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Abstract

Genotype imputation is an indispensable step in human genetic studies. Large reference panels with deeply sequenced genomes now
allow interrogating variants with minor allele frequency < 1% without sequencing. Although it is critical to consider limits of this approach,
imputation methods for rare variants have only done so empirically; the theoretical basis of their imputation accuracy has not been ex-
plored. To provide theoretical consideration of imputation accuracy under the current imputation framework, we develop a coalescent
model of imputing rare variants, leveraging the joint genealogy of the sample to be imputed and reference individuals. We show that
broadly used imputation algorithms include model misspecifications about this joint genealogy that limit the ability to correctly impute rare
variants. We develop closed-form solutions for the probability distribution of this joint genealogy and quantify the inevitable error rate
resulting from the model misspecification across a range of allele frequencies and reference sample sizes. We show that the probability of
a falsely imputed minor allele decreases with reference sample size, but the proportion of falsely imputed minor alleles mostly depends on
the allele count in the reference sample. We summarize the impact of this error on genotype imputation on association tests by calculating
the r2 between imputed and true genotype and show that even when modeling other sources of error, the impact of the model misspecifi-
cation has a significant impact on the r2 of rare variants. To evaluate these predictions in practice, we compare the imputation of the same
dataset across imputation panels of different sizes. Although this empirical imputation accuracy is substantially lower than our theoretical
prediction, modeling misspecification seems to further decrease imputation accuracy for variants with low allele counts in the reference.
These results provide a framework for developing new imputation algorithms and for interpreting rare variant association analyses.
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Introduction
Genome sequencing studies with deep coverage allow directly
assessing rare genetic variants (Lee et al.2014) to elucidate their
impact on the etiology of complex diseases (Timpson et al. 2018).
However, such studies are still expensive. As an alternative,
array-based technologies can be employed at a substantially
lower cost. Commercial genotyping arrays cover a pre-selected
set of common variants, and in some cases low-frequency var-
iants known to be of interest from previous studies. To recover
high-resolution genetic information, genotype imputation com-
pares assayed genotypes to a sequenced reference panel, thus
leveraging the shared genealogy between genotyped (target) indi-
viduals and reference panel to infer unobserved genotypes
(Servin and Stephens 2007).

Modern imputation methods combined with large reference
panels have achieved high accuracy among even low-frequency
variants. For example, using the TOPMed data as reference, the
average imputation quality (r2) of variants with frequency 0.1% is
over 0.90 for both African and European ancestry genomes
(Taliun et al. 2021). Such high resolution improves the power of

genome-wide association studies for low frequency and rare var-
iants, and enables joint analysis across studies with different sets
of genotyped variants (Das et al. 2016): Recently, the TOPMed con-
sortium identified a new risk variant for breast cancer by imput-
ing rare variants with minor allele frequency (MAF) < 0.5% into
the UK Biobank (Taliun et al. 2021). The advent of affordable
whole-genome sequencing generating large collections of refer-
ence haplotypes combined with efficient imputation algorithms
will power more of such discoveries.

Most of these modern imputation methods are based on the Li
and Stephens’ (2003) model. They leverage that haplotypes from
unrelated individuals share chromosome segments from a com-
mon ancestor. These segments are more similar to each other if
their common ancestor is more recent. Among haplotypes in a
large reference panel, the haplotype that has the most recent
common ancestor (MRCA) with the target haplotype can thus
provide information about the unobserved genotypes of the tar-
get. Using a Hidden Markov Model (HMM), the Li and Stephens’
algorithm models each target haplotype in the study as an imper-
fect mosaic of haplotypes from the reference panel. The haplo-
types making up this mosaic are inferred to be the most closely
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related to the target, and thus provide information for unob-
served genotype information. The HMM framework is computa-
tionally tractable and naturally approximates recombination and
mutation in its transition and emission probabilities.

Simulation studies have shown that imputation quality
depends on the imputed variants’ allele frequency, genomic con-
text, the size of the reference panel, and population demo-
graphics (Huang et al. 2013; Das et al. 2016). Such studies illustrate
that, despite significant improvements, imputation of rare var-
iants still has high uncertainty: The average squared correlation
(r2) for variants with MAF 0.01% is below 0.5 even with the largest
reference from the same continental population (Taliun et al.
2021). But, simulation studies only provide a limited opportunity
to understand these limits. Although they have the flexibility to
mimic a particular imputation setting, they are often computa-
tionally expensive and hard to generalize. Alternatively, probabil-
istic models capturing the basic properties of the imputation
process can make predictions before data collection and are eas-
ily generalizable.

The key in such a probabilistic model is the relatedness be-
tween reference and target haplotypes, which explains how the
reference informs unobserved genotypes in target haplotypes.
Kingman’s (1982) coalescent provides a suitable theoretical
framework for modeling the shared genealogy of these haplo-
types. The coalescent traces the genealogy back in time, model-
ing a sequence of events where individuals find their common
ancestors. Mutations resulting in polymorphisms can be mapped
to branches on the coalescence tree at each locus, with all its
descendants carrying the derived allele (Figure 1). The coalescent
time (the time it takes for two or more haplotypes to find their
MRCA and TMRCA) thus gives a measure of expected genetic dis-
similarity, since only mutations occurring more recent than the
coalescent time can result in different alleles among those haplo-
types.

Some aspects of imputation accuracy have already been
explored using coalescent theory. Jewett et al. (2012) studied the
scenario where the target and reference are sampled from two
populations diverged in the past, and derived expected imputa-
tion error rate as a function of reference size and divergence
time. Huang et al. (2013) further included mutation rate and
marker density as factors; and analyzed the potential gain in
accuracy by choosing the reference panel from a more closely re-
lated population.

Here, we develop a coalescent approach to understand impu-
tation accuracy within population, focused on rare variants. It is
useful to recognize that imputation error has two types of sour-
ces: (1) failure to identify haplotypes most closely related to the
target as the template and (2) true differences between the tem-
plate and the target haplotype due to recent mutation events.
Although improving imputation algorithms may reduce error of
the first type, error of the second type is a result of the underlying
genealogical relation between the target and the reference sam-
ple and how this relationship is modeled. Here, we focus on
modeling the second type of error, where we determine the error
that is immanent to the Li and Stephens’ model.

For this purpose, we consider one target haplotype with miss-
ing genotype and n fully sequenced haplotypes as references.
These nþ 1 observed lineages form the leaves of a binary tree
with their (unobserved) ancestors as internal nodes. Intuitively, if
the target first finds its MRCA with a set of reference haplotypes,
their genotypes are the most similar to the target thus the most
informative for imputation. The Li and Stephens’ algorithm
assumes that there is exactly one such most closely related refer-
ence haplotype, but we show that this assumption is wrong with
probability 1/3.

We compute how often this misspecification leads to an am-
biguous or wrongly imputed genotype, assuming the imputation
algorithm correctly identifies exactly those haplotypes that are
most closely related to the target sample in the reference. We
then provide the probability of generating a particular imputed
dosage conditional on allele frequency of the variant and the size
of reference panel. We also quantify the imputation accuracy in
terms of the r2 between the imputed dosage and the true geno-
type, and show that, as a result of this misspecification, the r2

largely depends on the allele count in the reference panel, im-
proving only marginally with increased reference size. We assess
the impact of population history on these results and use coales-
cent simulation to confirm our analytic results. Taken together,
our approach provides the minimum size of the reference panel
necessary to achieve the desired imputation accuracy for a given
allele frequency.

We evaluate the upper bounds predicted with this model
where the only source of error is model misspecification by im-
puting a sample of 56,984 individuals using reference panels of
different sizes and evaluating the empirical imputation accuracy
> 60,000 variants. We observe substantially higher imputation er-
ror in the empirical results than the theoretical bound in our
model. Moreover, when conditioning on minor allele count
(MAC), imputation error is larger in larger reference panels. We
also observe that for MAC 2–10, imputation error increases much
faster with decreasing MAC, consistent with our result that espe-
cially for these MACs, model misspecification reduces imputation
accuracy.

