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Abstract

Single-cell RNA sequencing (scRNAseq) experiments provide a powerful means to identify clusters of cells that share common gene ex-
pression signatures. A major challenge in scRNAseq studies is to map the clusters to specific anatomical regions along the body and within
tissues. Existing data, such as information obtained from large-scale in situ RNA hybridization studies, cell type specific transcriptomics,
gene expression reporters, antibody stainings, and fluorescent tagged proteins, can help to map clusters to anatomy. However, in many
cases, additional validation is needed to precisely map the spatial location of cells in clusters. Several approaches are available for spatial
resolution in Drosophila, including mining of existing datasets, and use of existing or new tools for direct or indirect detection of RNA, or di-
rect detection of proteins. Here, we review available resources and emerging technologies that will facilitate spatial mapping of scRNAseq
clusters at high resolution in Drosophila. Importantly, we discuss the need, available approaches, and reagents for multiplexing gene
expression detection in situ, as in most cases scRNAseq clusters are defined by the unique coexpression of sets of genes.
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Introduction
Cells within an organism or tissue have traditionally been catego-
rized as specific cell types based on their morphology, function,
and expression of a few marker genes (Trapnell 2015; 2017). In re-
cent years, advances in single-cell and single-nucleus RNA se-
quencing (hereafter, scRNAseq) have provided powerful new
tools for identifying cell types and precisely defining the molecu-
lar signatures of cell types, subtypes, and states (Trapnell 2015).
In addition to technological advances, corresponding platforms
for data analysis, visualization, and mining of scRNAseq datasets
have also emerged, including the Seurat analysis platform
(http://satijalab.org/seurat/) (Stuart et al. 2019), automated
single-cell analysis pipeline (ASAP) (https://asap.epfl.ch)
(Gardeux et al. 2017; David et al. 2020), SCope visualization plat-
form (http://scope.aertslab.org) (Davie et al. 2018), DRscDB data
mining resource (https://www.flyrnai.org/tools/single_cell/) (Hu
et al. 2021), Broad Institute Single Cell Portal (https://singlecell.
broadinstitute.org/single_cell), and EBI-EMBL Single Cell
Expression Atlas meta-database of scRNAseq datasets (https://
www.ebi.ac.uk/gxa/sc/home). Through analysis of scRNAseq
data, distinct cell types found in a given sample can be identified
based on the expression of a unique set of genes or a combination
of coexpressed genes.

For Drosophila, efforts to generate high-quality scRNAseq data
include studies by individual laboratories and by the Fly Cell
Atlas (FCA; https://flycellatlas.org), a consortium of Drosophila

researchers and informatics experts (for a recent review see Li
2020). The outcomes of these efforts include unprecedented new
models of cell types present in adult flies, in specific dissected
tissues, and at specific developmental stages. The typical output
from scRNAseq data analysis is a set of defined clusters visual-
ized as a Uniform Manifold Approximation and Projection
(UMAP) (Becht et al., 2018; McInnes et al. 2018) or t-distributed
stochastic neighbor embedding (t-SNE) plot (van der Maaten and
Hinton 2008). The cell clusters in UMAP or t-SNE plots are gener-
ated computationally, based on the pattern of expression (or lack
thereof) of “marker genes” that together define a given cluster
and distinguish it from others.

The cells in a single cluster can have any distribution within
the sample that was analyzed (Figure 1). For example, they might
be adjacent to one another within the tissue, enriched in a
specific subregion of the tissue, or scattered throughout the tis-
sue. Moreover, in cases where more than one tissue is analyzed,
as for analysis of embryos or the entire adult, clusters might cor-
respond to a specific stripe (e.g., along the anterior-posterior axis
of the embryo) or to a cell type distributed over the entire body
(e.g., hemocytes). Mapping clusters to the anatomy is necessary
for creating a complete map of the body and, importantly, can in-
form our understanding of developmental processes, physiology,
and homeostasis. For example, learning that a given specialized
cell type is localized to a specific niche has different implications,
and leads to different experimental hypotheses regarding
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function, as compared with learning that a cell type is distributed
across a tissue or the whole organism.

Mapping of scRNAseq clusters to the anatomy is necessarily
based on the expression of the differentially expressed genes
(DEGs) that define the clusters. While this can be relatively easily
done if a cluster can be defined by the expression of a single DEG,
the task is more complicated if a group of cells can only be de-
fined using a combination of DEGs. Indeed, although major cell
types can usually be identified based on the expression of a few
specific genes, further subdivision in functionally different sub-
types is usually based on the expression of a combination of
genes. For example, within the hemocyte or blood cell repertoire
of Drosophila, three distinct populations are well described—mac-
rophage-like plasmatocytes, platelet-like crystal cells, and giant
cell-like lamellocytes (Banerjee et al. 2019)—and can easily be
identified based on the expression of single marker genes (Evans
et al. 2014; Banerjee et al. 2019) such as NimC1 for plasmatocytes,
prophenoloxidase-1 (PPO1) for crystal cells, and PPO3 for lamello-
cytes. However, in the adult fly gut, the co-expression pattern of
a set of approximately 2–5 genes that encode peptide hormones
in individual enteroendocrine cells could distinguish among dif-
ferent subtypes of enteroendocrine cells (Guo et al. 2019; Hung
et al. 2020). Moreover, in the nervous system, a minimum of
eleven genes were needed to distinguish among olfactory projec-
tion neuron subtypes (Li et al. 2017).

