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Abstract

Background: Centiloid was introduced to harmonise β-Amyloid (Aβ) PET quantification across 

different tracers, scanners and analysis techniques. Unfortunately, Centiloid still suffers from some 

quantification disparities in longitudinal analysis when normalising data from different tracers or 

scanners. In this work, we aim to reduce this variability using a different analysis technique 

applied to the existing calibration data.

Method: All PET images from the Centiloid calibration dataset, along with 3762 PET images 

from the AIBL study were analysed using the recommended SPM pipeline. The PET images were 

SUVR normalised using the whole cerebellum. All SUVR normalised PiB images from the 

calibration dataset were decomposed using non-negative matrix factorisation (NMF). The NMF 

coefficients related to the first component were strongly correlated with global SUVR and were 

subsequently used as a surrogate for Aβ retention. For each tracer of the calibration dataset, the 

components of the NMF were computed in a way such that the coefficients of the first component 

would match those of the corresponding PiB. Given the strong correlations between the SUVR and 

the NMF coefficients on the calibration dataset, all PET images from AIBL were subsequently 

decomposed using the computed NMF, and their coefficients transformed into Centiloids.
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Results: Using the AIBL data, the correlation between the standard Centiloid and the novel 

NMF-based Centiloid was high in each tracer. The NMF-based Centiloids showed a reduction of 

outliers, and improved longitudinal consistency. Furthermore, it removed the effects of switching 

tracers from the longitudinal variance of the Centiloid measure, when assessed using a linear 

mixed effects model.

Conclusion: We here propose a novel image driven method to perform the Centiloid 

quantification. The methods is highly correlated with standard Centiloids while improving the 

longitudinal reliability when switching tracers. Implementation of this method across multiple 

studies may lend to more robust and comparable data for future research.
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Introduction

Recent advances in PET imaging mean that β-Amyloid (Aβ), one of the hallmarks of 

Alzheimer’s disease (AD), can now be imaged in-vivo using a variety of PET tracers. There 

are currently five Aβ PET tracers which are commonly used in research settings or in the 

clinic: 11 C-PiB (PiB), 18F-NAV4694 (NAV), 18 F-Florbetaben (FBB), 18F-Flutemetamol 

(FLT) and 18 F-Florbetapir (FBP). Because of their pharmacokinetics differences, each of 

these tracers have a prescribed acquisition protocol, a recommended reference region to 

generate the Standardised Uptake Value Ratios (SUVR), and therefore a tracer-specific cut-

off value used to establish Aβ positivity. Each research group also tend to use their own 

image processing pipeline for the SUVR normalisation of the images. As a result, these 

differences in pharmacokinetics, reference region, cut-off values and processing pipeline can 

lead to large discrepancies between different studies.

The international Centiloid Project working group (Klunk et al., 2015) was setup to 

harmonise the quantification of Aβ PET images with a standardised processing pipeline, and 

a set of equations used to transform SUVR into Centiloid for each available tracer. The 

Centiloid scale is anchored on a set of young healthy controls whose mean Centiloid value is 

set to 0, and a set of mild AD patients whose mean centiloid value is set to 100. This initial 

calibration was performed on an independent set of 79 subjects and was used to define the 

equation transforming SUVRPiB into CLPiB. Then for each 18F-tracer, pairs of PiB and 18F-

tracer were acquired on a population of young healthy controls (YHC), older healthy 

controls, MCI and AD to cover a wide range of Centiloid values. SUVR18F-tracer were 

transformed into SUVRPiB using linear regression, and the resulting SUVRPiB transformed 

into CL. The combination of both transforms was used to define the equation transforming 

SUVR18F-Tracer into CL18F-Tracer (Rowe et al., 2016, 2017; Navitsky et al., 2016; Battle et 

al., 2018).