The model we develop here can also be leveraged to improve
current imputation algorithms. For example, most imputation
algorithms assume that the distance between switching template
haplotypes reflects recombination events and is exponentially

Figure 1 Connection between genotype sequences and coalescence tree.
On the left is the genotype matrix of eight haplotypes (a–g) as reference
plus a target haplotype at five SNPs (1–5). Ancestral alleles are colored
black, derived (mutated) alleles are colored red. Question marks denote
sites where the target is not genotyped. The Li and Stephens algorithm
models the target haplotype as the observation from a HMM where
reference haplotypes a–g constitute the state space. By identifying which
of the reference haplotypes is the hidden state of the target haplotype,
the algorithm can identify which allele to infer for the unknown sites.
Note that haplotypes c, d, and e all have the same alleles as the target at
the genotyped loci, making them equally likely to be the hidden state
without further information. On the right is the corresponding
coalescence tree assuming no recombination. Mutations are labeled on
the branch, with all the descendants (leaves) carrying the derived allele.
Template haplotypes c, d, or e being the hidden state is equivalent to the
target haplotype coalescing at one of the yellow arrows. As the Li and
Stephens algorithm assumes a single best template, it does not consider
the possibility that the target may fist coalesce with the branch pointed
by the blue arrow. All indicated coalescence events are compatible with
the observed genotypes but give different imputation results.
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distributed (Paul et al. 2011). We derive the length distribution of
contiguous segments without observable recombination break-
points, and show that it differs substantially from the exponen-
tial assumption by having thicker tails for both very short and
long segments.

Methods
We consider imputing a single-target variant for one target hap-
lotype with a reference panel consisting of n reference haplo-
types. For simplicity, we only discuss biallelic sites denoting the
ancestral allele as 0 and derived allele as 1. At each SNP site, all
reference haplotypes and the target form a coalescent tree with
nþ 1 leaves. This tree is unknown but represents the complete in-
formation that imputation can possibly use (Figure 1). If the tar-
get’s MRCA with the reference sample occurs on a branch that is
ancestral to u � 1 reference haplotypes, all u present day
descendants of that branch are the most closely related reference
haplotypes. We assume that the imputation algorithm identifies
these most closely related reference haplotypes, then assigns the
mean genotype of them to the target haplotype as the imputation
dosage.

Under this assumption, we consider three scenarios: (1) The
mutation generating the target variant is ancestral to the TMRCA
of the target haplotype and all its most closely related reference
haplotypes. In this case, it will be imputed correctly with dosage
1 (Figure 2a). (2) The mutation occurred more recently than the
TMRCA and the mutation occurred on the branch to the target
haplotype. Then the target variant is not polymorphic in the ref-
erence sample and will always be falsely imputed to be the an-
cestral allele (Figure 2b). (3) The mutation occurred more recently
than the TMRCA and the mutation occurred on the branches to
the reference haplotype. Then some or all of the most closely re-
lated reference haplotypes carry the derived allele while the tem-
plate haplotype carries the ancestral allele and the reference
sample will be imputed to carry the derived allele with some dos-
age > 0 (Figure 2, c and d).

We focus on the third scenario where j of the u most closely re-
lated templates carry the derived allele while the target does not.
The Li and Stephens model assumes a single closest haplotype,
and in the HMM implementation the imputed fractional geno-
type (dosage) is a weighted average of multiple reference haplo-
types based on their posterior probabilities of being that right
template. When the u is equivalently close to the target, they are
expected to have equal posterior probabilities. Thus the imputed
dosage ĝ is ĝ ¼ j=u 2 ð0; 1� while the true genotype g is g¼ 0 (“false
positive”), resulting in loss of information in downstream analy-
sis.

In the following sections, we derive the probability for all pos-
sible (j, u) configuration, conditional on observing the derived al-
lele count (DAC)j in the whole reference. For simplicity, we
distinguish the one target haplotype from the rest n reference
ones, making the whole tree size nþ 1, although they are ex-
changeable under the assumption of homogeneity and random
mating. We will always consider time backward with t¼ 0 being
the current generation. Notations are listed in Table 1.

Number of most closely related templates
We first give the probability of having u equally good templates
at any random position for a target haplotype: Pðu; nÞ. This proba-
bility depends only the topology of the genealogy, independent
from mutation events. We leverage that the probability that a set

of k lines coalesce before they coalesce with any line among the
rest n—k (Wiuf and Donnelly 1999) is:

qk;n�k ¼
2ðk� 1Þ!ðn� kÞ!
ðkþ 1Þðn� 1Þ! : (1)

The generative process can then be imagined as three

steps: u templates coalesce first before their MRCA meets

Figure 2 Possible scenarios when imputing one target haplotype (yellow
lineage) using a reference panel with n haplotypes. Red lines are
haplotypes carrying a mutation that occurs on the blue branch. Gray
horizontal dashed line indicate the time intervals where an event of
interest occurs. (a) The derived allele arises ancestral to the MRCA of the
target with the reference haplotypes and is shared between the target
(g¼ 1) and all most closely related haplotypes. Thus it will be correctly
imputed (ĝ � 1). (b) The derived allele arises on the branch of the target
(g¼ 1) and is thus absent from the reference. It will be falsely imputed to
be ancestral (ĝ ¼ 0). (c) The derived allele arises after the MRCA of the
closest reference haplotypes before coalescing with the target haplotype.
The target haplotype does not carry the derived allele (g¼ 0), but all
closest reference haplotypes do. The target will be imputed to carry the
derived allele (ĝ � 1). (d) The derived allele arises on a branch ancestral
to j¼ 2 of the closest reference haplotypes before the MRCA of all u¼ 4
closest haplotypes. The target haplotype does not carry the derived allele
(g¼ 0). The target’s derived allele dosage will be imputed to reflect that j
of u closest haplotypes carry the derived allele (ĝ � j=u ¼ 0:5).

Table 1 Notation for key quantities

Symbol Meaning

g True genotype at the imputed locus
ĝ Estimated genotype at the imputed locus
n Number of haplotypes in the reference panel.
u Number of most closely related haplotypes (MCRH) in

the reference panel
j Number of the rare allele in the reference panel
k Number of lines remaining on the tree just after all

MCRH have reached their MRCA
d Number of lines remaining on the tree when the target

haplotype coalesces with one ancestor of the reference
haplotypes

l Length of an internal branch
m Number of mutation events on a particular branch
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the target; then the resulting branch of size uþ 1 meets the
rest of the tree. Finally, we sum over all possible sets of u
templates:

Pðu; nÞ ¼ quþ1;n�u � qu;1 �
n
u

� �
ðu < nÞ

¼ 2u!ðn� uÞ!
ðuþ 2Þn!

2ðu� 1Þ!
ðuþ 1Þu!

n!

ðn� uÞ!u!

¼ 4
uðuþ 1Þðuþ 2Þ ð1 � u � n� 1Þ

Pðu ¼ n; nÞ ¼ qn;1 ¼
2

nðnþ 1Þ

: (2)

The expected number of best templates is close to 2 when the
reference is large:

E½u; n� ¼
Xn

u¼1

uPðu; nÞ

¼
Xn�1

u¼1

u
4

uðuþ 1Þðuþ 2Þ þ n � qn;1

¼ 2n
nþ 1

� 2

: (3)

High certainty error
We now derive the probability of imputing the target to carry the
mutation with dosage ĝ ¼ 1 while the truth is g¼ 0, conditional
on the observed DAC in the reference panel: Pðĝ ¼ 1; g ¼ 0jj; nÞ.
This happens when the target haplotype first coalesces with a
branch (l) of size j carrying a mutation (Figure 2C).