In this study, we first briefly discuss how DEGs are used to as-
sociate clusters with cell types. We then describe bioinformatics
approaches used to associate cells with specific anatomical loca-
tions. As the predictions that result from these analyses must be
experimentally validated, we next present an analysis of existing
and new methods for direct detection of RNA, indirect detection
of RNA, and detection of proteins. Throughout, we aim to provide
both a thoughtful discussion of the current state-of-the-art and
practical resources, including a list of relevant large-scale data-
sets and fly stock collections (Table 1), a list of relevant computa-
tional tools and protocols (Table 2), and a proposed workflow
(Figure 2).

Use of top-enriched genes to associate
clusters with cell types
Following scRNAseq, cells are grouped into clusters based on the
expression in single cells of highly variable features. An immedi-
ate and major step that follows is to associate clusters with cell
types or states. With Seurat, association of a cluster with a cell
type is done by examining the highly significant and top enriched
DEGs. This might also be done using a semi-supervised method,
for example as described in (McLaughlin et al. 2020). DEGs allow
users to manually annotate clusters based on prior knowledge or
initiate automated annotation of clusters with the help of any of
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Figure 1 Spatial resolution of cells associated with scRNAseq clusters. Cell clusters defined by differential gene expression can be visualized in two-
dimensional space using UMAP or t-SNE plots but these clusters have no defined relationship to the tissue or organisms from which the cell sample
was obtained. Top: spatial mapping of clusters derived from scRNAseq of a tissue. Cells in a given cluster can have any distribution in the tissue:
adjacent, dispersed, and so on. Bottom: mapping of clusters derived from scRNAseq of whole adults. Cells in a given cluster can have any distribution
in the body. This figure was created using BioRender.com.
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several available machine-learning algorithms (see examples
from Abdelaal et al. 2019; Miao et al. 2020). From a manual scan of
the top DEGs, the identity of some clusters might be readily
assigned (Luecken and Theis 2019). Typically, scRNAseq analysis
identifies more than one DEG per cluster and a subset of these
might be helpful in annotating known cell types.

In some cases, cell clusters express a variety of top enriched
genes that may not represent a specific gene signature, such that
the cluster can only be reported as an “unannotated” cluster
(Croset et al. 2018; Davie et al. 2018). In such cases, additional
computational tools (Abdelaal et al. 2019) might be helpful in
assigning cell-type identity. Automated cell-type prediction tools
appear to perform best when the cell-type signatures are com-
posed of at least three to eleven or more DEGs per cluster, and
most methods tend to make “mispredictions” when clusters are
defined by only one or two DEGs (Diaz-Mejia et al. 2019). This may
suggest that using either manual or automated or both methods
may benefit from 3 to 11 or more marker genes per cluster in ac-
curately assigning cell identities.

The very concept of a “cell type” is being intensely debated as
more dynamic “cell states” are discovered using scRNAseq
(Trapnell 2015; 2017; Luecken and Theis 2019). Seurat and related
algorithms cluster cells using a graph-based clustering ap-
proach and nonlinear dimensional reduction to visualize the
clusters to two-dimensional space (Zheng et al. 2017; Butler et al.

2018; Korsunsky et al. 2019; Stuart et al. 2019). However, analysis
of datasets can reveal large clusters with subclusters identifi-
able within them, suggesting heterogeneity within a given cell
type. Often, these subclusters, which represent cell states or
subtypes, do not possess unique DEGs, making it harder to
annotate as the top enriched genes tend to overlap with other
subclusters within the parent cluster. In such cases, differential
expression of the top enriched marker genes that are commonly
expressed across the subclusters may be used to annotate the
subclusters.

Cells within a particular tissue may exist in various states or
subtypes that express their own combinations of marker genes.
However, when samples involve multiple tissues within a com-
plex region, the diversity of clusters at a desired level of resolu-
tion or granularity may increase upon scRNAseq analysis (Ghosh
et al. 2020). In such cases, if a marker gene that is highly specific
to a cell type within a tissue is also expressed in clusters of an-
other tissue, it loses specificity in this more complex context.
Hence, although a specific marker gene represents “a cluster” in
one tissue, it is highly warranted to compare its enrichment or
specificity in clusters of other tissues before flagging it as a poten-
tial marker or its corresponding genetic reagent. However, such
approaches are only feasible when the whole body or multiple
complex tissues are investigated using scRNAseq, as has been
done for example for the adult abdomen (Ghosh et al. 2020) and is

Table 1 Existing datasets and resources relevant to spatial mapping in Drosophila

Reagent or Resource Gene or Protein Coverage URL and/or reference(s)

Large-scale spatially resolved datasets
BDGP in situ hybridization project 8,526 genes, embryonic stages https://insitu.fruitfly.org/cgi-bin/ex/insitu.pl

(Tomancak et al. 2002, 2007; Hammonds et al. 2013)
FlyFISH �10,000 genes, multiple

stages, and tissues
http://fly-fish.ccbr.utoronto.ca/
(Lecuyer et al. 2007; Wilk et al. 2016)

Dresden Ovary Table (DOT) �7,000 genes, adult ovary
(all stages of oogenesis)

http://tomancak-srv1.mpi-cbg.de/DOT/main
(Jambor et al. 2015)

