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Abstract

Alzheimer’s disease (AD) is a major public health crisis due to devastating cognitive symptoms, a 

lack of curative treatments, and increasing prevalence. Most cases are sporadic (>95% of cases) 

after the age of 65 years, implicating an important role of environmental factors in disease 

pathogenesis. Environmental neurotoxicants have been implicated in neurodegenerative disorders 

including Parkinson’s Disease and AD. Animal models of AD and in vitro studies have shed light 

on potential neuropathological mechanisms, yet the biochemical and molecular underpinnings of 

AD-relevant environmental neurotoxicity remain poorly understood. Beta-site amyloid precursor 

protein cleaving enzyme 1 (BACE1) is a potentially critical pathogenic target of environmentally-

induced neurotoxicity. BACE1 clearly has a critical role in AD pathophysiology: it is required for 

amyloid beta production and expression and activity of BACE1 are increased in the AD brain. 

While the literature on BACE1 in response to environmental insults is limited, current studies, 

along with extensive AD neurobiology literature suggest that BACE1 deserves attention as an 

important neurotoxic target. Here, we critically review research on environmental neurotoxicants 

such as metals, pesticides, herbicides, fungicides, polyfluoroalkyl substances, heterocyclic 

aromatic amines, advanced glycation end products and acrolein that modulate BACE1 and 

potential mechanisms of action. While more research is needed to clearly understand whether 

BACE1 is a critical mediator of AD-relevant neurotoxicity, available reports provide convincing 

evidence that BACE1 is altered by environmental risk factors associated with AD pathology, 

implying that BACE1 inhibition and its use as a biomarker should be considered in AD 

management and research.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by two 

hallmark pathologies: accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles 

(1). Based on genetic predisposition and age of onset, AD is classified into two types: early-

onset familial AD and late-onset sporadic AD (2). Sporadic AD accounts for >95% of cases 

after the age of 65 years (3–5). Although AD was discovered over a century ago, curative 

and disease-modifying treatments remain elusive. Multifactorial pathology and etiology 

involving different mechanistic pathways could be the reason for the lack of effective 

therapies for AD (6). Aging and genetic predisposition play significant roles in the onset of 

AD (3–5,7). Adjustments to modifiable risk factors, proper management of comorbidities, 

and maintaining a healthy lifestyle could reduce the risk of dementia (8). Therefore, it is 

critical to identify and limit exposure to identified risk factors. Environmental toxicants have 

been extensively linked to neurodegenerative disorders including AD (9). These 

environmental neurotoxicants have a key role in accelerating disease onset and progression. 

Metals (10–13), pesticides (14), and dietary toxins (15–17) have been shown to accumulate 

in the serum and/or the brains of AD patients. However, the pathogenic mechanisms that 

underlie AD-relevant neurotoxicity resulting from environmental exposures remain 

understudied. To date, In vivo and in vitro experimental studies have shown that chronic 

exposure to environmental neurotoxicants such as metals (18–32) pesticides (14,33–36), 

polyfluoroalkyl substances (37), particulate matter (38,39), and dietary toxins (40–45) 

induces AD like pathology. It is critical to identify the biochemical and molecular 

mechanism underlying AD-relevant neurotoxicity because this knowledge can strengthen the 

understanding of etiological origins and pathology of sporadic AD leading to identification 

and development of biomarkers and therapies.

In vivo and in vitro studies have shown that beta-site amyloid precursor protein cleaving 

enzyme 1 (BACE1) might play a key role in environmental neurotoxicant induced AD-like 

pathology (14,18–49). BACE1 is required for Aβ production (50,51). BACE1 protein and 

activity are increased in AD patients; BACE1 activity is correlated with Aβ load and 

markers of oxidative stress in AD patients (52,53). Given the critical role of BACE1, 

inhibition, or modulation of BACE1, is considered a prime therapeutic goal for reducing Aβ 
production (54–56).

The role of environmental risk factors in AD has been reviewed numerous times; therefore, 

in this brief and focused review, we critically discuss data from experimental studies on the 

environmental neurotoxicants that alter BACE1 and their possible mechanisms of action.

2. BACE1 cell biology

2.1 General overview

BACE1 is a 501 amino acid type 1 transmembrane aspartic protease related to the pepsin 

family that has the characteristics of β secretase. The catalytic domain of BACE1 contains 

two signature aspartic protease motifs (Asp-Thr/Ser-Gly-Ser/Thr) that form the active site of 

the enzyme (50,57–62). Cysteine residues at 216/420, 278/443, and 330/380 form three 

disulfide bonds and tether the ectodomain of BACE1 in a native tertiary structure (63). 
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BACE1 contains metal binding sites; a copper binding site is present in the cytoplasmic 

domain (48), and calcium is able to bind to the intracellular domain (64). BACE1 is 

homologous to BACE2, which is another membrane-bound secretase of the pepsin family, 

sharing 64% similarity in amino acid sequence. BACE2 is more abundant in peripheral 

tissues and has low expression in the brain. BACE2 cannot generate Aβ since the preferred 

BACE2 cleavage site in amyloid precursor protein (APP) is within Aβ (65–68).