Throughout the following derivation, we use the number of
ancestral lines k for the current day sample to keep track of coa-
lescent time and to connect topology and branch lengths. We
first introduce some quantities useful for our derivation:

Let Pðj; k; nÞ be the probability for j lines to reach their MRCA at
the coalescent event that reduces the overall number of ancestral
lines from kþ 1 to k, without any of the j lines coalescing with
any of the n�j other lines first. Let P0ðn; dÞ be the probability for
one line to encounter no coalescent event for (at least) the first
n�d events. Let Pðm � 1jlÞ be the probability of having at least one
mutation event on a branch with length l, and let PðL ¼ ljk; d; nÞ be
the probability density function for the length of one internal
branch starting when there are k lines left and ending when there
are d lines left, in a tree of size n. Using these terms, we can now
calculate:

Pðĝ ¼ 1; g ¼ 0 j j; nÞ ¼ Pðĝ ¼ 1; g ¼ 0; j; nÞ
Pðj; nÞ :

We calculate the joint probability Pðĝ ¼ 1; g ¼ 0; j; nÞ in the fol-
lowing three steps by conditioning on d and k (Equation 4 and
Figure 2C). We calculate Pðj; nÞ by adapting the second step
(Equation 5).

1) To coalesce in the ðn� dþ 1Þth coalescent event, when d
lines remain on the tree, the target haplotype cannot coa-
lesce in the first n�d events. By definition of P0, this is
P0ðnþ 1; dþ 1Þ.

2) A branch of size j ancestral to all most closely related refer-
ence haplotypes arises in the reference at the ðn� kÞth
event (Pðj; k; nÞ) and encounters a mutation before it coales-
ces with the target branch in event n� dþ 1 (gðk; d; nÞ).
Here, the probability for a mutation to occur on that
particular branch is computed by integrating over all

possible branch length l given k and d:
gðk; d; nÞ ¼

Ð l¼1
l¼0 Pðm � 1jlÞPðL ¼ ljkþ 1; d; nþ 1Þdl.

3) The size-j branch does not coalesce till the ðn� dÞth event
and then coalesces with the target: P0ðk; dÞ � 1

dþ 1
2

� �.

Multiplying the probabilities of these sequential events and
summing over all possible values of d, k give the joint probability:

Pðĝ ¼ 1; g ¼ 0; j; nÞ

¼
Xn�jþ1

k¼2

Xk

d¼2

P0ðnþ 1; dþ 1Þ � Pðj; k; nÞ � gðk; d; nÞ � P0ðk; dÞ
1

dþ 1
2

� �

gðk; d; nÞ ¼
Ð l¼1
l¼0 Pðm � 1jlÞPðL ¼ ljkþ 1; d; nþ 1Þdl

(4)
Pðj; nÞ

¼
Xn�jþ1

k¼2

Xk�1

d¼1

Pðj; k; nÞ � gðk� 1; d; nþ 1Þ � P0ðk; dþ 1Þ d
dþ 1

2

� �

gðk� 1; d; nþ 1Þ ¼
Ð l¼1
l¼0 Pðm � 1jlÞPðL ¼ ljk; d; nÞdl

: (5)

To compute Pðj; k; nÞ, define Hðn; kÞ :¼ n
2

� �
n� 1

2

� �
� � �

kþ 1
2

� �
, the number of possible configurations of the topological

history for n lines to coalesce till there are k ancestral lines left.
Then:

Pðj; k; nÞ ¼

n
j

� �
Hðj; 1ÞHðn� j; k� 1Þ n� k� 1

j� 2

� �

Hðn; kÞ

¼

n� k� 1
j� 2

� �

n� 1
j

� � ðk� 1Þk
j

:

(6)

Next we consider the integral corresponding to the mutation
event gðk; d; nÞ (Equation 7). Let, E½Ti; n� denote the expected time
for the number of ancestral lines to go from i to i�1 in the coales-
cence process for a sample of n current haplotypes, which
depends on the population history model. Thus, gðk; d; nÞ depends
on mutation rate l and expected coalescent time intervals
E½Tk; n�, which can be numerically computed (Polanski et al. 2017)
or approximated by Monte Carlo.

gðk; d; nÞ ¼
Ð l¼1
l¼0 Pðm � 1jlÞPðL ¼ ljk; d; nÞdl

¼
Ð
lð1� e�llÞPðL ¼ ljk; d; nÞdl

¼ E½1� e�lljk; d; n�

�lE½ljk; d; n�

¼ l
Xi¼k

i¼dþ1

E½Tk; n�

: (7)

Substituting Equations (6), (7), and P0ðk; dÞ ¼ dðd�1Þ
kðk�1Þ into Equations

(4) and (7), we now have the conditional probability fully defined:

Pðĝ ¼ 1; g ¼ 0jj; nÞ

¼

1
nðnþ 1Þ

Xn�jþ1

k¼2
P j; k; n
� � 1

ðk� 1Þk
Xk

d¼2
d d� 1ð Þ g kþ 1; d; nþ 1ð Þ

Pn�jþ1
k¼2 P j; k; n

� � 1
ðk� 1Þk

Xk�1

d¼1
d g k; d; nÞ:
�

(8)
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Following similar logic as above, we then consider the condi-
tional probability distribution for fractional dosages. We derive
Pðĝ ¼ j=u; g ¼ 0jj; nÞ, the probability of having u equally closely re-
lated best templates, j of which carry the mutation, for a target
actually carrying the ancestral allele, conditional on observing
the DAC as j in a reference of size n (Figure 2D). Details of deriva-
tion are in the Appendix.

Modeling r2 as a function of misidentification
proportion
The above derivation fully characterizes the distribution of the
imputed dosages assuming we perfectly identify the optimal tem-
plates. Although it is difficult to model all the possible sources of
error in the real imputation process, we can use the total weight
(q) attributed to haplotypes outside the set of most closely related
templates to measure the identification error. Here, we derive its
influence on the square of correlation coefficient (r2) between the
true genotype and imputed dosage.

Let g be the true genotype, 1 for the derived allele and 0 for the
ancestral allele; let f be the derived allele frequency (DAF), so
E½g� ¼ f . Let ~g and ĝ be the imputed dosage with and without mis-
identification, respectively.

Let z be the random variable representing the proportion of
carriers of the minor allele among the suboptimal templates con-
tributing to the imputed dosage, so that ~g can be modeled as a
mixture ~g ¼ ð1� qÞĝ þ qz. If we assume that the suboptimal tem-
plates are sampled at random from the population and each of
the suboptimal templates is given equal weight, z is the average
genotype of m random haplotypes, so E(z) ¼ f and
VðzÞ ¼ VðgÞ=m ¼ f ð1� f Þ=m.

When the optimal templates for a target sample provide the
perfect information ðĝ ¼ gÞ, misidentified templates may be the
alternate allele and therefore increase imputation error.
However, where the target sample carries the ancestral allele but
some of its optimal templates carry the derived allele, suboptimal
templates attenuate the resulting error. Nevertheless, here we
show that in expectation imputation error will always reduce the
correlation between the true and the imputed genotype. Let’s ex-
press r2

g;~g in terms of quantities regarding the theoretical imputed
dosage ĝ.

~g ¼ ð1� qÞĝ þ qz

) ~r2
g;~g ¼ Covðg; ~gÞ2

VðgÞVð~gÞ ¼
ðð1� qÞCovðg; ĝÞ þ qCovðg; zÞÞ2

VðgÞVðð1� qÞĝ þ qzÞ

¼
Covðg; ĝÞ2 þ 2q

1� q
Covðg; ĝÞCovðg; zÞ þ q2

ð1� qÞ2
Covðg; zÞ2

VðgÞVðĝÞ þ 2q
1� q

VðgÞCovðĝ; zÞ þ q2

ð1� qÞ2
VðgÞVðzÞ

:

(9)

Comparing to the theoretical r2
g;ĝ ¼

Covðg;ĝÞ2
VðgÞVðĝÞ :

~r2
g;~g

r2
g;ĝ

¼
ð1� qÞ2 þ 2q 1� qð Þ Covðg;zÞ

Covðg;ĝÞ þ q2 Covðg;zÞ
Covðg;ĝÞ

� �2

ð1� qÞ2 þ 2q 1� qð Þ Covðĝ ;zÞ
VðĝÞ þ q2 VðzÞ

VðĝÞ

: (10)

Since ĝ is based on a few reference haplotypes and equal to g
with large probability, we can reasonably assume Covðg; zÞ �
Covðĝ; zÞ; Covðg; ĝÞ � VðgÞ and Covðg; zÞ < Covðg; ĝÞ (misidentified
haplotypes are more distant). Therefore the middle terms in the
numerator and denominator of Equation (10) are approximately
equal; the difference between the r2’s is governed by the last

terms, which have a ratio strictly smaller than one:
Covðg;zÞ2

Covðg;ĝÞ2
VðĝÞ
VðzÞ ¼

Corðg;zÞ2

Corðg;ĝÞ2 < 1.