While the Centiloid Project provides a good framework to harmonise processing methods 

and quantification, it is hindered by its multi-site design. In order to accelerate the 

standardisation of all tracers, different sites were responsible for the acquisition of the pairs 

of head-to-head PET images. This resulted in a mix of scanners and reconstruction methods 
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being used for each tracer. For instance, 5 different scanners were used for the acquisition of 

the original PiB dataset, 3 for FLT, 3 for FBP, 2 for FBB and only NAV used a single 

scanner, with little to no overlap in the model of scanner used across tracers. While PET 

imaging is quantitative, it suffers from bias when different scanner models and 

reconstruction method/parameters are used (Joshi et al., 2009; Bourgeat et al., 2014; Aide et 

al., 2017). As a result, the fundamental assumption that the PiB scans acquired in each of 

these calibration datasets are comparable and can reliably be transformed into Centiloid may 

not be valid. This was observed in the study by Su et al. (2019), where pairs of PiB/FBP 

were transformed into CL and compared. While they were in good agreement (R 2 = 0.91), 

the slope of the regression indicated that the CL from FBP were 11% higher than those of 

their matching PiB. Similar findings were reported by Cho et al. (2019), where matching 

pairs of FLT/FBB were transformed into CL and compared. There was again a very good 

agreement (R 2 = 0.97), but the slope indicated that the CL from FBB was 21% higher than 

those of their matching FLT. We have also observed such discrepancies in longitudinal 

studies involving multiple tracers (Bourgeat et al., 2019). This is a very important factor in 

international multicentre disease-specific therapeutic trials, where these discrepancies might 

preclude finding significant differences between treatment groups.

In this study, we quantified these discrepancies using the longitudinal data in the Australian 

Imaging, Biomarkers and Lifestyle study (AIBL), and propose a novel calibration method 

using the existing Centiloid calibration data, based on non-negative matrix factorisation.

Methods

Datasets

All the PET and MR images from the Centiloid calibration datasets (Klunk et al., 2015; 

Rowe et al., 2016, 2017; Navitsky et al., 2016; Battle et al., 2018) (289 PiB, 55 NAV, 35 

FBB, 74 FLT, 46 FBP) were downloaded from the GAAIN website (http://www.gaain.org/

centiloid-project). From the AIBL study (Ellis et al., 2009), 3762 PET images from 1543 

subjects having undergone 2 or more PET scans with corresponding MRI were selected. The 

distribution of PET scans included 1503 PiB, 850 NAV, 244 FBB, 535 FLT and 630 FBP. All 

the images were spatially normalised to the SPM template using the prescribed SPM 

pipeline as described in the original Centiloid paper (Klunk et al., 2015), and SUVR 

normalised using the Centiloid Whole Cerebellum mask. Neocortical SUVR was computed 

using the Centiloid neocortical mask and was transformed into Centiloids using the existing 

calibration equations (Rowe et al., 2016 2017; Navitsky et al., 2016; Battle et al., 2018). A 

Centiloid value of 20 was used to separate Aβ negative from Aβ positive subjects (Amadoru 

et al., 2020).

Image decomposition

In this work, we aimed to develop a novel image-based Centiloid quantification method 

based on the image decomposition into a set of components. Given a matrix X composed of 

N vectors, the decomposition seeks to obtain 2 matrices W and H whose product can 

approximate X. We will here refer to H as the set of component images, and W the set of 

weights used to reconstruct X given H. Each image x i can then be approximated as
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xi = ∑
k

wk
i × hk

Where wk is the kth scalar weight, and hk is the kth component image. Image decomposition 

can be seen as a projection of the image in a different space, where the axes are defined by 

H, and the coordinates in that space defined by W. The idea of this research is to find a 

space where the coordinates of each tracer’s projections are comparable.

Decomposition of Aβ images into a set of components was first proposed by Fripp et al. 

(2008) using principal component analysis (PCA). They showed that 2 components were 

enough to represent 80% of the information contained in the population, and that the first 

component closely followed the expected pattern of deposition from histology and was 

strongly correlated with SUVR (R 2 = 0.83). It was later used to build an adaptive atlas for 

PET registration in PiB (Fripp et al., 2008) and FLT (Lilja et al., 2019). More recently, a 

voxel based logistic growth model was used to build a model of Aβ burden and non-specific 

binding in FBP images (Whittington et al., 2018). This model was subsequently shown to 

increase the effect size between clinical groups (Whittington and Gunn, 2019). Tanaka et al. 

(2020) later showed similar results using PCA decomposition, where the first component 

could be used to separate specific Aβ burden from non-specific uptake. This led to an 

improved quantification, with a stronger association with cognitive measures and an 

increased effect size between high and low Aβ.