BACE1 is synthesized in the endoplasmic reticulum and delivered to the cell surface from 

the trans-Golgi network. Transcription factors such as nuclear factor κB (NF-κB) (69,70), 

specificity protein 1 (Sp1) (71), peroxisome proliferator-activated receptor-gamma (PPAR γ) 

(72), hypoxia inducible factor 1α (HIF-1α) (73,74), Yin Yang 1 (YY1) (75), and nuclear 

factor of activated T cells (NFAT) (76) amongst others control the transcription of BACE1 

(77). Mature BACE1 is internalized from the plasma membrane or directly from the trans-

Golgi network and translocated to endosomes (78–80). During its maturation and 

intracellular trafficking BACE1 undergoes a complex set of post-translational modifications 

such as glycosylation, acetylation and phosphorylation (63,79,81–85).

BACE1 cleaves membrane-bound substrates only (86). It has maximal activity at an acidic 

pH (87–90), with the highest activity in the acidic subcellular compartments of the secretory 

pathway, such as the Golgi apparatus, trans-Golgi network, and endosomes (91,92). BACE is 

a highly stable protein with a half-life of 12–16 h (81). BACE1 can be degraded by 1) 

endoproteolysis, 2) the ubiquitin proteasomal pathway (93,94), or 3) the lysosomal pathway 

(95–99). SUMOylation at K501 residue increases the activity and stability of BACE1 (100). 

Alterations in BACE1 half-life can affect the level and enzymatic activity of BACE1.

BACE1 also cleaves several other substrates that may be important for processes and 

functions in the central nervous system. Proteomic studies have identified about 40 novel 

candidates as BACE1 substrates: including: neuregulin 1 type I and III-β1α, neuregulin 3 

(101–104), seizure protein 6 (105,106), sodium gated voltage channel β2 (107–109), 

Jagged1 and Jagged2 (110,111). Moreover, important binding partners have been identified: 

Golgi-localized γ-ear-containing ARF-binding proteins (112), phospholipid scramblase 1 

(113), SorLAs (114), sortilins (115,116), reticulon/Nogo proteins (117,118), prostate 

apoptosis response-4 (117), copper chaperone for superoxide dismutase-1 (49), Presenilin 

(119) among others, bind with BACE1 and modulate its activity and interaction with APP.

2.2. BACE1 distribution

BACE1 is present in most tissues of the body, but the highest activity levels are found in 

neural tissue (120–123). In the brain, BACE1 is more enriched in the hippocampus 

(123,124), and hippocampal mossy fiber terminals contain greater BACE1 expression 

(43,123,125–127). Neurons exhibit the highest BACE1 expression while resting astrocytes 

in brain do not express BACE1 at detectable levels; however, cultured astrocytes do express 

active BACE1 protein (128). Chronic activation of astrocytes increases BACE1 (129,130). 

BACE1-immunoreactive astrocytes are increased in proximity to Aβ plaques in the brains of 

aged transgenic 2576 mice and AD patients (131,132).
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2.3 BACE1 and APP interactions

Interactions between BACE1 and APP have been extensively studied. APP processing is 

generally divided into two pathways, non-amyloidogenic and amyloidogenic. Non-

amyloidogenic α-secretase mediated cleavage of APP releases soluble APP α into the 

extracellular space, and the C-terminal fragment of APP (CTF83) remains embedded in the 

plasma membrane. Cleavage of CTF83 by γ-secretase releases a small p3 fragment into the 

extracellular space and the APP intracellular domain (AICD) into the cytoplasm (133–136). 

Amyloidogenic BACE1 mediated APP cleavage releases a smaller soluble APP β into the 

extracellular space, and a larger APP C-terminal fragment (CTF99) remains embedded in 

the plasma membrane. Cleavage of CTF99 by γ-secretase releases Aβ into the extracellular 

space and the AICD into the cytoplasm (50,58,137–141).

2.4. BACE1 in AD

BACE1 has a critical role in the pathophysiology of AD. BACE1 expression and activity are 

increased in AD (142–144). BACE1 activity is correlated with Aβ load and markers of 

oxidative stress in AD patients (52,53). AD patients have higher CSF BACE1 activity than 

controls (145). BACE1 accumulates in normal and dystrophic presynaptic terminals 

surrounding amyloid plaques, causing increase in Aβ production near synapses in the brains 

of AD patients and AD mouse models (127). Given the critical role of BACE1 in AD 

pathology, inhibition of BACE1 is considered a prime therapeutic strategy for reducing Aβ 
production.

In the AD brain, both normal (143,146) and elevated BACE1 mRNA levels have been 

reported (147), and evidences for the regulation of BACE1 expression at the transcriptional 

and translational levels has also been presented. Brain extracts from AD patients showed that 

levels of PPARγ, involved in transcriptional regulation of BACE1 was decreased (148). 

Ceramide, the lipid second messenger is elevated in the brains of Alzheimer’s disease 

patients, has been shown to increases the half-life of BACE1 (149).