If misidentified haplotypes are close to random draws

from all reference haplotypes (Covðg; zÞ � 0), the ratio simplifies

to:

~r2
g;~g

r2
g;ĝ

� ð1� qÞ2

ð1� qÞ2 þ q2 VðzÞ
VðĝÞ

< 1: (11)

In practice, the suboptimal templates contributing to the im-

puted dosage are more likely to be from lineages closer to the tar-

get, so their effect on imputation accuracy would be smaller than

that from the above assumptions.

Length of haplotype before the next
recombination breakpoint
Next we aim to derive the distance between consecutive recombi-

nation events on an external branch. For the purpose of modeling

imputation, these distances represent the lengths of segments

that are copied from the same haplotype. Let X be the genetic dis-

tance to the next observed recombination event on the target,

and T be the length of its corresponding external branch. We cal-

culate fXðxÞ ¼
Ð

fXjTðxÞfTðtÞdt (we will use f ð�Þ for continuous and

Pð�Þ for discrete distributions). Similar to above, we compute the

probability density function of T by considering it first coalesces

at the (nþ 1� k)th event. Tjk is the sum of nþ 1� k coalescent

time intervals, thus following a convolution distribution as the

sum of nþ 1� k exponential with different rates. Conditional on

T, X follows an exponential distribution with rate 2T since a re-

combination event on either the current template or the target

haplotype results in a switch of template:

fXjTðxÞ ¼ 2Te�2Tx

fTjkðtÞ ¼ fTnþ1þ���þTkþ1 ðtÞ

) fXjKðxjkÞ ¼
Ð1
t¼0 fTnþ1þ���þTkþ1 ðtÞfXjTðxjtÞdt

¼ ETjk½2Te�2Tx� ðTjk � fTnþ1þ���þTkþ1 Þ

: (12)

When population size is constant, ETjk½2Te�2Tx� ¼ dMGFTðyÞ
dy jy¼�2x,

where MGFT is the moment generating function of the hypoexpo-

nential distribution Tjk. When population size changes through

time so time intervals are correlated, we can approximate the

expected value with 2E½Tjk�e�2E½Tjk�x and compute E½Tjk� with

Monte Carlo.
The probability for a haplotype to first coalesce at the

(nþ 1� k)th event is P0ðnþ 1; kþ 1Þ k
kþ 1

2

� �, with P0ðnþ 1; kþ 1Þ

being the probability of not coalescing with any lineage in the

first (n�k) events (starting from total sample size nþ 1).

Therefore, we have the distribution of X is:

fXðxÞ ¼
Xn

k¼1

P0ðnþ 1; kþ 1Þ k
kþ 1

2

� � fXjKðxjkÞ (13)

¼ 2
nðnþ 1Þ

Xn

k¼1

k � fXjKðxjkÞ: (14)
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Simulation
We performed a standard Kingman coalescent simulation under

population history models suggested by recent studies (detailed

in ‘Results’). We simulate size-(nþ 1) trees with n varying from

500 to 50k. For each generated tree, we keep track for all subtree

configurations (1þ uðjÞ) (one external branch first coalesces with

a branch of size u, which contains a branch of size j) of interests,

and record the length of this size j branch. The sum of all such

relevant branch lengths in the tree divided by the number of pre-

sent haplotypes nþ 1 is one realization of the joint probability

Pðĝ ¼ j=u; g ¼ 0; j; nÞ, which will then be approximated by averag-

ing such realizations over all simulated trees. To approximate

the probability of observing j derived alleles in the reference

panel, we simulated another independent set of trees of size n

and summed over the lengths of all size j branches to get sample

frequency spectrum. We present results from 50k independent

simulations under each parameter setting throughout this

article.

Empirical evaluation
To evaluate the predictions of our model, we imputed genotypes

from the Michigan Genomics Initiative (MGI; Fritsche et al. 2018)

using different imputation panels. To assess imputation quality,

we masked some genotypes and compared the imputed geno-

types to the genotypes generated by the array. MGI is collected

from the patient population of the University of Michigan

Hospitals and thus mostly (> 90%) consists of individuals of

European decent. The MGI individuals analyzed here are geno-

typed on a Illumina Infinium CoreExome chip with �60; 000 cus-

tom markers, providing sufficient low-frequency variants to

assess imputation performance for rare variants.
We considered five reference panels: (1) The Haplotype

Reference Consortium (HRC) r1.1 reference panel (n¼ 32,470 indi-

viduals of mostly European descent, �39M variants; McCarthy

et al. 2016), (2) the 1000 Genomes (1KG) Project variant calls from

low-coverage sequencing (n¼ 2548, �78M variants; Lowy-Gallego

et al. 2019), (3) the 1KG variant calls from high-coverage sequenc-

ing (n¼ 2504, �100M variants; Byrska-Bishop et al. 2021), (4 and 5)

subsets of the high- and low-coverage 1KG variant calls contain-

ing only samples from the European super population (n¼ 503).

Note that the HRC reference panel only provides variants with

MAC� 5 (McCarthy et al. 2016). We subsetted all 1KG variant ref-

erence panels to the set of overlapping individuals and markers

and filtered out monomorphic and singleton sites, resulting in

2503 samples and �41M variants for panels (2) and (3) and 503

samples and �13M variants for panels (4) and (5). We also re-

phased all 1KG panels using Eagle (v2.4.1; Loh et al. 2016) without

a reference panel to avoid confounding due to differing phasing

quality.
Using each reference panel, we imputed all autosomal var-

iants by running Minimac4 (v1.0.0; Howie et al. 2012) on a com-

puting cluster maintained by the Center for Statistical Genetics

at the University of Michigan in Ann Arbor. We set Minimac4

parameters to use 16 cpus and output data in genotype, esti-

mated alternate allele dosage, and estimated haploid alternate

allele dosage formats. For all rare variants genotyped in MGI, we

estimated imputation quality using the squared Pearson correla-

tion coefficient between known and imputed genotypes.

Data availability
1000 Genomes low-coverage sequence data were downloaded
from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/
1000_genomes_project/release/20190312_biallelic_SNV_and_IND
EL/. 1000 Genomes high-coverage sequence data were down-
loaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collec
tions/1000G_2504_high_coverage/.

Results
We derived an analytical approach to calculate the impact of
model misspecification of the current imputation framework
with our coalescent model on rare variants (see ‘Methods’).
Assuming a Li and Stephens (2003) model-based imputation algo-
rithm correctly identifies all and only those haplotypes in the ref-
erence that are most closely related to the target sample (“closest
templates”), we calculated the theoretical error rate as a function
of reference size n and the DAC. Using coalescent simulations, we
confirm the analytical results, and incorporate general popula-
tion models. We compared our theoretical predictions with em-
pirical imputation accuracy observed in the MGI, with the 1000
Genomes (Abecasis et al. 2010) or the Haplotye Reference
Consortium (McCarthy et al. 2016) as reference.

The number of closest template haplotypes
In the coalescence context, identifying a single-reference haplo-
type that is most similar to the target haplotype is equivalent to
selecting the reference haplotype that has the MRCA with the tar-
get haplotype or, equivalently, whose lineage is the first to coa-
lesce with the target. However, by the time this lineage coalesces
with the target, it may be ancestral to multiple reference haplo-
types (Figure 1). In this case, those reference haplotypes are
equally closely related with the target, each of them in expecta-
tion providing the same amount of information for imputing the
target sample. Thus, the model assuming one single best tem-
plate is misspecified, and imputation is more likely to be ambigu-
ous when the number of closest templates is larger.