Enhancer traps, other reporters, and protein fusions
BDSC lacZ enhancer traps 1,345 lines, 1,079 genes https://bdsc.indiana.edu/stocks/in/lacZ_trap.html
BDSC lacZ reporters 476 lines, 64 genes https://bdsc.indiana.edu/stocks/misc/lacZ.html
BDSC and Kyoto GAL4 enhancer traps �6,000 lines, �2,000 genes https://bdsc.indiana.edu/stocks/gal4/gal4_non_Janelia.html

https://kyotofly.kit.jp/stocks/documents/NP_lines.html
BDSC LexA and QF �2,000 lines, �750 genes https://bdsc.indiana.edu/stocks/lexa/index.html

https://bdsc.indiana.edu/stocks/qsystem/index.html
Janelia FlyLight GAL4a �3,000 lines, �70 genes https://bdsc.indiana.edu/stocks/gal4/gal4_janelia.html

(Jory et al. 2012)
VDRC Vienna Tiles GAL4a �200 lines, �160 genes https://stockcenter.vdrc.at/control/library_vt (Tirian and

Dickson 2017)
BDSC split-GAL4a �4,000 lines, �950 genes https://bdsc.indiana.edu/stocks/gal4/split_intro.html
MiMIC/CRIMIC GAL4 �1,600 lines, 1,500 genes http://flypush.imgen.bcm.tmc.edu/pscreen/mimic.html

(Venken et al. 2011; Lee et al. 2018)
BDSC FP traps �900 lines, �790 genes https://bdsc.indiana.edu/stocks/gfp/gfp_fluortrap.html

(Morin et al. 2001; Kelso et al. 2004; Buszczak et al. 2007;
Quinones-Coello et al. 2007; Singari et al. 2014; Nagarkar-
Jaiswal et al. 2015)

VDRC fTRG FlyFos lines 880 lines, 826 genes https://stockcenter.vdrc.at/control/main
(Sarov et al. 2016)

Antibody and protein tagging resources—information
FlyBase antibody information https://wiki.flybase.org/wiki/FlyBase:Antibodies
pAbmAbs antibody reviews http://pabmabs.com
Labome Validated Antibody

Database
472 mAbs, 280 pAbs https://www.labome.com/index.html

Antibody and protein tagging resources—physical resources
Developmental Studies

Hybridoma Bank
278 mAbs for 266 genes https://dshb.biology.uiowa.edu/collections/drosophila-antigens

Scarless gene editing GFP, HA, FLAG (plasmid
collection)

https://flycrispr.org/scarless-gene-editing/
(Lamb et al. 2017; Li-Kroeger et al. 2018)

a Note that most of these lines are not useful for scRNAseq cluster validation since they were generated as transgenes under the control of short regulatory
regions (see text).
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being accomplished at scale for Drosophila by the FCA consor-
tium.

Use of DEGs for spatial mapping using
bioinformatics approaches
Identifying DEGs that define cell types, subtypes, and states does
not necessarily lead directly to identifying the spatial location of

cells. An efficient pipeline for spatial mapping would begin with
mining of existing information (Figure 2). For Drosophila, we bene-
fit from the availability of large-scale datasets and other accumu-
lated knowledge associating gene expression with specific
anatomical locations (Table 1). Among the major resources avail-
able to help associate DEGs with spatial locations are datasets
from large-scale RNA in situ hybridization studies from the
Berkeley Drosophila Genome Project (BDGP) in situ project, which

of DEGs
Minimal set of DEGs 

All DEGs

2. Enrichment analysis,
Mining of existing datasets

Predictions based on existing 
knowledge, prioritized set 

of candidate markers

existing reagents

List of available 
transcriptional reporters, 

fusion proteins, antibodies

List of DEGs without 
existing reagents

4. Multiplex detection 
of DEGs

Design of probes, knock-in 
constructs, other reagents

Multiplexed visualization in 
tissues or whole animals

Cell types successfully 
mapped to anatomy

Figure 2 Workflow for spatial resolution in Drosophila. Identification of differentially expressed (DE) genes associate with scRNAseq cell clusters
provides a starting point for spatial mapping (step 1). Bioinformatics analyses (step 2) can help predict spatial mapping and prioritize candidate DEGs.
Once a minimal and/or prioritized list of DEGs for experimental analysis has been defined, researchers can look for existing resources such as enhancer
trap, MiMIC/CRIMIC, or GAL4 fly stocks (step 3). Finally, multiplex detection of DEGs is used to validate or newly determine spatial mapping in a given
tissue or whole animal (step 4).