Non-negative matrix factorisation

In this work, we treated the variability introduced by using different scanners in the 

Centiloid calibration set as an extra nuisance, such as the non-specific binding target targeted 

the work of Tanaka et al. (2020), and use the decomposition to measure the Aβ burden. To 

this end, the model is built using all the PiB images from the calibration dataset, which were 

acquired on 13 different scanners. Since these datasets were built to include the whole range 

of Aβ load, they are ideally suited to build a model of tracer retention. By including different 

scanners in the model, the first component of the model will need to be a common 

denominator to all scanners and is therefore more likely to be robust to the variations 

introduced by these scanner changes. While PCA has the advantage of maximising the 

compression of information, with components being orthogonal and representing the 

maximum variance in X, the decomposition can have negative weights W and components 

H. As a result, some components can be over-expressed, and be compensated by other 

smaller negative components. While this is useful to compress the information, it can be 

detrimental to the interpretability of the model (Tanaka et al., 2020). In this work, we use 

instead the NMF, which has similar use to the PCA, with the extra constraint that all the 

components and their associated coefficients need to be positive (Lee and Seung, 1999). As 

a result, each component can be seen as a separate tissue retention. This property was 

recently exploited for the partitioning of PiB images (Sotiras et al., 2018).

Unlike PCA, NMF is solved as an optimisation problem as no unique solution exists. This 

can be advantageous, as the decomposition can also be computed to find the optimal set of 
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components H given a set of coefficients W. Here, we exploit this property to enforce that 

the coefficients of the first component of PiB match those of their corresponding 18F-tracers. 

In other words, for each calibration set where we have N PiB/18F-tracers pairs, we can 

compute the coefficients w1 of the first component h1 of the PiB NMF decomposition, and 

then compute the NMF decomposition of the matching 18F-tracer images while fixing its 

coefficients w1 so that they match with those computed from PiB. This way, the 

decomposition is computed with an extra constraint that w1 should match across each pair of 

tracers. The workflow used to compute the NMF model for PiB and the 18F-tracers is 

illustrated in Fig. 1. Since w1 of all tracers are intrinsically matched to those of PiB, a single 

transform can be used to convert all the coefficients w1 into Centiloids.

In this work, we used the scipy implementation of NMF. For each tracer, a range of different 

number of components was evaluated. For PiB, a random initialisation was used. For the 

other tracers, the NMF implementation was modified so that we could set and fix the 

coefficients of the first component based on the PiB model when computing the NMF 

decomposition of the 18F-tracers. In practice, this was implemented by randomly initialising 

W and H, setting w1 Tracer to w1 PiB, and then computing the update on all components of W 
and H at each iteration, but applying the update on all but the first component of W. All the 

images were SUVR normalised using the Centiloid Whole Cerebellum mask and skull-

stripped before running the decomposition. The NMF coefficients were finally transformed 

into Centiloids using the anchoring to YHC and AD from the PiB calibration set:

CLNMF = 100 ×
w1

PiB − w1
Y HC − PiB

w1
AD − PiB − w1

Y HC − PiB (1)

Model built using a different dataset

To confirm that the proposed approach is more robust to the changes of scanner in the 

calibration set, a comparable PiB model was built using images from a single scanner from 

AIBL. All the images were SUVR matched to the ones in the calibration set. This model 

was used to compute the coefficients of the PiB images in the calibration set, which were 

then used to compute the decomposition of the 18F-tracers.

Number of components

As the NMF is solved as an optimisation problem, the number of components selected will 

determine the final results. Therefore, the number of components needs to be set apriori. In 

this work, we test a range of components from 2 to 7. The main metric is the correlation 

between the resulting CL of each 18F tracer and that of their matching 11C-PiB, as 

improving the matching between the tracers is the main aim. We also evaluate the 

correlation between the Centiloid derived from the NMF, referred to as CLNMF and that of 

the standard method CLStd.

Validation

While there is no ground truth to validate the new NMF-based Centiloid, a number of 

surrogate measures can be extracted based on the hypothesis that β-Amyloid accumulation is 
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a relatively slow process, and the accumulation curves should be relatively smooth. Using 

consecutive imaging timepoints where there is no change of tracer or scanner, we can 

estimate the normal or expected range of rate of CL accumulation in both negative and 

positive subjects. These rates can be compared to the measured range of rates of 

accumulation on the entire cohort for the different methods.

Longitudinal consistency when switching tracer can also be used as a surrogate metric of 

generalisability of the Centiloid conversion. We here look at the average fitting error of a 

linear model, where we assume that Aβ accumulation is linear over a period < 10 years. The 

effect of the change of scanner/tracer on the slopes is also assessed using a linear mixed 

effects model for both standard and NMF-based Centiloid calculations.