The probability for the target haplotype to first coalesce with a
lineage having u descendants in the reference is:

PðuÞ ¼ 4
uðuþ 1Þðuþ 2Þ ; ð1 � u � n� 1Þ: (15)

Note that the derivations of this probability do not condition
on the presence of a variable site. Thus, this probability depends
only on the topology of the coalescent tree, independent of popu-
lation history (see ‘Methods’). Interestingly, the probability distri-
bution of the number of best matches does not depend on the
size of the reference panel (n), except for the extreme case u¼ n,
where the entire reference has equal genetic distance to the tar-
get. In that case, Pðu ¼ nÞ ¼ 2

nðnþ1Þ. The expected number of closest
templates EðuÞ ¼ 2� 2

nþ1, approaching 2 as the size of the refer-
ence panel increases.

From Equation (15), we see that with probability 2
3, the target

haplotype first coalesces with an external branch (u¼ 1) and the
reference contains exactly one best match. Thus, the Li and
Stephens model of exactly one best template is misspecified with
probability 1

3. The probability of u equally good templates drops
rapidly with increasing u (Table 2). With probability 1

6, the target
haplotype first coalesces with an internal branch with two
descendants in the reference (u¼ 2), while the probability is
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0.0108 that the target haplotype first coalesces with an internal

branch with more than 10 descendants in the reference (u> 10).

Impact on imputation accuracy
As we have just demonstrated, the model assumption that each

target haplotype has a single most closely related template hap-

lotype is a model misspecification for 1/3 of the genome where

there are multiple closest templates. This model misspecification

contributes to imputation error beyond the typical source of error

created by failing to identify the most closely related haplotype.

To isolate this additional error, we now evaluate the imputation

of a missing genotype assuming that all closest templates are

correctly identified but analyzed under a model that assumes a

single best haplotype. In this scenario, imputation algorithms

will correctly impute all non-singleton variants if the target hap-

lotype has a single most closely related template haplotype.

Imputation errors can only occur if the target haplotype has

more than one closest template, i.e. a model misspecification. In

this case, imputation algorithms consider all these template hap-

lotypes to be equally likely to be the“best” template. Accordingly,

it will interpret identifying multiple equally close templates as

uncertainty in identifying the best template. For variants that dif-

fer between these template haplotypes, the imputed genotype is

then usually the average of the DAC of those templates, a frac-

tional genotype (dosage). Thus, for one given target haplotype

carrying the ancestral allele to be imputed with a nonzero DAC

dosage (“false positive”), some of its templates have to carry the

derived allele.
Although the probability of this misspecification is indepen-

dent of population history, the probability of a mutation event

causing an imputation error depends on the history of the popu-

lation template and target haplotypes are sampled from. In our

primary analysis, we consider a population history model ap-

proximating European population history (Terhorst et al. 2017;

Speidel et al. 2019). Starting from an ancestral population with ef-

fective population size 104, it undergoes a bottleneck with Ne ¼
2 � 103 for 100k years (�3450 generations), then grows with an ac-

celerated rate (faster than exponential growth;Reppell et al. 2014)

to Ne ¼ 107 during the most recent 10k years. The effect of these

model parameters on the following results is marginal within a

model space reasonable for human population (Appendix).
We first consider the special case where all the closest tem-

plates for a target carry the derived allele, while the target haplo-

type carries the ancestral allele. In this case, the imputed dosage

of the derived allele is 1 when the truth is 0 (Figure 2A). By inte-

grating over all possible tree shapes and branching times (see

‘Methods’), we calculated the probability for this configuration for

reference sample sizes of 500, 5000, 20,000, and 50,000 individu-

als. We verified all results using computer simulations. Across all

considered reference sizes, the probability of this completely

wrong imputation for one imputed haplotype is small ranging

from 10�3 to < 10�6 (Figure 3A andTable 3). Holding reference

size constant, this probability decreases with rising DAC.

Similarly, holding DAC constant, this probability of imputation

error decreases with increasing number of templates.

To put these error rates in relationship with the number of
true carriers of the derived allele, we assume that the DAF in the
target population is the same as that in the reference population.
For instance, consider a site with two copies of the derived allele
in a reference of 500 individuals (MAF ¼ 0:002). For this site, we
expect to impute one individual as false carrier for every 1210
individuals (Figure 3). Among these 1210 individuals, we also ex-
pect 4.84 true carriers of this variant assuming the same MAF in
the target population. Thus, for variants that are doubletons in a
reference sample of 500 individuals, about one in six imputed
rare alleles will be a false positive (Table 3). More generally, for a
fixed DAC in the reference, the probability of falsely imputing the
derived allele decreases with increasing reference size while the
number of true carriers of the derived allele also decreases. As a
result, the proportion of falsely imputed derived alleles decreases
only moderately with increasing reference size. For example, for
variants that are doubletons in the reference, the proportion of
false positive-derived alleles decreases only from 17.5% for a ref-
erence size of 500 to 14.7% for a reference size of 50,000.

If we now consider the more general case where at least one of
the closest templates carry the derived allele while the target car-
ries the ancestral allele (dosage 0). In this case the imputed dos-
age ĝ > 0 (Figure 3). Across reference sizes of 500, 5000, 20,000,
and 50,000 individuals, we calculated the probability of ĝ > 0 for
each imputed haplotype. This probability is notably larger than
the probability of falsely imputing dosage 1, ranging from �10�3

to �10�5 for doubletons (with DAC 2;Figure 3B). This probability
decreases with rising DAC and increasing reference size.

From these probabilities, we calculate the expected number of
haplotypes carrying the ancestral allele (g¼ 0) that are falsely im-
puted to have either a nonzero derived allele dosage (ĝ > 0), a
higher dosage ĝ > 0:5 or a dosage of 1 for every million target
individuals (Table 3). Haplotypes with ĝ > 0:5 represent cases
where a“best-guess” imputation algorithm would infer the alter-
nate allele. Beyond the previously described impact of DAC and
reference size, these results show that for DAC < 5, about half of
all falsely imputed derived alleles have a dosage > 0.5. This ob-
servation can be explained by the fact that for a given DAC, ob-
serving a dosage < 0.5 requires a larger number of equally good
templates than observing a larger dosage. As large numbers of
equally good templates are rare (Table 2), the proportion of
higher dosage among all falsely imputed nonzero dosages
increases with the DAC.

To summarize the impact of this error on association tests, we
calculated the squared correlation coefficient (r2) between the
imputed dosages and the true genotypes using simulations, both
under the assumption that model misspecification is the only
source of error and under the assumption that some reference
haplotypes are falsely identified as being most closely related. r2

is a commonly used measure for imputation quality, as it is di-
rectly related to statistical power in downstream association tests
(Guan and Stephens 2008; Huang et al. 2009; Wojcik et al. 2018).

Still assuming that closest templates are identified perfectly,
we generated the distribution of expected r2 for a range of MACs
and reference sizes using simulations (see ‘Methods’). The
expected r2 increases monotonically with DAF in the reference

Table 2 Probability of multiple reference haplotypes (“No. templates”) being most closely related to the target haplotype

No. templates 1 2 3 4 5 6 7 8 9 10

Probability 0.6667 0.1667 0.0667 0.0333 0.0190 0.0119 0.0079 0.0056 0.0040 0.0030
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Figure 3 Upper panel: False discovery rate among noncarriers. Given a target haplotype carrying the ancestral allele (true dosage 0), the probability (y-
axis, in log scale) of having (a) all the closest templates in the reference panel carrying the derived allele thus an estimated dosage 1; or (b) having
nonzero estimated dosage for the derived allele. Lower panel: proportion of false positives among all imputed carriers. For a target sample, the
proportion (y-axis) of haplotypes with the ancestral allele among (c) individuals with estimated dosage 1, or (d) haplotypes with nonzero dosage. Both
results are conditional on the DAF in the reference (x-axis); color indicates the size of reference panel, in the number of individuals. Results for
reference size below 20,000 are from analytical calculation while those for 20,000 and 50,000 are from coalescence simulations.

