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Abstract

We study quantum information scrambling in spin models with both long-range all-to-all and 

short-range interactions. We argue that a simple global, spatially homogeneous interaction together 

with local chaotic dynamics is sufficient to give rise to fast scrambling, which describes the spread 

of quantum information over the entire system in a time that is logarithmic in the system size. This 

is illustrated in two tractable models: (1) a random circuit with Haar random local unitaries and a 

global interaction and (2) a classical model of globally coupled nonlinear oscillators. We use exact 

numerics to provide further evidence by studying the time evolution of an out-of-time-order 

correlator and entanglement entropy in spin chains of intermediate sizes. Our results pave the way 

towards experimental investigations of fast scrambling and aspects of quantum gravity with 

quantum simulators.

Introduction.—

The study of quantum information scrambling has recently attracted significant attention due 

to its relation to quantum chaos and thermalization of isolated many-body systems [1–3] as 

well as the dynamics of black holes [4–7]. Scrambling refers to the spread of initially local 

quantum information over the many-body degrees of freedom of the entire system, rendering 

it inaccessible to local measurements. Scrambling is also related to the Heisenberg dynamics 

of local operators, and can be probed via the squared commutator of two local and 

Hermitian operators W1, Vr, at positions 1 and r, respectively,

C(r, t) = − 1
2 W 1(t), V r

2 , (1)

where W1(t) is the Heisenberg evolved operator. The growth of the squared commutator 

corresponds to W1(t) increasing in size and complexity, leading it to fail to commute with 

Vr. In a local quantum chaotic system, C(r, t) typically spreads ballistically, exhibiting rapid 

growth ahead of the wavefront and saturation behind, at late times [8–10].

Of particular interest are the so-called fast scramblers, systems where C(r, t) reaches O(1) for 

all r in a time ts ∝ log(N), with N being the number of degrees of freedom. Among the best 
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known examples are black holes, which are conjectured to be the fastest scramblers in nature 

[5–7,11], as well as the Sachdev-Ye-Kitaev (SYK) [12,13] model and other related 

holographic models [14–17].

Recent advances in the development of coherent quantum simulators have enabled the study 

of out-of-equilibrium dynamics of spin models with controllable interactions [18], making 

them ideal platforms to experimentally study information scrambling. Several experiments 

have already been performed [19–24], probing scrambling in either local or nonchaotic 

systems. The experimental observation of fast scrambling remains challenging however, 

particularly because few systems are known to be fast scramblers, and those that are, like the 

SYK model, are highly nontrivial, involving random couplings and many-body interactions. 

Some recent proposals suggested that spin models with nonlocal interactions can exhibit fast 

scrambling [25–27], albeit with complicated and inhomogeneous interactions.

In this Letter, we argue that the simplest possible global interaction, together with chaotic 

dynamics, are sufficient to make a spin model fast scrambling. We consider spin-1/2 chains 

with Hamiltonians of the form

ℋ = ℋlocal  − g
N ∑

i < j
ZiZj, (2)

where Zi is the Pauli z operator acting on site i and ℋlocal  is a Hamiltonian with only local 

interactions that ensures that the full ℋ is chaotic. We note that such global interactions are 

ubiquitous in ultracold atoms in optical cavities [28–32], and also in ion traps [33–36].

We first show that this effect is generic, by studying two models, a random quantum circuit 

and a classical model, both designed to mimic the universal dynamics of Eq. (2). We then 

provide numerical evidence for fast scrambling for a particular time-independent quantum 

Hamiltonian. Finally, we discuss possible experimental realizations.

Random circuit model.—

As a proof of principle, we consider a system of N spin-1/2 sites, with dynamics generated 

by a random quantum circuit (see Fig. 1) inspired by the Hamiltonian in (Eq. 2). While less 

physical than the Hamiltonian model, it has the advantage of being exactly solvable while 

providing intuition about generic many-body chaotic systems with similar features.