2.5. BACE1 in aging and MCI

Aging is a major risk factor for AD, where aging is associated with an increase in Aβ levels 

and accumulation of Αβ in the brain (150,151). BACE1 activity increases significantly in 

mouse, monkey, and human brains with aging. The increase of BACE1 activity and Αβ 
accumulation with age potentially predispose to AD (152).

BACE1 activity and protein levels are significantly increased in the brains of patients with 

mild cognitive impairment (MCI), who have a significant risk of developing AD (153–156). 

A significant increase in BACE1 activity is also found in cerebrospinal fluid (CSF) and 

plasma of subjects with MCI (153–155). BACE1 activity could predict progression from 

prodromal to probable AD stage.

2.6 BACE1 in other neurological diseases

Alteration in BACE1 is also present in other neurological diseases. Elevated levels of Aβ has 

been reported in human immunodeficiency virus (HIV) patients (157). HIV-associated 

neurotoxicity is mediated by N-methyl- d-aspartic acid or N-methyl- d-aspartate (NMDA)-
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dependent elevation of BACE1 and subsequent altered processing of APP (158). BACE1 

also has a role in enzymatic cleavage of seizure protein 6, a protein associated with bipolar 

disorder. BACE1 is significantly upregulated in the plasma of male bipolar disorder patients 

compared with healthy subjects (159).

3. Environmental neurotoxicants that alter BACE1

Accumulation of Aβ occurs due to overproduction of APP, enhanced amyloidogenic 

processing of APP by BACE1, and/or a decrease in degradation or clearance of Aβ 
(33,138,160–165). Here we discuss environmental neurotoxicants that alter amyloidogenic 

processing of APP by BACE1(Table 1).

3.1 Metals.

Chronic exposure to metals is a health hazard. Exposure to metals can be due to different 

sources: occupational, dietary (food or water), or in inhaled air (13,166–174). Overall, 

occupational exposure to metals is higher in terms of dose, but rarer, compared to other 

sources. Due to the aggressive pace of anthropogenic activities, humans are exposed not 

only to essential metals such as copper, iron, manganese, and zinc, but also to potentially 

toxic metals, including aluminium, arsenic, cadmium lead, and mercury (13,168–174). 

Several clinical studies have shown an increase in metal ions in AD, suggesting that metal 

ions might be a risk factor associated with the pathogenesis of AD (11–13,160,175–180).

Aluminium: Epidemiological studies have identified aluminium as a risk factor for AD. 

Exposure to aluminium may occur through food, drinking water, topically applied 

cosmetics, and hair, skin, and hygiene products, however inhalation as fine particles is the 

most relevant way of exposure (169). Here, it is worth noting that the link between AD and 

aluminium as a causative factor remains highly controversial, with a large amount of 

negative data (181,182). Aluminium is reported to accumulate in the brain, serum, and CSF 

of AD patients (11–13,183). In vivo and in vitro studies have demonstrated Aβ accumulation 

from aluminium exposure is BACE1 mediated. BACE1 activity is increased significantly in 

the hippocampus of aged New Zealand rabbits treated with aluminium-maltolate (18). Rats 

treated with aluminium-maltolate had significantly higher levels of BACE1 and γ-secretase 

enzymes, whereas α-secretase related protein decreased, resulting in increased Aβ 
production. (19,184,185). Aluminium-maltolate treatment also increased mRNA 

transcription and enzyme activity of BACE1 in rats (185). AKT/GSK-3β signalling is 

involved in aluminium-maltolate mediated effects (184). Wang et al. reported that exposure 

to aluminium-maltolate increased BACE1 expression and reduced the expression of miR29 

subtypes; expression of miR29a and miR29b1 was negatively correlated with BACE1 

expression (186). AlCl3 exposure also induced severe neurodegeneration, marked with 

elevated BACE1, Aβ level, and impaired insulin signalling in rats (20). Another study 

showed upregulation of the gene expression of BACE1 and APP on AlCl3 exposure in rats. 

This was accompanied by an increase in oxidative stress, neuroinflammation, and activity of 

acetylcholinesterase; presenilin2 and ER-β expression was downregulated (21). An increase 

in BACE1 and BACE2 mRNA is seen after co-exposure of SH-SY5Y cells to AlCl3 and Aβ 
(22).
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Lead: Lead was extensively used in paint, pipes, and gasoline; individuals, and particularly 

children, living in highly urban areas had the highest exposures to lead in the United States 

in 1960–1980 (187–189). Accumulating evidence suggests that childhood lead exposures 

may significantly increase risk for neurodegenerative disease in old age (190). Adults 

chronically exposed to lead also show abnormalities in brain metabolism (191–193). A 

positive association was found between an increase in blood lead level and AD mortality 

after adjustment for competing risks or design effects (194). Animal studies have provided 

evidence that developmental exposure to lead induces AD-like pathology through BACE1 

upregulation. Monkeys exposed to lead as infants had intracellular Aβ and amyloid plaques 

in the frontal association cortex and expression of APP, BACE1, and Sp1 transcription factor 

were upregulated in old age (23). DNA methylation appears to have an essential role in these 

latent effects. Developmental exposure of rats to lead results in upregulation of Aβ, APP and 

Sp1 transcription factor. BACE1 mRNA, protein expression, and activity were also 

upregulated later in life (24). Ashok et al. investigated the effects of developmental exposure 

of rats to individual metals (arsenic, lead, and cadmium) and their combination (at 

concentrations detected in groundwater of India) on the AD-pathology. They have shown 

that metals activated the synthesis of Aβ, which was mediated by an increase in APP and 

APP processing enzymes such as BACE1 and presenilin. Among individual metals, lead 

triggered maximum induction of Aβ (25).