Table 3 Expected number of imputation errors

Reference size (individuals) DAC in the reference panel

2 3 5 10 20

Imputed dosage for the derived allele

500 2145 1122 848 1802 1006 653 1361 815 420 840 541 153 435 292 57
5000 214 109 80 179 97 60 136 78 41 84 52 23 49 32 13
20,000 53 27 18 44 24 15 34 19 11 21 13 7 12 7 4
50,000 21 10 7 17 9 6 13 8 4 8 5 3 5 3 2

Consider imputing a sample dataset with one million individuals using a reference panel containing 500–50,000 individuals from the same population as the
sample, the expected number of individuals who are homozygous for the ancestral allele (g¼ 0) but have an imputed genotype dosage ĝ as ĝ > 0; ĝ > 0:5 or ĝ ¼ 1.
Each combined column represents one DAC in the reference. Results are from 50k independent coalescence simulations, each data point is an average of over 107

loci.
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and reference size (Figure 4). If we consider the increase with DAF
across reference sizes, we observe that the curves of expected r2

values look very similar for each reference panel size, only shifted
by a factor of 1/panel size. In other words, r2 of variants with the
same MAC remains almost the same across all considered refer-
ence sizes. For example, the average r2 among doubletons is 0.822
in a reference size of 500 and 0.831 in a reference sample size of
50,000, where its frequency is only 1/100 of the former. For var-
iants observed 10 or more times in the reference, the expected r2

is > 0.97 regardless of the size of the reference, as model misspe-
cification do not play a major role for the imputation quality of
these variants, but for variants observed less often, r2 decreases
rapidly with decreasing allele count.

To include other sources of error in the imputation process,
we model the false identification of reference haplotypes that are
more distantly related to the target as templates. Those distantly
related haplotypes are less likely to carry the same allele as the
target haplotype and thus introduce an additional source of error.
We parameterize this identification error as the sum of all proba-
bilities assigned to falsely identified templates, denoted as q (see
‘Methods’). In practice, this imputation error depends on the
choice of imputation algorithm, marker density, quality of geno-
typing and statistical phasing; detailed modeling of these factors
is beyond the scope of this article.

As expected, imputation error of the variant increases with in-
creasing q shown as the mean squared error (MSE) of the imputed
genotype (Figure 4B). As the imputed genotype for all individuals
converges to the allele frequency f as q goes to 1, the MSE
increases faster with higher f. Similarly, the r2 between the true
genotype and the imputed genotype decreases with increasing q.
However, including some suboptimal haplotypes only has a small
effect for rare variants. If we assume a single suboptimal tem-
plate, q < 10% only has marginal effect on r2, when q increases
beyond this threshold the decrease of r2 becomes almost linear.
This threshold depends on the number of suboptimal templates:
with a larger number of templates, the variance of the imputed
genotype decreases and the effect of including suboptimal tem-
plates is more deterministic (see ‘Methods’). Accordingly, if the

number of suboptimal templates is larger, the threshold where r2

starts to decrease with q is larger while the MSE is lower

(Figure 4B). For example, consider imputing a variant that is a

doubleton in the reference with 20k haplotypes. Assuming no

identification error, r2
0 ¼ 0:83. If we identify one suboptimal tem-

plates with posterior probability 0.3 as well as all the closest tem-

plates, the expected r2 is 0.70 and the MSE is 1:80	 10�5. If we

instead identify 5 suboptimal templates with total posterior prob-

ability 0.3 as well as all the closest templates, the expected r2

increases to 0.80 while the MSE decreases to 1:44	 10�5.
For variants with DAC < 5 in the reference, the error caused by

model misspecification dominates for a wide range of q; while for

variants of DAC over 20 the error caused by model misspecifica-

tion is negligible and the r2
0 with perfectly identified optimal

templates is above 0.99 regardless of the reference size (Table 4),

thus the identification error dominates the empirical imputation

error.

Comparison with empirical imputation accuracy
We imputed genotypes of 56,984 participants in MGI using two

standard reference panels, the 1KG (2504 individuals) and the

HRC (32,470 individuals). For variants present in the MGI dataset,

we calculated r2 between observed genotypes and imputed geno-

types and stratified these by the MAC of the variant in the refer-

ence panel (Figure 5).
We recapitulate previous results (e.g.Das et al. 2016) that panel

size had a notable effect on imputation accuracy. For a given

MAC, r2 for variants imputed with the largest panel (HRC) is lower

than that for variants imputed with the full 1KG panel by �0:10,

the later is in turn lower than that for variants imputed with the

European ancestry individuals from 1KG by �0:04 (difference rel-

atively stable across MAC). However, when conditioning on MAF,

the order of panels flips, as the same MAC reflects much smaller

MAF in larger panels. Here, r2 for variants imputed with HRC is

higher than that for variants imputed with the full 1KG panel by

�0:05, the later is in turn higher than that for variants imputed

with the European ancestry individuals from 1KG by �0:10.

Figure 4 (A) The upper bound of squared correlation (r2) (y-axis) between imputed and true genotype dosages, conditional on the DAF in the reference
(x-axis). Color indicates the size of reference panel. (B) The r2 (top) and MSE (bottom) when a certain proportion of weight (x-axis) is attributed to
suboptimal templates. The impact depends on the absolute number of suboptimal templates, we show examples of 1, 5 in the left and right columns.
Here we fix the reference size to 20k. Results are from 50k independent coalescence simulations, each data point is an average of over 107 loci.
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Sequencing depth of the reference panels on the other hand

had only a very small effect. The use of deep coverage 1KG panels

increased imputation accuracy typically by < 0.01, compared

with the low-coverage panel. Note that markers called only in the

deep coverage panel are not included in this comparison.
Comparing these empirical result with the theoretical upper

bound from our model (Figure 4), we observe that the empirical r2

is much lower than what is predicted under the assumption that

only model misspecification affects imputation accuracy. For

doubletons imputed with the whole 1KG, the average r2 is 0.32;

for doubletons imputed with the European subset (504 individu-

als) the average r2 is 0.41, while the theoretical upper bound is

above 0.82 for both sample sizes. Although empirical imputation

accuracy of rare variants decreases with decreasing MAC across

all reference panels, it decreases more rapidly for MAC < 10. This

more rapid decrease is mirrored by the rapid decrease of the the-

oretical upper bound for MAC < 10 observed in the theoretical

prediction.

Length between template switches
We now consider another potential source of error in current im-

putation model: the switch between templates. When we model

the target haplotype as a mosaic of templates from the reference,

switching between templates can be interpreted as a historical

recombination event that breaks the genealogical bond between

the target and its current template, i.e. the branches connecting

the two leaves in a coalescent tree. The two haplotypes will be-

come practically independent beyond the recombination break

point.
Conditional on a known local genealogy, the length to the next

recombination break point follows an exponential distribution,

with the rate proportional to twice the TMRCA between the target

and the template. In practice, the genealogy is unknown, and the

length to the next recombination break point is a combination of

the distribution of the conditional length and the time to the

TMRCA (detailed in ‘Methods’). Here we compare this mixture dis-

tribution with the exponential distribution that is typically as-

sumed in current imputation methods (Li and Stephens 2003;

Browning et al. 2018).
Comparing the mixture distribution to an exponential distri-

bution with the same mean shows that with genealogy and popu-

lation history aware modeling, the distribution of length between

switches is very similar for small reference samples (n¼ 500;

Figure 6). For larger reference samples (n¼ 20,000) the mixture

distribution has larger variance, with higher density in both ex-

tremely short and long intervals but lower density for

Table 4 The maximal squared correlation can be achieved

Reference size
(individuals)

DAC in the reference

2 3 4 5 10 20

500 0.822 (0.089) 0.885 (0.067) 0.919 (0.051) 0.940 (0.041) 0.979 (0.017) 0.995 (0.0055)
2000 0.823 (0.089) 0.886 (0.066) 0.920 (0.051) 0.940 (0.040) 0.979 (0.016) 0.994 (0.0054)
5000 0.826 (0.088) 0.887 (0.065) 0.921 (0.050) 0.941 (0.040) 0.979 (0.016) 0.994 (0.0055)
20,000 0.828 (0.087) 0.889 (0.065) 0.922 (0.050) 0.942 (0.040) 0.980 (0.016) 0.994 (0.0053)
50,000 0.831 (0.087) 0.891 (0.065) 0.923 (0.050) 0.943 (0.039) 0.980 (0.016) 0.994 (0.0053)

Numbers in the parentheses are SD summarized over 107 loci, representing the variation among variants in a population sample. Results are from 50 k independent
coalescence simulations.