To check the hypothesis that including multiple scanners in the initial PiB model can lessen 

the effect of having multiple scanners in the calibration dataset, a second model was built 

using PiB images from AIBL from a single scanner (Philips Allegro). The 289 PiB images 

from AIBL were SUVR matched to those in the calibration set and used to build the initial 

PiB NMF model. Using this model, the NMF coefficients were then computed on all PiB 

images from the calibration set and used to compute the matching models for each 18F 

tracers.

The NMF models and python code used to build and apply these models are available at 

https://doi.org/10.25919/5f8400a0b6a1e.

Results

Calibration dataset

The NMF decomposition was run on the Calibration dataset using a number of components 

ranging from 2 to 7. For each NMF model, the coefficients of the first component in the 

YHC and mild AD of the PiB dataset were anchored to the Centiloid scale using Eq. (1). 

The correlation between the NMF Centiloid for 11C-PiB and NMF Centiloid of their 

matching 18F tracer was the highest when 6 components were used with an overall R2 of 

0.977, closely followed by 2 components with a R2 of 0.975 (Full results are available in 

Supplementary Table 1). The correlation of the CLNMF with the standard Centiloid was 

however the highest when 2 components were used with an overall R2 of 0.975, followed by 

6 components with a R2 of 0.905 (Supplementary Table 2). While a good correlation 

between each tracer pairs is the most important factor in this work, a good correlation with 

the standard method is also important. Therefore, both sets of results were used for 

subsequent analysis. We will refer to the Centiloid derived from the 2 components NMF 

decomposition as CLNMF2 and the 6 components one as CLNMF6.

Fig. 2 illustrates the 6 components NMF decomposition, by showing the first component for 

each tracer. Since the NMF is driven by PiB, it results in forcing the decomposition of each 

tracer to be similar to that of PiB. This results in the first component of each tracer to mimic 

the appearance of PiB. It is most striking for FBP, which is typically characterised by lower 

specific binding which can be hard to visualise next to the non-specific WM binding, and 

only shows GM retention in the first component, with the non-specific binding being 
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captured by other components of the model (Full model for 2 and 6 components 

decomposition can be seen in Supplementary Figs. 1 and 2). The correlation between the 

PiB CLNMF6 and the corresponding tracer CLNMF6 was comparable across each tracer with 

R2 = 0.99 in NAV, 0.98 in FBB, 0.98 in FLT and 0.97 in FBP, which was higher than the one 

obtained using the standard method with R2 = 0.99 in NAV, 0.95 in FBB, 0.96 in FLT and 

0.89 in FBP. When using 2 components, the correlations were a bit lower with R2 = 0.99 in 

NAV, 0.97 in FBB, 0.98 in FLT and 0.96 in FBP, but still higher than using the Standard 

method.

The correlations with the Standard Centiloid for each tracer and both 2 and 6 components 

NMF are presented in Table 1. For both approaches, the correlation was the lowest for FBP. 

While the slopes of the transforms from CLStd to CLNMF were close to 1 for CLNMF2, they 

tended to be lower than 1 for CLNMF6, resulting in an underestimation of the Standard 

Centiloid.

AIBL dataset

In AIBL, the correlation between the standard Centiloid CLStd and the novel CLNMF was 

high in each tracer, being the highest in NAV, and the lowest in FBP regardless of the 

number of components being used as shown in Table 2. Similarly to the results from the 

calibration dataset, there was no noticeable bias between CLStd and CLNMF2 with all the 

slopes being close to 1. With CLNMF6, there was however a difference in scale, with CLNMF 

being scaled down for each tracer compared to CLStd. This scaling, however, did not change 

the typical cut-off value, with 20 CLStd = 20.2 CLNMF6 using the overall equation in Table 2.

Longitudinal consistency

Fig. 3 illustrates the longitudinal consistency of both techniques. Since a change in scanner 

or a change in tracer could potentially introduce discontinuities in the longitudinal Centilloid 

measures for a given subject, the plots are centred on the first timepoint showing a change in 

scanner or tracer. Furthermore, each segment is colour-coded based on its slope to further 

highlight large positive changes in blue, and large negative in red. This visually emphasises 

these discontinuities, and better illustrates how the NMF-based Centiloid appears to be less 

susceptible to such changes. A qualitative observation of the graphs indicates that there are 

larger “jumps” using the Standard centiloids which appear to be reduced when using NMF.