Copper: Chronic environmental and occupational exposure to copper causes adverse health 

effects. The major source of copper is dietary intake from solid food and drinking water; 

exposure to polluted air is another minor source of copper (171,195). Copper and other 

essential metals such as iron and zinc are found in Aβ senile plaques and neurofibrillary 

tangles in AD (175,176). Copper exposure in young 3xTransgenic-AD mice led to an 

increase in the accumulation of Aβ, which was found to be mediated via the upregulation of 

BACE1 around Aβ plaques (26). Lin et al. reported that copper increased the transcription of 

APP and BACE1 in PC12 cells. The increased oxidative stress following copper exposure 

may be relevant to the expression of BACE1 levels in neurons (27). BACE1 has a copper-

binding site in its cytosolic domain (48). Upregulation of BACE1 results in the reduced 

activity of superoxide dismutase-1 (SOD1), as BACE1 competes with SOD1 for the 

interaction with CCS (copper chaperone for superoxide dismutase-1 (SOD1)), an important 

protein that transports copper to SOD1 for its activation (48,49).

Iron: Brain iron increases with aging, and its accumulation is enhanced in the AD brain in 

regions such as the parietal cortex, motor cortex, and hippocampus (177–180,196–200). Iron 

is found in Aβ senile plaques and neurofibrillary tangles (175). The subtoxic concentration 

of ferrous ions increases APP-α-carboxyl-terminal fragment (APP-α-CTF) associations 

with A Disintegrin and metalloproteinase domain-containing protein-10 (ADAM10) and 

APP-β-CTF with BACE1 in PC12 cells. Levels of ADAM10 and BACE1 mRNA and B-cell 

lymphoma 2 protein expression was also increased (201). In another study, iron treatment 

impaired APP/Ferroportin 1 complex and enhanced binding of BACE1 to APP without 

significant changes in the level of BACE1 in microglia (28). FeCl2 is a prooxidant molecule: 

it can stimulate oxidative stress. In differentiated human neuroblastoma cells, FeCl2 
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exposure increased Aβ production by up-regulation of BACE1 and gamma-secretase, and 

down-regulation of alpha-secretase (29).

Arsenic: Arsenic toxicity is a health concern worldwide as millions of people are exposed 

to arsenic via drinking water. Epidemiological studies reported that long term arsenic 

exposure impairs learning and cognitive abilities (170,202). Developmental exposure of rats 

to arsenic, lead, and cadmium at concentrations detected in groundwater of India activated 

the synthesis of Aβ, which was mediated by an increase in APP and APP processing 

enzymes, such as BACE1 (25). Developmental arsenic exposure also induces behavioral 

deficits accompanied by an increase in BACE1 enzymatic activity, Aβ, and RAGE (203). 

Gene expression of APP, BACE-1, TNF-α, IL-1β, IL-6, COX-2, and MIF-1 increased 

significantly in rat cortical astrocytes exposed to a sub-toxic monomethylated metabolite of 

inorganic arsenic (204).

Zinc: Zinc exposure could also be a risk factor for AD. Zinc is found in Aβ senile plaques 

and neurofibrillary tangles in AD (176). APP and presenilin1 double transgenic mice treated 

with a high dose of zinc in drinking water had a significantly increased amount of zinc levels 

in the brain. APP expression, Aβ deposition, BACE1, and γ-secretase enzymes increased, 

whereas α-secretase related protein decreased on Zinc exposure in these mice (205). SH-

SY5Y cells overexpressing human APPsw exposed to zinc also confirmed these results 

(205).

Manganese: Manganese is a trace element that is essential for brain function. Exposure to 

toxic concentrations of manganese occurring in occupational settings during mining, ore‐
processing, welding, and ferroalloy production has adverse health effects (172,173). 

Excessive manganese is neurotoxic and has been linked to neurodegenerative disorders 

(206). Manganese exposure increases the transcription of APP and BACE1 in PC12 cells 

(27). Guilarte et al. investigated the effect of chronic manganese exposure in non-human 

primates. Chronic manganese exposure increases a cellular stress response that leads to 

increased amyloid precursor-like protein1 protein expression and diffuse Aβ plaques in non-

human primates (30).

Silver nanoparticles: Silver nanoparticles (AgNPs) are used as an antimicrobial and 

antifungal agent in food containers, clothing, pharmaceuticals, and electronics (168). Lin et 

al. reported that AgNPs accumulates in astrocytes and mouse neuroblastoma neuro-2a cells 

due to the disruption of tight junction proteins (32). AgNP exposure increases Aβ deposition 

in a neuronal and triple cell co-culture model of mouse endothelial cells, astrocytes, and 

neuroblastoma neuro-2a cells (31,32). In another study, AgNP exposure was shown to 

increase the protein expression of APP, BACE1, presenilin1, and presenilin 2 (32).