Figure 5 Imputation accuracy empirically evaluated in MGI using different reference panels. Y-axis is average r2 evaluated at genotyped sites, x-axis is
(A) MAC or (B) MAF in the reference panel, with MAF plotted in log scale. Rarest variants are highlighted in (B) for comparison. Color coding in (A) and
(B) is the same.
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intermediate ones. If the excess of short no-recombination inter-
vals is not well captured due to model misspecification, we ex-
pect to have more suboptimal templates thus higher imputation
error rate. When the reference size increases, switches are less
frequent as it is more likely to find a template sharing a very re-
cent MRCA with the target.

Discussion
The empirical performance of imputation methods has been ex-
tensively studied (Chan et al. 2016; Das et al. 2016; Shi et al. 2018;
Taliun et al. 2021), while the theoretical behavior and limit of the
underlying framework has not been well characterized, especially
for rare variants. We formulate this problem of imputation accu-
racy into a coalescent model, considering imputing the missing
genotypes on one target haplotype by copying from a set of refer-
ence haplotypes that share the MRCA with the target. Our ap-
proach identifies two model misspecifications in modern
imputation algorithms and explores their impact on our ability to
impute rare variants.

First, most imputation algorithms model a single best tem-
plate as the hidden variable to infer. We show that in 1/3 of the
cases, multiple haplotypes are equally good templates for imput-
ing one target in any given reference panel, independent of refer-
ence sample size or population history. The resulting model
misspecification leads to imputation error when genetic variants
are shared by some of the optimal templates but not with the tar-
get. We develop analytical expressions for the imputation error
resulting from this model misspecification as a function of the
DAF and reference size.

For this purpose, we assume that the imputation algorithm
correctly identifies the most closely related haplotypes so that
this model misspecification is the only source of error. In this ide-
alized scenario, we observe that for variants observed five or less
times in the reference panel, > 8% of variants with nonzero dos-
age are noncarriers; up to MAC 10, the mean r2 between the im-
puted dosage and true genotypes < 0.98. Conditional on the DAC,
this effect is broadly independent of reference panel size:

although the probability of falsely imputing carriers of the rare
allele decreases as the reference panel size becomes large, the
number of true carriers also decreases and the proportion of false
carriers over true carriers stays about the same. Including other
sources of error that occur in practice further decreases imputa-
tion accuracy. Thus the expected r2 we present here designate
the upper bound of achievable mean imputation accuracy for
rare variants in current imputation framework.

Such imputation error substantially reduces the power for
detecting novel risk variants in an association study based on im-
puted genotypes. Two scenarios can be considered here: First,
single-marker tests of imputed rare variants can be powerful if
the case-control dataset is much larger than the imputation
panel (Taliun et al. 2021). In this scenario, inaccurately inferred
genotypes at a disease-related locus attenuate the allele fre-
quency difference between cases and controls, and r2 is directly
related to this loss of information that compromises the statisti-
cal power in association tests. Imputation error rate of 2–6% leads
to 10–60%increase in required sample size in a single-marker test
(Huang et al. 2009). As a second scenario, imputed rare variants
can be aggregated into a single-test statistic (Lee et al. 2014). In
this study design, poorly imputed variants will have an attenu-
ated signal, potentially diluting the signal from better imputed
variants. This loss of power can be limited by focusing on im-
puted variants where misspecification will not impede imputa-
tion accuracy, e.g. variants that occur more than five times in the
reference.

We consider a second model misspecification: the use of expo-
nential distributions to model the length of contiguous haplo-
types without template switches. The true distribution of this
length is driven both by the recombination rate and the relation-
ship between the template haplotype and the target haplotype.
For smaller reference such as the 1000 Genomes (Abecasiset al.
2010; 2504 genomes) this model misspecification has a negligible
effect, but for reference samples of the scale of TopMed (Zachary
; 53,831 genomes), gnomAD (Karczewski et al. 2020; 15,708
genomes), or the Haplotye Reference Consortium (McCarthy et al.
2016; 38,821 genomes), the length distribution of shared seg-
ments between the target and a single template has a much
heavier tails than modeled. This misspecification penalizes both
extremely short and extremely long switching intervals, decreas-
ing the probability of finding the optimal templates. This in turn
reduces imputation accuracy, especially for low-frequency var-
iants beyond the effect of the first model misspecification de-
scribed earlier.

The theoretical results we present here are broadly robust to
assumptions about population size history in a range reasonable
for major human populations. We assume that the imputed re-
gion is evolutionary neutral; for loci under selection the impact of
the described model misspecifications would likely depend both
on the selection model and on the population history. Further,
we assume that the reference is from the same homogeneous
population as the target sample. If we instead modeled a diverse
reference sample, results would depend on the frequency distri-
bution of the imputed variant among the reference samples. For
rare alleles, which are typically private to a single population,
only members of that single population among the reference
would affect imputation accuracy. Our results can be extended to
including migration, admixture, or selection, as the mathemati-
cal derivation and simulation scheme in this work are general for
coalescence at a single locus.

In our empirical evaluation of imputation quality using two
commonly used reference panel, the accuracy of rare variants is

Figure 6 Distribution of the distance before the next recombination
event breaking the relation between a pair of haplotypes. The x-axis
shows the length in genetic distance (cM). Solid line is predicted by our
coalescent model, the dashed line is an exponential distribution with the
same mean as we predicted. Colors represent different reference sizes (n)
in the number of individuals. The average lengths with reference being
n¼ 500, 20,000, 50,000 are 0.26, 1.59, and 3.41 cM, respectively.
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well below theoretical upper bound, suggesting that we have not

reached the limit of the Li and Stephen’s framework. Conditional

on MAC, imputation becomes less accurate with increasing refer-

ence size, suggesting that failure to identify the genealogically

best templates is likely the biggest source of error. Identifying

these best templates may not always be possible with available

marker data, whose resolution is limited by the observed poly-

morphic sites and local variation of recombination rate. Other

factors that are likely to reduce imputation accuracy include er-

ror in statistical phasing in the reference or the target haplotypes

and departures from the infinite sites assumption (parallel muta-

tions or back mutations). However, as our model predicts, for all

reference panels, empirical imputation accuracy decreases much

faster for MAC < 10, suggesting that for these low counts the

model misspecification modeled here further reduces the ability

to correctly impute rare variants.
Our results suggest that potential improvement of the imputa-

tion framework may lie in more detailed modeling of the underly-

ing genealogy, especially for extremely rare variants where only a

small subset of the reference contributes information about the

imputed genotype. For example, suppose the ancestral recombi-

nation graph (ARG) including both the target and the reference

haplotypes is constructed, the scenarios resulting in fractional

dosage could be avoided (up to uncertainty in ARG). However,

alleles absent from the reference would still be missed, and there

would be uncertainty when all and only the closest reference

haplotypes carry an allele: we can only probabilistically decide

whether the mutation event or the coalescence event with the

target haplotype happens first.
Overall, we identify that the model misspecifications in impu-

tation algorithms limit our ability for imputing rare variants.

Such inherent errors reduce the power of single-variant tests as

well as aggregation tests in studies that impute genotypes in

large cohorts, especially if they focus on alleles that are observed

only a few times in the reference panel. Beyond improving our

understanding of the performance of imputation algorithms,

these results point to potential new imputation strategies that

help identify new risk variants.