To quantitatively estimate the expected normal range of changes per year, the rate of CLStd 

change per year was computed between consecutive timepoints when there was no change in 

both scanner and tracer. Using the 95th percentile, we found that in subjects that were 

negative at baseline, 95% of changes were less than 6.56 CLStd/year and in the positive, it 

was less than 17.06 CLStd/year. Table 3 shows the percentage of changes that were above 

these thresholds for all methods when all timepoints were used.

In both negative and positive subjects, the percentage of “abnormal” changes using CLStd 

was almost double of what it was when there was no change of scanner or tracer. In contrast, 

there were much fewer “abnormal” changes when using either CLNMF2 or CLNMF6, with 

both of them being within 2% of the expected 5% proportion. It should however be noted 

that since CLNMF6 has a lower range than CLStd, it should be rescaled to the same scale as 
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CLStd using the equation defined in Table 2 so that their results are comparable. Using this 

rescaled version (referred to as CLNMF6_Sc), the proportions of “abnormal” changes are 

comparable in negative subjects and only lower in positive subjects.

The fitting error was computed based on the hypothesis that Aβ accumulation is linear for 

each subject over the time-course of the study. The mean absolute difference between the 

actual and predicted Centiloid value when fitting a linear regression line to each subject’s 

Centiloid values against time, is used as a surrogate measure of longitudinal discrepancies. 

The mean absolute difference was 2.62CL with CLStd, and 2.23CL with CLNMF2 and 

2.34CL with CLNMF6. If we use the rescaled version of CLNMF6, then the error increases to 

2.63CL, a level comparable to that of the standard method.

Since the apparent difference in scale between CLStd and CLNMF6 can confound some of the 

error metric, we also used a linear mixed effect (LME) model to check the tracer and scanner 

interaction on the Centiloid variance over time in both methods. The LME model included a 

random slope and intercept for each subject, and the interaction between Scanner, Tracer, 

and number of days since baseline, as follows:

Centiloid ∼ Days ∗ Scanner ∗ Tracer + (1 + Days ∣ ID)

The step method from the lmertest R package was used to remove parameters that do not 

contribute to the outcome. Using this approach on the CLStd, all the parameters were found 

to contribute to the outcome, meaning that both Tracer and Scanner significantly contribute 

towards the variance seen in the longitudinal measures of Centiloid. Similar results were 

found when using CLNMF2. However, applying the same model on the CLNMF6 data, the 

Days*Scanner*Tracer interaction and Days*Tracer interactions did not significantly 

contribute to the model, meaning that the NMF method successfully removed the effects of 

using different Tracers in the longitudinal variance of the Centiloid measure. The 

Days*Scanner interaction, however, remained significant, meaning that it did not remove the 

effects of using different Scanners, which was still a significant contributor of the Centiloid 

variance over time.

Rate of change

Lastly, we explored the relationship between the baseline Centiloid load and the rate of 

Centiloid change, assessed using robust linear regression on each subject with 3 or more 

timepoints. A third order non-linear regression was run on the rate of CL change against CL 

at baseline (Fig. 4). Spearman ρ was used to assess the correlation between the baseline 

Centiloid and the rate of change. There appear to be a stronger association using the NMF 

Centiloid, compared to the standard Centiloid, with ρ = 0.39 using CLNMF2 and ρ = 0.35 

using CLNMF6, compared to ρ = 0.21 using CLStd. The mean rate of change in the subjects 

negative at baseline (defined as CLStd < 20) was smaller using NMF with 0.73 CLNMF2/y 

and 0.51 CLNMF6/y compared to the standard method where it was 0.90 CLStd/y. In the 

positive subjects (CLStd ≥ 20), it was higher using NMF with 4.82 CLNMF/y and 4.42 

CLNMF6/y, compared to 3.94 CLStd/y.
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Model built using single scanner PiB data

Using 289 PiB images from AIBL acquired on a single scanner, two NMF PiB models were 

built using 2 and 6 components respectively. Using these models, the PiB images from the 

Calibration set were decomposed and converted into Centiloids. The resulting coefficients 

from the PiB images were then used to build the corresponding NMF models using their 

matching 18 F images. These NMF models were then applied to the entire AIBL dataset. 