Table 2 Computational tools and experimental protocols relevant to spatial mapping in Drosophila

Method URL(s) and/or Reference

Computational tools and resources
DistMap https://github.com/rajewsky-lab/distmap (Karaiskos et al. 2017)
SCTCwhatateam https://github.com/thanhbuu04/SCTCwhatateam (Pham et al. 2020)
ASAP https://github.com/DeplanckeLab/ASAP (Gardeux et al. 2017)
FlyMine https://www.flymine.org/flymine/begin.do (Lyne et al. 2007)
BioLitMine https://www.flyrnai.org/tools/biolitmine/web/ (Hu et al. 2020b)
novoSpaRc https://github.com/rajewsky-lab/novosparc (Nitzan et al. 2019)
Probe design for detection of RNA
Oligopaints suite of resources https://oligopaints.hms.harvard.edu/ (Beliveau et al. 2012)
OligoMiner code repository https://github.com/beliveau-lab/OligoMiner (Beliveau et al. 2018; Passaro et al. 2020)
PaintSHOP design resource https://oligo.shinyapps.io/paintshop/ (Hershberg et al. 2020)
ProbeDealer design resource https://campuspress.yale.edu/wanglab/probedealer/ (Hu et al. 2020a)
Experimental methods
In situ hybridization, alkaline

phosphatase detection
(Weiszmann et al. 2009)

FISH, general methods (Lecuyer et al. 2008, 2011; Legendre et al. 2013; Wilk et al. 2016)
FISH, brain whole mount Protocol at FigShare, https://doi.org/10.25386/genetics.7455137 (Meissner et al. 2019)
SABER-FISH (Amamoto et al. 2019; Kishi et al. 2019)
FP tagging using P-element or piggyBac

mobilization
(Morin et al. 2001; Kelso et al. 2004; Quinones-Coello et al. 2007)

FP tagging using Fosmids (Sarov et al. 2016)
FP tagging using MiMIC (Venken et al. 2011)
Scarless editing https://flycrispr.org/scarless-gene-editing/ (Lamb et al. 2017)
MiMIC combined with scarless editing (Li-Kroeger et al. 2018)
ALFA system (Gotzke et al. 2019)
Technology-focused reviews
FISH (Young et al. 2020)
Tagging in Drosophila (Kanca et al. 2017)
Fluorescence imaging in Drosophila (Dunst and Tomancak 2019)
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is primarily focused on gene expression in embryos (Tomancak
et al. 2002, 2007; Hammonds et al. 2013), and the Fly-FISH project,
which includes analysis of gene expression in embryos and in the
larval fat body, intestine, imaginal discs, nervous system, salivary
gland, ovary/testis, muscle, tracheal system, and lymph/ring
glands (Lecuyer et al. 2007). Both resources provide spatial map-
ping data in the form of images and controlled text. Additional
datasets provide spatial mapping of RNA expression for specific
tissues. For example, FlyTED (Zhao et al. 2010) provides mRNA in
situ hybridization data for the testis, and the Dresden Ovary
Table (DOT) (Jambor et al. 2015) provides mRNA in situ hybridiza-
tion data for the ovary. In addition, in situ data generated for the
wing disc (Butler et al. 2003) proved useful for analysis of
scRNAseq data of myoblasts from wing discs (Zappia et al. 2020).

Despite the wealth of in situ data that exist, the number of
genes and tissues covered is limited. One potential solution to
spatial mapping is to combine existing knowledge with computa-
tional approaches. Seurat includes a computational strategy use-
ful for inferring cellular localization by combining scRNAseq data
with a spatial reference map built from in situ hybridization data
for a smaller set of “landmark” genes that guide spatial assign-
ment. This strategy has been used successfully, e.g., in zebrafish
embryos, but might be challenging for some tissues, such as
those in which cells with similar expression patterns are dis-
persed within the tissue (Satija et al. 2015). An alternative ap-
proach, DistMap, was developed and applied to Drosophila embryo
scRNAseq data (Karaiskos et al. 2017). This study resulted in gen-
eration of the Drosophila Virtual Expression eXplorer (https://
shiny.mdc-berlin.de/DVEX/) and became a launchpad for a
DREAM challenge (Saez-Rodriguez et al. 2016) aimed at develop-
ment of additional computational methods for spatial recon-
struction. Outcomes from the challenge include the
SCTCwhatateam R package for spatial mapping based on
“location-marker genes” (Pham et al. 2020). Prior RNA in situ spa-
tial mapping data was additionally used to compute “expression
maps” of scRNAseq data from wing imaginal discs (Bageritz et al.
2019). The computed image profiles correlated well with experi-
mentally observed distributions of mRNA. Moreover, the authors
were able to compute 65 de novo “marker genes” for which new in
situ data were predicted to have the highest value for spatial
mapping. Altogether, the application of automated computa-
tional approaches shows promise but is limited at least in part by
a lack of in situ data for many Drosophila tissues.

In addition to making use of existing RNA in situ data, bioinfor-
matics approaches to mapping DEGs to spatial regions might also
make use of bulk RNAseq data. There are numerous bulk RNA-
seq datasets available for Drosophila, including datasets based on
dissected fly tissues. Comprehensive datasets include RNAseq
datasets for larval and adult tissues generated by the
modENCODE consortium, which are available for mining at
FlyBase (Thurmond et al. 2019) and DGET (Hu et al. 2017), as well
as RNAseq datasets for larval and adult tissues that can be mined
at the FlyAtlas2 portal (Leader et al. 2018). Additional bulk
RNAseq data for specific tissues include the Flygut dataset
(Marianes and Spradling 2013) and Flygut-seq dataset (Dutta et al.
2015), which provide transcription profiles from dissected subre-
gions of the fly midgut. In the study by Dutta et al. (2015), tissue
dissection was combined with fluorescence-activated cell sorting
(FACS) of cells based on cell type-specific expression of GFP,
which allows the bulk data to be mapped to specific cell types in
defined regions. As such, this resource served as a major refer-
ence for cell-type assignment in an analysis of gut scRNAseq
data (Hung et al. 2020); top DEGs for each cluster were compared

with markers for different cell types in different dissected gut
regions as defined in the Dutta et al. study. Finally, a combination
of cell type-specific genetic manipulation with other profiling
technology, such as the translating ribosome affinity purification
(TRAP) method (Thomas et al. 2012) and targeted DamID
(Southall et al. 2013), can be used to profile cell-specific gene ex-
pression. For example, these approaches have been used to inter-
rogate gene expression in specific cell types in the Drosophila gut
(Doupe et al. 2018; Xu et al. 2019) and as such, could have value
for scRNAseq data analyses.