The time-evolution operator is U(t) = (UIIUI)t where a single-time-step update consists of 

the two layers

UI = ∏
i = 1

N
UH, i, UII = e−i g

2 N ∑i < jZiZj, (3)

where each UH,i is an independent Haar-random single-site unitary. The two layers in Eq. (3) 

are motivated by the two terms in Eq. (2), with the Haar-random unitaries replacing ℋlocal .
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We are interested in the operator growth of an initially simple operator O. At any point in 

time, the Heisenberg operator O(t) = U†(t)OU(t) can be decomposed as O(t) = ∑SaS(t)S, 

where S is a string composed of the Pauli matrices and the identity, forming a basis for 

SU(2N). As in random brickwork models [37,38] and random Brownian models [9], the 

Haar-averaged probabilities aS
2 (t) , encoding the time evolution of O(t), themselves obey a 

linear equation

aS
2 (t + 1) = ∑

S′
W S, S′ aS′

2 (t) . (4)

Here, W S, S′ is a 4N × 4N stochastic matrix describing a fictitious Markov process [39,40]. 

The average probabilities aS
2 (t)  fully determine the growth of the average of C(t) in Eq. (1) 

[see Supplemental Material (SM) [41] ]. Because of the Haar unitaries and the simple 

uniform interaction in Eq. (3), W S, S′ is highly degenerate and only depends on the total 

weights of the strings S, S′, counting the number of nonidentity operators, i.e., 

w(S) = ∑i 1 − δSi, 1 , and on the number of sites where both S and S′ are nonidentity, i.e., 

v S, S′ = ∑i 1 − δSi, 1 1 − δS′, 1 , and is given by (see SM for derivation [41]) [43]

W w, w′, v = 1
3

w + w′ ∑
k = 0

v v
k ∑

l = 0

k k
l

× cos2 2l − k
N g

N − k − w + w′ − 2v
sin2 2l − k

N g
w + w′ − 2v

.
(5)

If we further assume that O starts out as a single site operator on site 1, then throughout the 

evolution, aS
2 (t)  only depend on the total operator weight w, and the weight on site 1, 

which we denote by w1 ∈ {0, 1}. We thus introduce the operator weight probability ht at 

time t,

ℎt w, w1 = aS
2 (t) 3w N − 1

w − w1
, (6)

which gives the probability of O(t) having total weight w and weight w1 on site 1.

The time evolution of ht(w, w1) is given by the master equation

ℎt + 1 w, w1 = ∑
w1′ = 0, 1

∑
w′ = w1′

N − 1 + w1′
ℛ w, w1, w′, w1′ ℎt w′, w1′ , (7)

where the 2N × 2N matrix ℛ is
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ℛ w, w1, w′, w1′ = 3w ∑
m = 0

min w − w1, w′ − w1′ w′ − w1′
m

×
N − 1 − w′ + w1′

w − w1 − m
W w, w′, m + w1w1′ .

(8)

The transition matrix ℛ, scaling only linearly with N, allows us to efficiently simulate the 

dynamics for large system sizes (see Fig. 2).

To proceed analytically, we Taylor expand Eq. (5) to leading order in g, which gives rise to a 

closed master equation for the total operator weight probability ht(w) ≡ ht(w, 0) ) + ht(w, 1),

ℎt + 1(w) − ℎt(w)
g2 = 2w

9N (1 − 3N + 2w)ℎt(w) + 2w(w + 1)
9N ℎt(w + 1)

+ N − w + 1
3N 2(w − 1)ℎt(w − 1),

(9)

which is similar to random Brownian models [9,44] and shows that, at O(g2), w can change 

by at most ±1 in a single step. Assuming that h(w, t) varies slowly with respect to g2t and w, 

we can approximate the above equation by a Fokker-Planck equation (rescaling time τ = g2t)

∂τℎ(w, τ) = − ∂w D1(w)ℎ(w, τ) + ∂w
2 D2(w)ℎ(w, τ) , (10)

where the drift and diffusion coefficients are [dropping higher order terms O(1/N, w/N)]

D1(w) = 2
3 w − 4w2

3N , D2(w) = w
3 − 2w2

9N . (11)

This equation describes the rapid growth of an initially localized distribution, followed by a 

broadening and finally saturation (see Fig. 2 and SM [41] for more details). At early time, 

the 2
3w term in the drift coefficient dominates, giving rise to exponential growth of the mean 

operator weight w(t) e2g2t/3, which agrees with full numerical solution of the master 

equation, as can be seen in Fig. 2. The mean weight is related to the infinite-temperature 

squared-commutator in (Eq. 1) (averaged over different circuits) via C(t) = 4
3 w(t) /N [41]. 