Using the 2 components model, there was a small increase in the number of jumps in the 

negative to 7.03% (compared to 6.36%), and in the positive to 6.93% (from 6.53%). The 

average fitting error also had a small increase to 2.32CL (compared to 2.23CL). Using the 6 

components model, there was a very large increase in the number of jumps in the negative to 

23.9% (compared to 6.43%), as well as in the positive with 10.80% (from 5.33%), and the 

average fitting error also had a large increase to 4.10CL (from 2.34CL). Visually, the 

longitudinal consistency was much worse using this single scanner model (results not 

shown). The step function applied to the matching LME failed to identify any term that did 

not contribute to either models, meaning that these models were not only more noisy, but 

also failed to remove the effect of using different tracers on the variance of the CL measures 

over time.

Discussion

We have developed a novel method to compute Centiloid values using the Non-negative 

Matrix Factorisation. We’ve shown that the NMF model was able to improve the correlation 

between the 11C-PiB and their matching 18F-tracers in the calibration dataset. Using a 6 

components NMF showed the highest correlation between tracers, while using a 2 

components NMF showed the highest correlation with the standard Centiloid values. The 2 

component NMF also showed the lowest fitting error in longitudinal linear regression, and 

smallest proportion of “jumps” when applied to the AIBL dataset. This model also showed 

the strongest association between the baseline CL value and the rate of CL accumulation. 

The 6 components NMF model was also superior to the standard CL in terms of longitudinal 

consistency, and was the only model to remove the effect of using different tracers in a 

LME. However, this model suffers from a bias, with an approximately 17% under-

quantification of the CLStd which made comparison more difficult.

It should be noted that this under-estimation of the CLStd was only observed when using the 

6 components model, and was not present when using the 2 components model. The main 

difference between the 2 models is that the 6 components model has more degrees of 

freedom, and is able to better identify different patterns of Aβ retention. As illustrated in 

Fig. 1, we can see that not all cortical retention is captured by the first component, with 

some cortical retention visible in the 4th and the 5th components. A similar finding was 

observed in the work of Sotiras et al. (2018) where they identified different depositions 

profiles corresponding to different stages of Aβ deposition. For instance, they also identified 

the occipital cortices retention (which is visible in the 5th component of our PiB NMF6 

model) as a late stage deposition. This could explain why the under-estimation of the CL 

values mostly happened in the high Centiloid values, as these are more likely to exhibit late 

stage patterns of accumulation. In contrast, the effect in the low CL values was not as strong, 
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as illustrated by the rescaling of the 20CL cut-off which was barely changed. The Standard 

Centiloid mask does not attempt to separate different patterns of retention, but instead 

measures the global cortical retention. In that sense, it is more similar to the 2 component 

NMF model where all the cortical retention is captured by the first component. This also 

explains why CLNMF2 had a much stronger correlation with CLStd and no bias. In contrast, 

the 6 components NMF model only samples a subset of the cortical retention, which would 

underestimate the global cortical retention. It could be argued that the calibration performed 

using Eq. (1) should alleviate these differences, as it is meant to anchor all methods to the 

same scale. However, the dataset used to perform this calibration is composed of mild AD 

subjects, and these subjects do not give a good representation of the deposition patterns of 

Aβ seen in later stages of the disease. To alleviate these differences in the validation 

experiments, we had to apply a post-hoc rescaling. This greatly increased all the error 

metrics and made this approach less competitive. A larger set of calibration data, including 

subjects with high β-Amyloid load would likely benefit the 6 components NMF model and 

improve its performances. As it stands, however, this bias is likely to limit its usefulness as a 

replacement for the Standard method.

We also showed that including different scanners in the model helps to treat these as an 

additional nuisance term that is accounted for when building the model, especially with the 6 

components model. This leads to a better calibration of the different tracers from the 

Calibration set, and in turns leads to more accurate longitudinal measures. When building a 

model with a single scanner, such results could not be achieved.

While the 2 components NMF failed to remove the effect of using different scanners or 

tracers in the LME experiment and did not give the best correlation between the different 

tracers in the calibration dataset, it provides the best compromise in terms of correlation with 

CLStd and improved longitudinal consistency and should therefore be the preferred 

quantification method.

Limitations

It should be noted that while the decomposition is by design driven by PiB, it means that the 

NMF components are only mathematically optimal for PiB, and a sub-optimal 

decomposition is built for each of the other 18F tracers. This can be beneficial in the case of 

tracers such as FBP or FLT which have a lot of non-specific binding, as the effect of this 

approach means that this binding is excluded from the fitting of the first component. 