Bioinformatics-guided approaches to identifying or predicting
spatial locations are not limited to analyses based on RNA ex-
pression data. Another approach is to look for enrichment of de-
fined categories such as gene ontology (GO) terms that might
help reveal anatomical location. For example, ASAP (Gardeux
et al. 2017; David et al. 2020) can be used for enrichment analysis
based on GO terms and KEGG pathways, as part of an overall
scRNAseq data analysis workflow. In addition, starting with a list
of DEGs, FlyMine (Lyne et al. 2007) can be used to look for enrich-
ment of GO terms, KEGG or Reactome pathways, expression pat-
terns in the BDGP in situ dataset, or other categories; and
BioLitMine (Hu et al. 2020b) can be used to look for enrichment of
medical subject heading (MeSH) terms associated with genes in
the published literature, including MeSH anatomical terms.
Moreover, as mutant phenotypes often manifest in the tissue(s)
that normally express the mutant gene, the association of pheno-
type annotations with anatomical terms in FlyBase (Grumbling
and Strelets 2006) might in theory be used to assist in spatial
mapping. We also note that one group has developed an ap-
proach called CellAssign that facilitates annotation of scRNAseq
data based on reference or de novo cell types, and the user-
defined reference information inputted at CellAssign could be a
set of well-established cell markers or markers from a relevant
dataset (Zhang et al. 2019). Another group attempted de novo re-
construction of spatial mapping based on the assumption that
proximal cells will have more similar expression profiles (Nitzan
et al. 2019). The approach, novoSpaRc, was applied to several
scRNAseq datasets, including for Drosophila embryos, and can be
used either in the absence of prior knowledge or together with
existing spatial information. In addition, the results of cross-
species analyses might also help reveal information relevant to
spatial mapping (Tarashansky et al. 2020).

Altogether, bioinformatics approaches can be used to associ-
ate clusters with spatial locations based on existing data or anno-
tations, predict spatial locations either de novo or based on
existing knowledge, and prioritize subsets of DEGs as potential
marker genes. For both existing and new cell types or states, a
next step will be to experimentally validate or determine spatial
locations in whole mount samples. As discussed earlier, the
results of Drosophila scRNAseq studies performed to date suggest
that in most or all cases, the expression of multiple DEGs will be
needed to differentiate within and among specific cell types, sub-
types, and states. Thus, methods allowing for multiplexed detec-
tion of gene expression are needed in order to define the spatial
locations of the cells in a given cluster. As discussed below, avail-
able methods include direct and indirect visualization of RNAs,
and direct visualization of proteins.

Experimental methods for direct
visualization of RNA expression
In the absence of existing data for a given set of DEGs, an obvious
next step would be to use in situ hybridization to develop probes
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and experimentally determine the expression of potential marker
genes in the stage(s) and tissue(s) of interest. A classical and pow-
erful experimental method for in situ hybridization in Drosophila is
the use of digoxigenin-labeled RNA probes to visualize RNA in
fixed and permeabilized whole-mount samples using a colori-
metric assay, most commonly alkaline phosphatase-based stain-
ing, as is used by the BDGP in situ project (Tomancak et al. 2002,
2007; Hammonds et al. 2013). The technique is well-established
(see protocols in Table 2) and has been widely applied. A signifi-
cant limit of this approach, however, is that it is not easily multi-
plexed. Two-color assays can be performed by combining
alkaline phosphatase-based staining with the use of 3,3’-diami-
nobenzidine (DAB) and peroxide-based staining, which generates
a precipitate that is different in color from that generated by al-
kaline phosphatase staining.

An attractive alternative to colorimetric approaches is the
application of fluorescent in situ hybridization (FISH). As noted
above, this approach was applied at large scale in the Fly-FISH
project (Lecuyer et al. 2007; Wilk et al. 2016). Development of FISH
technology over the years has led to new approaches to signal
amplification, methods for concurrent and sequential labeling,
and other improvements. For a detailed review of methods for tis-
sue preparation, hybridization, and other technical aspects of
RNA-FISH, we refer readers to (Young et al. 2020). A main focus
for development of FISH technology has been on improved signal
detection through amplification, which can be achieved through
recruitment of multiple reporter molecules to a probe and/or the
use of multiple probes per target. One of these improved
approaches, hybridization chain reaction (HCR), was successfully
used for validation of spatial mapping in an scRNAseq study of
the Drosophila ovary (Slaidina et al. 2020). Another, RNAscope
(Wang et al. 2012), has been used for detection of RNA in a num-
ber of Drosophila tissues, including cardiac tissue (Cannon et al.
2017), the brain (Yin et al. 2018), and photoreceptors (Alejevski
et al. 2019). A third, the signal amplification by exchange reaction
(SABER) approach (Kishi et al. 2019), has been used for detection
of RNA in the Drosophila gut (Amamoto et al. 2019). SABER-FISH
and RNAscope show particular promise for visualization of cellu-
lar heterogeneity in complex tissues at the single-cell level, as
these methods result in bright signals and at least in some sam-
ple types, reportedly allow for detection of up to 10 (SABER-FISH)
or 12 (RNAscope) targets. Another area of advancement has been
in probe design. Design resources such as those associated with
the Oligopaints suite of resources (Beliveau et al. 2012) can aid in
the design of effective and target-specific RNA-FISH probes for
Drosophila studies.

