVID-19. The calibrated data is smoothed using the method of LOESS regression before proceeding with further analyses. 
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