3.2. Pesticides, fungicides, and herbicides.

The use of pesticides, fungicides, and herbicides in household and agricultural areas has 

exponentially increased and polluted the environment, resulting in bioaccumulation of 

toxicants (207). Exposure to pesticides, fungicides, and herbicide is a risk factor for AD 
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(208). Meta-analysis of data from cohort and case-control studies have shown a positive 

association between pesticide exposure and AD (209).

Dichlorodiphenyltrichloroethane: Serum levels of the organochlorine pesticide 

dichlorodiphenyltrichloroethane (DDT), and its metabolite dichlorodiphenyldichloroethane 

(DDE), were found to be elevated in AD patients (14). Experimental studies provided the 

mechanistic link for the association of DDT exposure with AD. Exposure of SH-SY5Y cells 

to DDE or DDT significantly increased APP levels (14). Another study showed DDT 

exposure augmented Aβ levels by increasing APP and BACE1 levels, and by reducing the 

clearance and degradation of Aβ in human neuroglioma H4-AβPPswe cells (33).

Rotenone: Rotenone is a well-known mitochondrial respiratory inhibitor. Rotenone could 

produce 1-methyl-4-phenyl pyridine (MPP+) and reproduces the features of Parkinson’s 

disease (PD) (210,211). Rotenone could also be linked to AD. Rotenone induces 

mitochondrial dysfunction, mitochondrion-derived ROS formation, and Aβ generation 

(212). Xiong et al. reported that rotenone treatment elevates Aβ and APP in the retina. 

Mitochondrial respiratory inhibition and oxidative stress seen on rotenone treatment also 

facilitate BACE1 expression and activity (34).

Paraquat: Paraquat is a widely used herbicide around the world. Paraquat exposure has 

been linked to PD (213). Paraquat exposure induces oxidative stress and mitochondrial 

damage (214,215). Mild oxidative stress induced on paraquat treatment alters BACE1 

subcellular compartmentalization to favor the amyloidogenic processing of APP in primary 

cortical cells (36).

Cocktails of fungicides residues: Residues of fungicides cyprodinil, mepanipyrim, and 

pyrimethanil are detected in many foodstuffs (216). Chronic exposure of transgenic (J20, 

hAPP Swedish/Indiana) mice to a cocktail of fungicide residues of cyprodinil, mepanipyrim, 

and pyrimethanil promotes the expression of BACE1 and impairs Aβ clearance. Incubated 

alone or in a cocktail, these fungicides bind to amyloid plaques ex vivo and promote Aβ 
peptide fibril formation in vitro (35).

3.3 Synthetic compounds

Perfluorooctane sulfonate: Perfluorooctane sulfonate (PFOS) is a per- and 

polyfluoroalkyl substance with extensive applications. PFOS is a major public health 

concern due to long environmental and biological half-lives (217). Our group has shown that 

PFOS produces dopaminergic neuropathology in Caenorhabditis elegans (218) and 

selectively decreases brain dopamine levels in Northern leopard frogs (Rana pipiens) on 

developmental exposure (219). Developmental PFOS exposure has also been linked to AD 

pathogenesis. Chronic PFOS exposure in mice increases APP and Aβ1–42 levels; significant 

up-regulation of BACE1 mRNA was also observed on exposure to a high concentration of 

PFOS (37).

Bisphenol: Bisphenol A (BPA) is an environmental endocrine-disrupting chemical. 

Human exposure to BPA is ubiquitous as it is one of the highest-volume chemicals produced 
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worldwide (220). Epidemiological studies have linked BPA to metabolic disorders 

(221,222). Accumulating evidence suggests that early-life exposure to BPA impacts neural 

development in humans (223–226). BPA exposure can also be a risk factor for AD. Prenatal 

exposure to BPA has been shown to increase the level of NF-κB protein and its target gene 

BACE1. The upregulation of BACE1 was observed only in males, and there were no 

significant changes in Aβ levels (227). BPA induced Aβ accumulation and disruption in 

insulin signalling in SH-SY5Y cells. AD-associated proteins, such as APP, BACE-1, β-CTF, 

α-CTF, and phosphorylated tau were increased after BPA exposure, and these effects were 

abrogated by insulin and rosiglitazone treatment (228).

Particulate matter: Fine and ultrafine particles may be translocated to systemic 

circulation and the brain through the nasal olfactory pathway (229). The possibility of initial 

involvement of the olfactory pathway in AD has caused speculation that some inhaled agents 

might be a risk factor for AD (230). AD-like pathology is seen in individuals residing in 

cities with high levels of air pollution (231). Chronic exposure of mice to concentrated air 

particulate matter (PM) (particles measuring 2.5 μm or smaller in diameter and collectively 

termed PM2.5) increased BACE1 protein levels, APP processing, and Aβ 1–40 levels. This 

was correlated with an increase in cytokine level and cyclooxygenase-1 and 

cyclooxygenase-2 protein levels (39). In another study, PM2.5 exposure increased BACE1, 

deteriorated spatial learning and memory, and synaptic function integrity. These effects were 

mediated by NF-κB p65-regulated downregulation of miR-574–5p, that targets BACE1 (38).