Experimental methods for indirect
visualization of RNA expression
There are two major types of in vivo gene expression reporters in
Drosophila: (1) those that express a reporter gene under the con-
trol of regulatory sequences contained within the transgene,
independent of the site of genome integration; and (2) those that
express a reporter gene under the control of native regulatory
sequences near the site of genome integration. In addition, differ-
ent transcriptional reporters make use of different approaches to
signal detection. The first generation of gene reporters typically
used the Escherichia coli lacZ gene, which encodes b-galactosidase
(O’Kane and Gehring, 1987; Bellen et al. 1989). b-galactosidase ex-
pression can be detected by antibody staining or by the colorful
product of cleavage of X-Gal. In either case, the approach
requires development of a transgenic fly stock followed by

dissection, fixation, and other manipulation of the tissue of inter-
est. Since the discovery of GFP, fluorescent protein (FP) gene
reporters have superseded lacZ, as they allow for observation of
expression in both fixed and live cells. Finally, binary systems
such as GAL4/UAS, LexA/lexAop, and QF/QUAS offer increased
flexibility compared to single lacZ or FP reporters (Brand and
Perrimon 1993; Lai and Lee, 2006 ; Potter and Luo 2011). With
binary systems, an enhancer trap or promoter transcriptional
activator (GAL4/LexA/QF) can be used to drive the expression of
any reporter gene placed downstream of the corresponding cis-
regulatory element (UAS/lexAop/QUAS). Moreover, with binary
systems, signal detection is not generally an issue. That said,
however, careful analyses can reveal expression patterns not
noted or missed in previous analyses, for example as reported by
Weaver et al. (2020).

There have been several large-scale efforts to generate gene
reporters in Drosophila using an “enhancer-trapping” approach, in
which a vector containing a minimal promoter and a reporter
gene is randomly integrated into the genome (reviewed in Kvon
2015). The Bloomington Drosophila Stock Center (BDSC) currently
houses �1,340 lacZ and a handful of FP enhancer trap lines.
The vast majority of extant enhancer trap stocks contain inser-
tions of binary system transcriptional activators into the 5’ regu-
latory region of genes, including �6,000 GAL4 lines and �180
LexA lines. As a tool for validating gene expression these lines are
limited by the fact that they are untargeted insertions of trans-
posable elements and thus may not accurately reflect the native
gene expression pattern.

One of the most versatile set of reporters is the MiMIC (Minos-
Mediated Integration Cassette) gene trap collection (Venken et al.
2011; Lee et al. 2018). The synthetic MiMIC transposable element
contains a gene trap within a swappable insertion cassette (SIC)
that can be exchanged using uC31 site-specific integrase.
Multiple gene reporter reagents can therefore be derived from a
single MiMIC insertion in a coding intron by swapping the SIC
with different cassettes to generate reporters, mutants, protein
tags, and so on. Currently, the collection includes MiMIC inser-
tions in coding introns of �1,800 genes. Approximately 800 of
these have been converted into T2A-GAL4 gene trap stocks
and an additional 800 have been generated by CRISPR integration
of a T2A-GAL4 SIC gene trap (CRIMIC). Unlike enhancer traps,
these intronic GAL4 insertions are expressed under the control of
undisrupted native promoter and enhancers, and are therefore a
more reliable reporter of gene expression. A major limitation of
the MiMIC/CRIMIC strategies is that many fly genes do not have a
sufficiently large intron to integrate the SIC. We note that the
GAL4-UAS system in the context of T2A-GAL4 can introduce a de-
lay in GFP expression relative to endogenous gene expression
(Ewen-Campen et al. 2020), and as such, the absence of a GFP sig-
nal in some cases may not reflect absence of gene expression.

Examples of cloned sequences used to drive the expression of
a gene of interest include the pan-neuronal elav promoter (Yao
and White 1994) and the ubiquitous Actin5C promoters (Fyrberg
et al. 1983). While valuable, this approach has typically been
limited to a relatively small number of cases where defined
promoters and enhancers have been identified. However, as part
of the Janelia FlyLight Project, �3,000 GAL4 lines and �1,500 LexA
lines were produced using short enhancer fragments from 1,200
genes with predicted expression in the adult brain (Pfeiffer et al.
2010; Jenett et al. 2012) and are now housed at BDSC. An addi-
tional set of 200 lines, available from the Vienna Drosophila
Research Center, were made using the same approach (Kvon
2015; Tirian and Dickson 2017). These are particularly well-suited
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for analysis of small subpopulations of neurons, but it is impor-
tant to note that given the small fragments used to drive GAL4
and LexA, these lines do not provide a full picture of gene expres-
sion patterns.