Software availability
Codes used to perform analytical calculation and coalescent sim-

ulation are available from https://github.com/Yichen-Si/

ImputationBound.
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Appendix

Probability distribution of fractional dosages
In the ‘Methods’ section, we derived the probability of having even

the best possible evidence suggesting a wrong allele type. Here

we will generalize it to the cases where the most closely related

templates have different allele types, resulting in a fractional es-

timated dosage (Figure 2D).
Let Pðĝ ¼ j=u; g ¼ 0jj; nÞ be the probability of having u equally

good optimal templates, j of which carrying the mutation, for a

target actually carrying the ancestral allele; conditional on ob-

serving the DAC as j. Let ðk0; d0Þ denote the numbers of ancestral

lines within the size u subtree when the branch carrying the mu-

tation starts and ends; ðk00; d00Þ denote the numbers of lines in the

whole tree at the corresponding time point.
We will outline the calculation of the joint probability (the nu-

merator), while the denominator is the same unfolded frequency

spectrum as before. We proceed by the following steps, each

subsequent probability is conditional on the previous one, in par-
allel with that for the special case in ‘Methods’.

1) The target haplotype does not coalesce in the first ðn� dÞ
events: P0ðnþ 1; dþ 1Þ.

2) A branch of size u arises in the reference at the ðn� kÞth
event, then remains alone till the ðn� dÞth event
to coalesce with that external branch:

Pðu; k; d; nÞP0ðk; dþ 1Þ 1
dþ 1

2

� �.

3) The subtree of size u contains a branch of size j: Pðjju; nÞ ¼P
ðk0 ;d0 Þ Pðj; k0; d0ju; nÞ (this step only concerns the topology

within the subtree).
4) The size-j branch encounters a mutation: Pðm �

1jj; k0; d0;u; k; nÞ ¼
P
ðk00 ;d00 Þ Pðm � 1jk00; d00; nþ 1ÞPðk00; d00jk0; d0;u;

k; nÞ(here, we need to put the subtree back to the whole
size-(n þ 1) tree to get the branch length and introduce
mutation).
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Steps (1) and (2) are similar to the three steps in the previous sec-
tion except for not involving mutation events, we combine them to
Pðext;u; k; d; nÞ: an external branch first coalesces at the ðn� dÞth
event with an internal branch of size u which starts at the ðn� kÞth
event. In step (3), Pðj; k0; d0ju; nÞ is similar to Pðu; k; d; nÞ in step (2), as
Pðj; k0; d0ju; nÞ ¼ Pðj; k0; d0; uÞ: the probability for a branch of size j to
start at the ðu� k0Þth event and end at the ðu� d0Þth event.

Pðĝ ¼ j=u; g ¼ 0; j; nÞ
¼

X
ðk;dÞ

Pðext;u; k; d; nÞPðm � 1; jju; k; d; nÞ

¼
X
ðk;dÞ

Pðext;u; k; d; nÞ

X
ðk0 ;d0 Þ

Pðj; k0; d0ju; k; nÞ
X
ðk00 ;d00 Þ

Pðm � 1jk00; d00; nþ 1ÞPðk00; d00jk0; d0;u; k; nÞ
� 	
 �

ð
P
ðk;dÞ ¼

Xn�uþ1

k¼2

Xk

d¼1

;
X
ðk0 ;d0 Þ

¼
Xu�jþ1

k0¼2

Xk0�1

d0¼1

;
X
ðk00 ;d00 Þ

¼
Xn�uþk0

k00¼k0þ1

Xk00�1

d00¼d0þk�1

:Þ

(16)

The only component left is Pðk00; d00jk0; d0;u; k; nÞ, the link be-
tween the topology within the subtree and the branch lengths,
which is relative to the whole sample and involves the population
size history model. Since coalescent time intervals are measured
for the whole tree, ðk00; d00Þ tells us when the branch of size j starts
and ends, which leads to the probability for a mutation to occur.

We divide the coalescent process among the whole reference from
n lines to k lines into three parts: n! k00 ! d00 ! k. There are ðn�
k00 � 1Þ þ ðk00 � d00 � 1Þ þ ðd00 � k� 1Þ unfixed events (since we are
conditioning on the three time points, ðk0; k00Þ; ðd0; d00Þ and (k)). Within
each part, we consider the number of events that has to happen in-
side the subtree: ðu� k0 � 1Þ; ðk0 � d0 � 1Þ; ðd0 � 1� 1Þ. With the num-
ber of lines fixed, Pðk00; d00jk0; d0; u; k; nÞ is calculated by considering the
possible ways to arrange those events in the three time intervals:

Pðk00; d00jk0; d0; u; k; nÞ ¼

n� k00 � 1
u� k0 � 1

� �
k00 � d00 � 1
k0 � d0 � 1

� �
d00 � k� 1

d0 � 2

� �

n� k� 1
u� 2

� � :

(17)

Figure A1 Effect of population growth model on false discovery rate among noncarriers, from analytical calculation. Given a target haplotype carrying
the ancestral allele, the probability (y-axis, in log scale) of having all the most closely related reference haplotype in the reference panel carrying the
derived allele thus an estimated dosage 1, on the DAF in the reference (x-axis). Each sub-figure represents one reference size (in individual); each color
represents a population growth model. FTE(EXP)_10M_2K: faster-than-exponential (exponential) growth with current day effective population size 10
million, and a bottleneck with effective population size 2 thousands.
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The denominator in Equation (10) comes from removing the
constrains introduced by the mutation event. Conditional on (u,
k), there are in total ðn� k� 1Þ unfixed events in the whole tree,
including ðu� 2Þ in the subtree. Since ðk00; d00Þ defines the coales-
cent time in the whole size-(nþ 1) tree, we can calculate the
length of the branch carrying mutation by Equation (6):
Pðm � 1jk00; d00; nþ 1Þ ¼ l

Pk00þ1

i¼d00þ2
E½Ti; nþ 1�.

Comparison of population growth models
(Figures A1 and A2)
Genotyping and sample quality control
DNA samples from the blood of MGI participants were processed on
one of two production batches of a customized Illumina Infinium
CoreExome-24 bead array. Genotype calls were produced with the
Illumina GenomeStudio 2.0 software operating the Genotyping
Module v2.0.4 and the Gentrain clustering algorithm v3.0. Variant-
and sample-level quality control (QC) is detailed as following.

Bead array probe mapping and genotype calling were performed
according to the Genome Reference Consortium Human Build 37
(GRCh37), 502,255 variants passed variant-level QC. Variants were ex-
cluded if (1) bead array probe sequences did not perfectly and

uniquely map to the reference (BLAT v.351; Kent 2002), (2) variant-
level call-rate was below 99%, (3) variant fail Hardy–Weinberg equilib-
rium exact test with P < 10�6 in unrelated European samples (PLINK
v1.90; Purcell et al. 2007), (4) GenomeStudio GenTrain score < 0.15 or
Cluster Separation score< 0.3, or (5) allele frequency differed between
bead array production batches (P< 10�3), Fisher’s exact test). The ge-
netic ancestry of MGI participants was inferred by projecting MGI
samples onto the space created by the first two principal components
(PCs) of 938 unrelated samples of the Human Genome Diversity
Project (HGDP) reference panel (Li et al. 2008; PLINK). MGI samples
were inferred to belong to a HGDP reference population if they fell
within a circle drawn around that population in a plot of the PCs. We
also lift it over to GRCh38, where 501,607 variants remained.

Only consented individuals were included, and 56,984 samples
passed sample-level QC. Samples were excluded in QC if (1)
genotype-inferred sex is abnormal or did not match the self-
reported gender of the participant or the self-reported gender was
missing, (2) sample shared a kinship coefficient > 0.45 with another
sample with a different identification tag (KING v2.1.3; Manichaikul
et al. 2010), (3) sample-level call-rate was below 99% or any chromo-
some had a call-rate below 1/5 of the average, or (4) estimated con-
tamination level exceeded 2.5% (VICES; Zajac et al. 2019).

Figure A2 Effect of population growth model on imputation accuracy upper bound (r2), from coalescent simulation. Y-axis is the average r2 between
imputed dosages and true genotypes without identification error; error bars represent 1 SD. Each sub-figure represents one reference size (in
individual); each color represents a population growth model. Please provide expansion for FTE in first occurrence if necessary.]FTE(EXP)_10M_2K:
faster-than-exponential (exponential) growth with current day effective population size 10 million, and a bottleneck with effective population size 2
thousands.
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