Since 〈w(t)〉 grows exponentially with time, 〈w(t)〉 reaches O(N) and C(t)  reaches O(1) 

when t = (3/2g2) log(N), thus establishing that this model is fast scrambling. Note that the 

1/ N normalization in (Eqs. 2) and (3) is crucial. Had we chosen instead 1/N(g g/ N), 
the Lyapunov exponent would have been 2g2/3N and the scrambling time would have been t 
~ N log(N).

Classical model.—

Let us now consider a different setting that also allows us to probe the basic timescales 

involved, and shows that randomness is not required. A convenient tractable choice is a 

classical model consisting of globally coupled nonlinear oscillators. Note that the analogs of 
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out-of-time-order correlators (OTOCs) have been studied in a variety of classical models 

[26,45–49] and have been shown to capture the scrambling dynamics of quantum models 

like the SYK model [50–52].

Consider a 2N-dimensional phase space with coordinates qr (positions) and pr (momenta) for 

r = 1, …, N with canonical structure specified by the Poisson brackets {qr, ps}PB = δrs. The 

Hamiltonian is ℋc = K + V 2 + V 4 where

K = ∑
r = 1

N pr2

2 , V 4 = Ω3
2

4 ∑
r = 1

N
qr4, (12)

V 2 = Ω1
2

2 ∑
r = 1

N − 1
qr + 1 − qr

2 + Ω2
2

2 N ∑
r = 1

N
qr

2
. (13)

The timescales for the growth of perturbations under ℋc dynamics may be understood in 

two stages. First, K + V2 can be solved exactly; this combination of terms provides the 

nonlocality. The remaining V4 term renders the dynamics chaotic, provided Ω3 is large 

enough. The dynamics of K + V2 causes a localized perturbation to spread to every oscillator 

with nonlocal amplitude 1/N in a time of order 1/N1/4Ω2. Then conventional local chaos can 

amplify this 1/N-sized perturbation to order-one size in a time of order λ−1 ln N, where λ is 

some typical Lyapunov exponent.

At the quadratic level, the uniform mode, Q = (1/N) ∑r qr, is decoupled from the remaining 

modes of the chain. Hence, the propagation of any perturbation is a superposition of the 

motion due to the local Ω1 terms and the special dynamics of the uniform mode. Since the 

local terms cannot induce nonlocal perturbations, we may focus on the dynamics of the 

uniform mode. The uniform mode’s equation of motion is d2Q/dt2 = − NΩ2
2Q with 

solution

Q(t) = Q(0)cos N
1
4Ω2t +

dQ
dt (0)

N
1
4Ω2

sin N
1
4Ω2t . (14)

A localized perturbation on site 1 with zero initial time derivative can be written as 

δ q (0) = ϵ e1 − u0 + u0 , where u0 = [1, …, 1]T /N represents the uniform mode, 

e1 = [1, 0, …, 0]T , and e1 − u0 is orthogonal to the uniform mode. The orthogonal mode 

evolves in a local fashion, hence δ q (t) = ϵ  local piece +u0cos N
1
4Ω2t . For oscillators far 

from the initial local perturbation, the dynamics is given by

δqr ≫ 1(t) = ϵ
N cos N

1
4Ω2t − 1 . (15)
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Thus, after a time π/N
1
4Ω2, any localized perturbation has spread to distant sites with 

amplitude ϵ/N.

The inclusion of V4 renders the equations of motion nonlinear and the system chaotic in at 

least part of the phase space. We leave a detailed study of the classical chaotic dynamics of 

this model to the future, but as can be seen in Fig. 3, a numerical solution of the equations of 

motion displays sensitivity to initial conditions.