However, if a tracer has specific binding affinity that does not correlate with the binding 

observed in PiB, it will not contribute to the computed Centiloid. Conversely, if the PiB 

model captures any non-specific binding, this will translate into a similar non-specific 

binding to be captured by the model built on the matching 18F tracers. Potentially, a single 

consensus NMF decomposition could be built using all the tracers together. The 

implementation of such decomposition is however non-trivial, due to each tracer being 

acquired on separate, non-overlapping, populations. The current implementation of the NMF 

decomposition is also non-optimal, as an ad-hoc approach is used to fix w1 during the 

optimisation. Such constraint could be directly added inside the cost function. While this 

would make the optimisation of the model more elegant, it may affect its convergence.
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The improvements we have found were only demonstrated using the AIBL dataset. While 

the proposed NMF approach improves the robustness to scanner change in the calibration 

set, it does little to improve the robustness of scanner change in the test dataset. It is also 

possible that some of the improvement observed in AIBL are due to two of the scanners 

used in AIBL being also used in the calibration set of NAV and FBB. Future work validating 

this approach on external datasets is warranted to ensure the robustness of the method. Such 

validation is also warranted to check the longitudinal behaviours of Centiloid measures 

using FBP. It has been previously shown that FBP has poor longitudinal stability when the 

whole cerebellum is used as the reference region and that reference regions containing sub-

cortical WM can help reduce the longitudinal variability (Landau et al., 2015; Chen et al., 

2015). Using such region for the SUVR normalisation of FBP scans before the NMF 

decomposition might also help to improve the longitudinal Centiloid measures. However, 

since AIBL has only limited number of repeat FBP scans, we were not able to validate this 

approach which will be explored in future work using ADNI.

Another weakness of this method is that it does not explicitly model the differences in 

resolution, scatter correction or reconstruction method between the different scanners, which 

could also explain why the scanner effect remained in the AIBL dataset. Recent work on 

group NMF (Lee and Choi, 2009) integrate the group information when computing the NMF 

decomposition to extract features that are discriminant between different groups, while 

extracting features that capture the variability inside each group. Future work will focus on 

extending such method to extract components that are distinctive between different scanners.

Our validation framework relies on the assumption that Aβ accumulation is linear over a 

period < 10 years, when the accumulation is believed to follow trajectory close to a sigmoid 

(Villemagne et al., 2013). While we could have used a non-linear model to better account for 

this trajectory, it should be noted that half of the subjects had their last imaging session less 

than 3.2 years before their baseline, a timeframe where changes are expected to be linear. 

For those with longer imaging time-frame, more than half had their CL remain below 10, 

and had therefore very little changes over time.

Conclusions

Non-negative matrix factorisation can be used to compute Centiloid values on all Aβ tracers. 

By building a model on all the images from the calibration set, it can reduce the bias 

introduced by using different scanners. Such model can improve longitudinal consistency 

when multiple tracers are used such as in international multicentre disease-specific 

therapeutic trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Steps involved to construct the PiB NMF model, and subsequent 18F models. We only show 

the construction of the FBP model using 6 components for simplicity, but the same steps are 

used for the other 18F tracers.
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Fig. 2. 
First component of the 6 components NMF decomposition for each tracer in the calibration 

set.
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Fig. 3. 
Longitudinal plot of Centiloid value changes over time of all subjects in AIBL with 

longitudinal scans. Each line connects CL values from unique subjects. The plot is centred 

on the first change of scanner or tracer, to emphasise potential discontinuities. This is 

achieved by assigning year zero, for each subject, to their last imaging timepoint before a 

change of tracer of scanner occurred. Left plot shows CL values measured using the standard 

method, while the ones in the middle and on the right shows the CL values measured using 

the NMF2 and NMF6 method, respectively.
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Fig. 4. 
Rate of change in CL/year against baseline CL value for CL measured using the standard 

method (left) and the NMF method using 2 components (middle) and 6 components (right).
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Table 3

Percentage of changes above the expected 95th percentile thresholds for each method.

95th percentile absolute change CLStd CLNMF2 CLNMF6 CLNMF6_Sc

Negative 6.56 CLStd/year 8.90% 6.36% 6.43% 9.24%

Positive 17.06 CLStd/year 9.73% 6.53% 5.33% 7.60%
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