An even greater refinement of cell type-specific gene ex-
pression is made possible by the split-GAL4 system, in which
the GAL4 DNA-binding domain and a transcriptional activation
domain are separately expressed under the control of different
regulatory sequences (Luan et al. 2006). Expression of a UAS
reporter gene will only occur in cells where the two domains
intersect, and GAL4 is reconstituted by a leucine zipper at-
tached to each domain. Using a similar method to their GAL4
lines (Pfeiffer et al. 2010), the FlyLight Project generated a large
collection of neuronal split-GAL4 lines, of which �4,000 are
housed at the BDSC (Dionne et al. 2018). The vast majority of
split-GAL4 lines have been characterized based on their ex-
pression in the brain and have been used for spatial mapping
in that tissue (see e.g., Xie et al. 2021). In addition, a recent re-
port examined the intestinal pattern of the BDSC collection of
split-GAL4s, and identified 424 drivers expressed in the midgut
(Ariyapala et al. 2020).

The approaches described above provide a powerful means for
identifying gene expression patterns and cell or tissue-specific
reporters. Indeed, detection of expression using lacZ enhancer
traps and/or binary expression systems has been reported for
several scRNAseq studies (see e.g., Ariss et al. 2018; Guo et al.
2019; Tattikota et al. 2020). However, each has drawbacks.
Enhancer and gene traps caused by insertion of a large element
within or upstream of a gene may disrupt regulatory elements,
thereby altering expression patterns. Intronic MiMIC insertions
are more reliable reporters of true gene expression patterns, but
only a subset of genes have suitably large introns for this ap-
proach. Although split-GAL4 lines provide exquisite information
on co-expression and are uniquely suited for validation of marker
genes from scRNAseq studies, almost all existing split-GAL4 lines
are not useful for scRNAseq cluster validation since they have
been generated as transgenes under the control of short regula-
tory regions (Jenett et al. 2012) (FlyLight and VDRC GAL4 lines,
Table 1) and were not designed to reflect the endogenous expres-
sion pattern of the corresponding gene. Indeed, these lines al-
most never provide faithful representation of the pattern of gene
expression because the small fragments inserted are out of their
genomic context and problematically many of these lines are
expressed in cell types that do not express the respective gene.
Furthermore, unlike FISH, none of these approaches offer a
means to reliably multiplex more than two gene expression pat-
terns.

Methods for direct visualization of proteins
Thus far, our focus has been on detection of RNA. Given that
most RNAs encode proteins, an alternative approach to spatial
mapping via detection of RNA expression is direct detection of
protein expression. Past experience suggests that reagents for
protein-based visualization will be useful for spatial mapping in-
formation as well as for other types of experimental applications.
A common approach for detection of proteins in whole mount tis-
sues is immunofluorescence and this approach has been used
for spatial mapping in Drosophila following scRNAseq analysis
(see e.g., Brunet Avalos et al. 2019; Genovese et al. 2019; Allen et al.
2020). Another approach is to detect epitope- or fluorescence
protein-tagged versions of the proteins that are expressed under
the control of an endogenous promoter, and likewise, detection

of FP fusions has been applied already to follow-up of scRNAseq
studies (see e.g., Jevitt et al. 2020).

The standard method for isolating antibodies has been to im-
munize mammals such as rabbits or mice, then isolate poly-
clonal or monoclonal antibodies that detect the protein of
interest. This approach is relatively complex and the quality of
the reagents highly variable, and as a result, there are few anti-
bodies available for detection of Drosophila proteins. FlyBase lists
2,414 antibodies targeting 2,028 protein targets. Most of these are
polyclonal antibodies and thus are not a renewable resource.
Renewable monoclonal antibody reagents are annotated in the
literature for fewer than 400 Drosophila proteins (Table 1). When
we compare this number with the �14,000 protein-coding genes
annotated in the fly genome, it becomes clear that development
of additional antibody resources and/or alternative methods
will be needed in order to use direct detection of proteins for de-
tection of DEGs.

Molecular genetic approaches to fusing the open reading
frames (ORFs) of FPs or epitope tags to endogenous gene ORFs
provide an alternative, cost-effective approach to detecting pro-
teins. Well-established ORFs useful for tagging include a variety
of FPs that can be detected either directly or using anti-FP anti-
bodies, and short peptides (“epitope tags”) recognized by readily
available and specific antibodies. A number of different strategies
can be used to generate tagged proteins under endogenous
expression control. Early large-scale collections of FP-tagged pro-
teins were generated using P-element mobilization of an element
containing GFP as an artificial exon (Morin et al. 2001; Kelso et al.
2004). More contemporary molecular genetic strategies have
followed. The fly-TransgeneOme (fTRG) fly stocks represent a set
of 880 transgenic fly lines covering 826 different genes tagged
with GFP and FLAG tags using a two-step strategy to insert tags
into transgenes from the FlyFos fosmid library (Sarov et al. 2016).
In addition, in the case of the MiMIC approach introduced above,
insertions of the SIC into coding introns can be exchanged with
protein-tag cassettes such as GFP, RFP, or mCherry FPs, or with
FLAG, HA, or Myc epitope tags, to create fusion proteins that
can then be detected using whole mount fluorescence or immu-
nofluorescence imaging (Venken et al. 2011). The “scarless
editing” approach, which is based on CRISPR-Cas9 editing, also
facilitates tagging with GFP, HA, or FLAG (Lamb et al. 2017; Li-
Kroeger et al. 2018), and application of the CRISPaint approach in
flies is useful for C-terminal FP tagging (Schmid-Burgk et al. 2016;
Bosch et al. 2020). Notably, the MiMIC and scarless editing
approaches are based on modification of the endogenous locus,
such that they are most likely to preserve the normal pattern of
the gene. With regards to multiplexing, although the spectrum of
available FPs has increased, green and red FPs are used most of-
ten. Using antibodies to detect the FPs can further increase the
potential for multiplexing, i.e., in combination with detection
other types of signals. In addition, protein detection-based
approaches have an advantage in that they can be combined
with detection of signals generated using binary systems, i.e., de-
tection of a protein tagged with GFP or an epitope tag can be com-
bined with detection of another FP in a fly stock in which a GAL4
reporter drives expression of UAS-xFP.