3.4 Dietary toxins.

The role of the diet in the etiology of AD has received recent attention (232,233). High-fat 

diets and diets rich in saturated free fatty acids, high glucose, and oxidation products of 

cholesterol are potential risk factors for AD. They are known to promote amyloidogenic 

cleavage of APP by BACE1 (234–239). Cooking and processing of food at a high 

temperature can produce toxic compounds, such as advanced glycation end products 

(AGEs), heterocyclic aromatic amines (HAAs), acrylamide, and acrolein (240–244). The 

potential role of dietary toxins is being studied for AD relevance as they are encountered in 

higher doses and more frequently through one’s life span compared to other environmental 

contaminants (232,245).

Advanced glycation end products: AGEs are naturally present in uncooked animal-

derived foods; high-temperature cooking accelerates the formation of new AGEs within 

these foods. AGEs are formed through the Maillard reaction between the aldehyde group of 

glucose and the amino group of proteins (246,247). AGEs are also formed as a part of 

normal metabolism within the body, and AGEs accumulate due to certain dietary habits, 

aging, and in sporadic AD (15). Diets high in AGEs induce AD-like pathology in mice. 

Transgenic 2576 mice that received a diet high in AGEs had significantly higher levels of 

oxidative stress, AGEs, the receptor for advanced glycation end products (RAGE), and 

insoluble Aβ in the hippocampus (41,248). Guglielmotto et al. showed that AGEs such as 

pentosidine and glyceraldehydes-derived pyridinium (GLAP) upregulate BACE1 mRNA and 

protein expression through RAGE activation and the consequent activation of NF-κB (41). 

BACE1 is upregulated in cells overexpressing RAGE and in RAGE-injected brains of 
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Tg2576 mice (40). AGEs/RAGE axis upregulate BACE1 expression via reactive oxygen 

species (ROS) production (40,41), and activation of nuclear factor of activated T-cells 1 

(NFAT1) (40) resulting in Aβ production and deposition in the brain.

Heterocyclic aromatic amines: Heterocyclic aromatic amines (HAAs) are primarily 

formed during high-temperature meat cooking (240,241). HAAs are formed through the 

Maillard reaction between amino acids and sugars, producing pyrimidine, pyridine, or 

pyrazine, which later reacts with creatine in a heat-dependent reaction (240,241). PhIP (2-

Amino-1-methyl-6-phenylimidazo (4,5-b)pyridine) is the most abundant and extensively 

studied HAA isolated from the crust of cooked meat, and its levels may reach ~15 

micrograms/kg uncooked meat (241,249,250). Studies from our lab have reported that PhIP 

generates reactive free radicals, leading to an increase in the accumulation of ROS 

(43,251,252). Recently, our group showed that PhIP exposure for acute, sub-acute, and sub-

chronic time points produced oxidative damage and alterations in synaptic proteins. Our 

study demonstrated that sub-chronic PhIP exposure promotes Aβ aggregation by increasing 

the levels of BACE1, APP, and oxidative damage (43).

Acrolein: Acrolein is a dietary aldehyde that is present in high concentrations in alcoholic 

beverages, water, cheese, donuts, coffee, tobacco smoke, industrial waste, and automobile 

exhaust. It is also formed during deep frying of vegetable and animal fats (253). In vivo, 

acrolein is formed by the metal-catalyzed oxidation of polyunsaturated fatty acids (254). 

Acrolein is increased in the amygdala and hippocampus/parahippocampal gyrus in AD 

patients (16). Chronic acrolein exposure increased protein levels of APP, BACE1, RAGE, 

and decreased A-disintegrin and ADAM levels in rats (44,45). Acrolein activated MAPK 

signalling pathways and altered the levels of AD-associated proteins ADAM-10, BACE-1, 

and RAGE in HT22 murine hippocampal neuronal cells. Inhibitors of MAPK signalling 

pathways attenuated these effects (255). These effects were associated with oxidative stress, 

ROS accumulation, glutathione depletion, decreased SOD, and an elevation of MDA 

(256,257).

4. Exposures and mechanisms that lead to upregulation of BACE1 

expression and activity:

Commonly examined detrimental processes of oxidative stress, mitochondrial respiratory 

inhibition, and direct physical interaction of toxicants with BACE1 are likely important in 

neurotoxicant induced alteration in BACE1 expression and activity. An increase in BACE1 

and subsequent increase in Aβ pathology induced by most of these neurotoxicants was 

associated with oxidative stress (21,27,34,36,40–43). Oxidative stress has been shown to 

decrease the activity of α-secretase while promoting the expression and activity of BACE1 

(29). Treating primary cortical neurons and HSV-APP cells with hydrogen peroxide (H2O2) 

increases BACE1 protein and its products (CTFs), in primary neurons, and BACE1 protein 

and Aβ in HSV-APP cell (262). Inactivating BACE1 with siRNA1 lowers the BACE1, CTF, 

and Aβ levels following H2O2 treatment. Treating APPwt and APPsw cells with 

antioxidants reduces superoxide anions and BACE1 activity, indicating that, at least in part, 

ROS-dependent BACE1 alteration is implicated in Aβ production (212,262). Oxidative 
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stress is also an early event in AD (263); oxidation products, such as 4-hydroxynonenal 

(HNE) and malondialdehyde (MDA), increases in AD brain tissue. A significant correlation 

exists between BACE1 activity and markers of oxidative stress in AD, supporting the 

hypothesis that a direct connection exists between oxidative stress and BACE1 in sporadic 

AD (53,264,265).