The precise protocol is as follows. We compare the dynamics of two configurations, q (1)

and q (2)
, averaged over many initial conditions. The initial condition of configuration one 

has each oscillator start at rest from a random amplitude drawn uniformly and independently 

from [−1, 1]. Configuration two is identical to configuration one except that 

q1
(2)(0) = q1

(1)(0) + ϵ for ϵ = 10−5. Both configurations are evolved in time and the difference 

Δqr(t) = qr(2)(t) − qr(1)(t)  is computed and averaged over 4000 different initial conditions. 

Figure 3 shows this average of Δqr for N = 20 with Ω1 = 1, Ω2 = 1, and Ω3 = 2. Because the 

system can generate an ϵ/N-sized perturbation on all sites in a short time, the subsequent 

uniform exponential growth implies that any local perturbation will become order one on all 

sites after a time ~λ−1 log(N/ϵ).

The above analysis corresponds to the classical limit of coupled quantum oscillators where 

some effective dimensionless Planck’s constant vanishes, ℏeff 0. In the opposite limit of 

large N at fixed ℏeff , the dynamics of quantum OTOCs can be obtained from the 

corresponding classical Lyapunov growth up to a timescale of order log 1/ℏeff ≪ logN. At 

later times, one needs to consider fully quantum local dynamics. If one imagines breaking 

the system up into local clusters and if each cluster can be viewed as a quantum chaotic 

system with random-matrix-like energy levels, a dynamical system not unlike the random 

circuit model above is obtained.

Chaos and level statistics.—

Having established fast scrambling in both the random circuit and the classical model, we 

now return to the quantum spin model of Eq. (2). We first examine whether such a model is 

chaotic, which is a necessary condition for it being fast scrambling. For the local 

Hamiltonian part, we consider the mixed-field Ising chain

ℋlocal  = − J∑
i

ZiZi + 1 − ℎx∑
i

Xi − ℎz∑
i

Zi . (16)

A standard approach to identify a transition from integrability to quantum chaos is based on 

a comparison of energy-level-spacing statistics with Poisson and Wigner-Dyson 

distributions. Another convenient metric is the average ratio of consecutive level spacings 

[53] 〈r〉, where r = min (rn, 1/rn), rn = δn/δn−1, δn = En − En−1, and En are the eigenvalues 

ordered such that En ≥ En−1.
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As was already suggested in Ref. [54] for a similar model, we find that the longitudinal field 

is unnecessary, and the full system can have Wigner-Dyson statistics even for hz = 0, in 

which case ℋlocal  is integrable. The resulting Hamiltonian reads

ℋ = − J∑
i

ZiZi + 1 − ℎx∑
i

Xi − g
N ∑

i < j
ZiZj . (17)

The average adjacent-level-spacing ratio changes from 〈r〉Pois ≈ 0.38 for Poisson level 

statistics to 〈r〉GOE ≈ 0.53 for Wigner-Dyson level statistics in the Gaussian orthogonal 

ensemble (GOE) [53]. In the vicinity of g → 0, 〈r〉 (see Fig. 4) shows proximity to Poisson 

statistics, while, for |g| ≳ 0.25, the level statistics agree with those of the GOE.

Out-of-time-order correlator and entanglement growth.—

We now study the dynamics of an OTOC and entanglement entropy in the spin chain. We 

consider the following OTOC:

F (r, t) = ℜ Z1(t)ZrZ1(t)Zr , (18)

which is related to Eq. (1) by C(r, t) = 1 − F (r, t). The expectation value is evaluated in a 

Haar-random pure state, which approximates the infinite-temperature OTOC, but enables us 

to reach larger system sizes [55].

In Fig. 5(a), we show the OTOC for an open chain of N = 20 spins for both the local model, 

governed by ℋlocal  only, and the nonlocal model in (Eq. 17), which includes the global 

interaction. In the local case, the OTOC spreads ballistically, forming a linear light cone. In 

contrast, in the nonlocal case, the spreading is superballistic and F(r ≫ 1, t) is approximately 

independent of r, as expected for a fast scrambler. As we discussed in the context of the 

classical model, a necessary condition for fast scrambling is that, before the onset of 

exponential growth, the decay of correlations with N should be at most algebraic (C ∝ N−α) 

and not exponential. In Fig. 5(b), we verify that this is the case for the nonlocal model, 

showing that C ∝ N−1 between the two ends of the chain after a fixed time.