New approaches to isolation of effective antibodies, such as
phage (Moutel et al. 2016) or yeast (McMahon et al. 2018) display-
based systems for isolation of nanobodies, as well as identifica-
tion of new epitope tags, could be used to expand the number of
Drosophila proteins that can be used as markers for spatial map-
ping. Nanobodies have particular appeal because of their rela-
tively small size (12–15 kD), which makes them relatively easy to
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generate, e.g., using an E. coli expression system, and facilitates
favorable binding properties to the target. Isolation of a nanobody
that specifically recognizes 13 amino acid peptide, the ALFA
nanobody, has opened the doors to detection of epitope-tagged
proteins using a nanobody (Gotzke et al. 2019). Although use of
the system in Drosophila has not yet been reported, the ALFA sys-
tem has been shown to work for western blotting, protein purifi-
cation, and imaging of live or fixed cells (Gotzke et al. 2019; Jin
et al. 2020; Makhija et al. 2020), suggesting that application of the
ALFA system or another nanobody-based epitope tag is likely to
be useful for detection of proteins in Drosophila.

Future directions
In this study, we have described existing resources and common
approaches available to the Drosophila research community for
mapping cell clusters to anatomy. Cell types that can be uniquely
identified based on expression of a single gene are likely to be
rare, such that effective experimental approaches will require vi-
sualization of more than one RNA and/or protein. For this reason,
the application in Drosophila of improved RNA-FISH techniques
seem particularly promising, as RNA-FISH allows for direct detec-
tion of multiple RNAs at high resolution. We also note that a
number of emerging technologies not yet implemented in
Drosophila might facilitate or change dramatically the overall ap-
proach to spatial mapping. These include spatial transcriptomics
technologies such as fluorescent in situ sequencing (FISSEQ) (Lee
et al. 2015), multiplexed error-robust fluorescence in situ hybridi-
zation (MERFISH) (Chen et al. 2015), spatially-resolved transcript
amplicon readout mapping (STARmap) (Wang et al. 2018b), se-
quential FISH (seqFISH) (Eng et al. 2019), and commercial technol-
ogies. These methods couple sensitive, quantitative, and highly
multiplexed detection of RNA with simultaneous capture of cell
and tissue morphology. As such, they might in the future have a
transformative impact. Indeed, their application might be partic-
ularly useful in tissues with a high degree of transcriptional di-
versity across various regions, such as the fly gut (Dutta et al.
2015).

A main barrier to the application of new technologies for spa-
tially resolved detection of RNA expression in Drosophila is that
these approaches are typically performed on cell monolayers or
tissue sections, whereas spatial resolution in Drosophila is typi-
cally performed in intact whole-mount animals or tissues. The
relatively small size of Drosophila as compared with mammalian
tissue sections might also be a barrier. This could require specific
optimization of some platforms, or combining approaches such
as MERFISH with expansion microscopy, as has been reported for
mammalian cells (Wang et al. 2018a). The design of primers for
highly multiplexed applications also presents added challenges.
These are being overcome, however, through development of
probe design resources including PaintSHOP (Hershberg et al.
2020) and ProbeDealer (Hu et al. 2020a), which support design of
probes for Drosophila in addition to other species.

Protein-based reagents, and nanobodies in particular, also
hold promise and, notably, would not only provide a potential
means for spatial mapping but could also facilitate a wealth of
other experimental applications. Development of a large-scale
nanobody resource targeting the protein products of hundreds of
DEGs is one potential approach. Another would be the develop-
ment of a set of nanobody-recognized epitope tags, expanding on
success of the ALFA tagging approach, and a corresponding fly
stock collection in which endogenous genes are tagged with the
epitopes. In either case, detection of multiple proteins could be

done in a multiplexed manner using different fluorescent tags for
secondary detection of the primary nanobody reagents.

Finally, we note that relevant to both RNA and protein detec-
tion technologies, new developments in fluorescence imaging, in-
cluding the recent application in Drosophila of expansion
microscopy (Jiang et al. 2018; Karagiannis and Boyden 2018) and
improved fluorescence imaging approaches (reviewed in Dunst
and Tomancak 2019), are likely to further contribute to effective
spatial mapping based on the detection of either RNAs or
proteins.

Altogether, we are encouraged that the available and emerg-
ing technologies are well-positioned to facilitate spatial map-
ping in Drosophila, allowing researchers to create anatomical
maps of whole animals and specific tissues at unprecedented
detail.
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