Environmental neurotoxicants upregulate the expression and activity of BACE1, with some 

increasing BACE1 mRNA level (21,22,24,27,37,41,185,201,204), while others do not affect 

BACE1 mRNA (35,266). Transcriptional and post-transcriptional control is implicated in 

BACE1 modulation by oxidative stress (29,266–269). Alterations in BACE1 expression and 

enzyme activity induced by oxidative stress are mediated through the interplay of multiple 

signaling pathways (Figure 1).

Oxidative stress induced by H2O2 has been shown to increase BACE 1 by potentiating the 

BACE1 promoter activity and upregulating BACE1 transcription (270). Transcription factors 

such as NF-κB, NFAT1 and Sp1 have been reported to be activated after exposure to 

environmental neurtoxicants (23,24,40–42,227). Tamagno et al. reported that the activation 

of SAPK signaling is involved in oxidant-induced upregulation of BACE1 expression. 

Exposure of NT2 neurons to HNE upregulates expression of BACE1 and increases 

intracellular Aβ. HNE-dependent upregulation of BACE1 expression was found to be 

mediated by activation of c-junN-terminal kinase (JNK) and p38 mitogen-activated protein 

kinases (p38MAPK) (267). Inducers of JNKs such as hydrogen peroxide increase BACE1 

protein level, and inhibition of JNKs abolished this BACE1 induction, confirming that JNK 

pathways mediate this response (29,267,268). Phosphatidylinositol-3-kinase (PI-3K)/Akt 

pathway and the extracellular signal-regulated MAP kinase (ERK) pathway are also 

involved in oxidative stress-mediated BACE1 upregulation. Upregulation of BACE1 protein 

correlated with increased levels of phosphorylated Akt and ERK1/2 in glutathione 

peroxidase 4+/− (Gpx4+/−) mice (266). Oxidative stress also alters BACE1 expression at the 

translational level, and it is mediated by the double-stranded RNA dependant protein kinase 

(PKR)-eukaryotic translation initiation factor-2α (eIF2α) pathway. A significant correlation 

was found between BACE1 levels and eIF2α activation in human AD brains. Inhibition of 

PKR by chemical inhibition or by siRNA significantly attenuates BACE1 protein (269).

Redistribution of BACE1 also facilitates amyloidogenic processing of APP; mild oxidative 

stress has been reported to promote amyloidogenic processing by redistributing the BACE1 

to organelles having optimal environment for BACE1 activity (36). Tan et al. have suggested 

that depending on the stress intensity inflicted on neurons, oxidative stress may exert a dual 

effect on BACE1. Mild oxidative stress that does not induce cell death does not increase 

BACE1 mRNA and protein. Instead, mild oxidative stress promotes amyloidogenic 

processing by redistributing BACE1 to the trans-Golgi network and early endosomes, which 

provide an acidic environment an optimal for BACE1 activity. In contrast, in sustained or 

severe oxidative stress, apoptotic mechanisms would become activated, and BACE1 

expression would increase, thereby promoting a more significant Aβ production (36). 

Hypoxia induction caused a similar biphasic increase of BACE1 (74). However, other 

studies have also shown the accumulation of BACE1 protein in the absence of cell death 

(271).
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Mitochondrial dysfunction has been suggested to have an early and perhaps a causative role 

in AD pathogenesis (272–275). AD mice treated with a complex I inhibitor or mice with a 

genetic defect in complex I, or, showed enhanced Aβ levels in vivo (212). BACE1 

expression and its activity appear to be coupled to mitochondrial function. Mitochondrial 

respiratory inhibition and energy inhibition elevates BACE1 levels and activity (276). 

Neurotoxicants such as rotenone is a known mitochondrial complex I inhibitors; 

mitochondrial complex inhibitors and inhibitors of succinate dehydrogenase have been 

shown to alter BACE1 (34,36). Applications of rotenone, other mitochondrial complex 

inhibitors, and inhibitors of succinate dehydrogenase increase BACE1 proteins and activity, 

and Aβ40 levels (34). Paraquat, a known mitochondrial neurotoxicant, induced mild 

oxidative stress and altered BACE1 subcellular compartmentalization to favor the 

amyloidogenic processing of APP (36). A strong negative correlation was found between 

BACE1 and cytochrome c oxidase or succinate dehydrogenase activity at the first synapse 

on the olfactory pathway (277). Increased BACE1 levels and activity are observed in a 

variety of experimental conditions likely involving mitochondrial stress and energy 

disruption (270,276,278). Mitochondrial respiratory inhibitors are generally considered to 

cause oxidative stress (210,279); it is not possible to differentiate energy inhibition from 

oxidative stress. Therefore, oxidative stress might be a common element in increasing 