Figure 5(c) shows the half-cut entanglement entropy following a quench starting from the +y
state for both models. For the local model, the entanglement grows linearly in time before 

saturating, whereas the nonlocal model shows a significant speed up. Moreover, in the 

nonlocal model, the growth rate clearly increases with the system size, further supporting 

our claim.

Experimental realization.—

The Hamiltonian in Eq. (17), and many variations of it, can be experimentally realized in a 

variety of platforms. A natural realization is with Rydberg dressing of neutral atoms [56–

59]. The spin can be encoded in two ground states with one of them dressed to two Rydberg 

states such that one of the Rydberg states leads to all-to-all interactions and the second to 

nearest-neighbor interactions. Other similar spin models can be realized with cavity-QED 
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setups, using photon-mediated all-to-all interactions [28,31,60,61] of the XX or XXZ-

Heisenberg form [25,27] together with nearest-neighbor interactions achieved by Rydberg 

dressing one of the grounds states [62,63]. Other possibilities include a chain of coupled 

superconducting qubits, with all-to-all flip-flop interactions mediated via a common bus 

[64–66] or trapped ions [33–36,67].

Conclusion and outlook.—

In this Letter, we argued that a single global interaction together with local chaotic dynamics 

is sufficient to give rise to fast scrambling. While fast scrambling is intrinsically difficult to 

study numerically, our numerical evidence, together with the semiclassical analysis and the 

exactly solvable random circuit, provide a compelling argument in favor of our claim. Our 

models do not require disordered or inhomogeneous couplings and are within reach of 

current state-of-the-art quantum simulators. Thus, an experimental implementation of the 

spin model could test our claims on much larger system sizes, something that may very well 

be impossible to do on a classical computer. This can pave the way towards experimental 

investigations of aspects of quantum gravity.

Future theoretical work may include a more systematic analysis of the N dependence of 

various timescales, e.g., for entanglement growth, and of the behavior of the OTOC at low 

temperatures. It is also interesting to investigate whether similar conclusions can be reached 

without perfectly uniform global interactions, for example with power-law decaying 

interactions.
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Note added.—

We would like to draw the reader’s attention to two related parallel works which appeared 

recently: by Li, Choudhury, and Liu [68], on fast scrambling with similar spin models; and 

by Yin and Lucas [69], on lower bounds of the scrambling time in similar spin models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Diagram of the random circuit. As given in Eq. (3), each blue square is an independent Haar-

random unitary UH,i acting on site i, and the green rectangle is the global interaction UII.
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FIG. 2. 
Normalized mean operator weight 〈w(t)〉/N = (1/N) ∑w wht(w) as a function of time for 

different g and N = 100, computed using Eq. (7). For small enough g, all the curves collapse 

to a single curve as a function of g2t, as implied by Eq. (10). The inset shows the initial 

exponential increase of 〈w(t)〉 for different system sizes N and g = 0.1.
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FIG. 3. 
log10 Δqr(t) for N = 20, ϵ = 10−5, Ω1 = Ω2 = 1, and Ω3 = 2. The labeled black lines are 

contours of constant log10 Δq. Early time ballistic growth is visible in the upper left corner 

while at later times the system exhibits spatially uniform exponential growth in time.
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FIG. 4. 
Average adjacent-level-spacing ratio 〈r〉 for the model in Eq. (17) with J = 1. Data 

corresponds to a system of N = 15 spins with periodic boundary conditions for fixed 

momentum and Z-reflection symmetry blocks of the Hamiltonian.
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FIG. 5. 
(a) Time evolution of the OTOC for the (left) local and (right) nonlocal models. (b) 1 − F(N, 

t) after a fixed evolution time for the nonlocal model (for different system sizes N), showing 

a linear dependence on 1/N. The orange line is a linear fit. (c) Half-cut entanglement-entropy 

growth starting from the +y state for local (dashed lines) and nonlocal (solid lines) models. 

The color indicates the system size, starting from N = 10 (light green) until N = 22 (dark 

blue). For all plots, J = 1, hx = 1.05, and hz = 0.5, g = 0 (hz = 0, g = −1) for the local 

(nonlocal) models.
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