BACE1. Mitochondrial proteins are also likely important in BACE1 regulation. Over 

expression Thioredoxin-2 (TXN2), a mitochondrial protein that has a critical role in the 

scavenging ROS in mitochondria (280) decreases BACE1 transcription; while silencing 

increases BACE1 transcription. Further, TXN2 knockdown in HEK-APP and SH-SY5Y-

APP cells increased the mRNA and protein levels of BACE1 (281). BACE1 also contributes 

to mitochondrial dysfunction. Accumulation of β-cleaved C-terminal fragment-99 and APP 

through BACE1 dependent mechanism contributes to mitochondrial dysfunction, and 

deletion of BACE1 (BACE1+/−) rescued mitochondrial function in 5XFAD mice (282).

Metals can directly interact with BACE1 to modulate APP processing and Aβ release. 

Biophysical studies have shown an interaction between BACE1, calcium (64), and copper 

(48,49,283). BACE1 is described as a copper-binding protein; it has a copper-binding site in 

its cytosolic domain (48,49,283). The cytoplasmic domain of BACE1, a 24-residue peptide 

corresponding to the C-terminal domain of BACE1, binds a single copper(I) atom with high 

affinity through cysteine residues. The cytoplasmic domain of BACE1 interacts with CCS 

that delivers copper to BACE1. Cytosolic CCS forms a stable association with membrane-

bound BACE1; CCS protein and BACE1 have been shown to move together in axons of rat 

primary cortical neurons (48,49). CCS is also essential for the activation of SOD1. CCS 

binds copper (I) through residues in domains I and III. This enhances the binding of CCS to 

Zn-SOD1, leading to the formation of a non-covalent heterodimeric CCS–SOD1 complex 

via domain II of CCS (284). BACE1 interacts with the domain I of CCS, preventing the 

formation of copper-bound CCS and thereby inhibiting the activation of SOD1. 

Overexpression of BACE1 results in the reduced activity of SOD1, as BACE1 competes 

with SOD1 for interaction with CCS (48,49). This interaction provides a link between metal 

homeostasis and oxidative stress in AD. Calcium also binds to BACE1 and alters its activity. 

The intracellular domain of BACE1 contains a metal-binding motif Cys-Xaa-Xaa-Cys, one 

additional cysteine, and potential Calcium-binding residues. Binding studies have provided 
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evidence that calcium binds to BACE1 with high affinity. Low concentrations of calcium can 

increase the enzymatic activity of BACE1, thereby increasing Aβ production (64). This 

calcium-BACE1 interaction and generation of the Aβ peptide are supported by the calcium 

dysregulation hypothesis in aging and AD (285–289).

5. Theoretical BACE1 targets important to neurotoxicity:

Not much is known about the susceptibility of BACE1 catalytic domain and other domains 

to neurotoxicants. The BACE1 lumenal extension ends are attached by two disulfide bonds 

connecting directly to the catalytic domain. A span of approximately 11 amino acids attach 

the catalytic domain of the BACE1 to the lipid membrane, C-terminally of the last disulfide 

bonded cysteine of the lumenal extension (61). The six Cys residues in these ectodomain 

form three intramolecular disulfide linkages (Cys(216)-Cys(420), Cys(278)-Cys(443), and 

Cys(330)-Cys(380)) (62). Fischer et al. reported that the disulfide bonds between Cys(330)-

Cys(380) play an important role in the catalytic domain of BACE1 and the other two 

disulfide bonds are less important for APP processing activity (290). Simulations studies 

have shown that the absence of disulfide bonds has been shown to weaken/change the 

interaction strength of BACE1 inhibitors with some residues in the interaction network of 

BACE1-inhibitors (291). This disulfide bond could be possible a neurotoxic target as 

disulfide bond formation in other proteins has been reported to be impaired in certain 

conditions such as hypoxic (292), on exposure to nicotine (293). Koelsch has hypothesized 

that under hypoxic conditions, two disulfide bonds that attach both ends of the lumenal 

domain in BACE1 might be incompletely formed, leading to release of the BACE1 catalytic 

domain away from the lipid bilayer membrane, allowing possibly a greater degree of 

freedom, increased access to the substrate, and increased activity (294). While plausible, it 

should be noted that this hypothesis has not yet been tested.

6. BACE1- a potential biomarker and therapeutic target for sporadic AD:

A significant increase in BACE1 level and activity is found in CSF of subjects with MCI and 

ApoE ε4 genotype carriers with MCI (153,155). Plasma BACE1 activity is also increased in 

MCI converters and probable AD patients (154). Given the reported 1) alteration of BACE1 

expression and/or activity in environmental neurotoxicant induced AD-like pathology in 

experimental studies and subjects with MCI and APOE ε4 carriers with MCI are at higher 

risk of developing AD, 2) peripheral BACE1 could be an indicator of MCI and AD risk, and 

3) ease of measuring BACE1 in plasma and CSF, and novel PET radioligand 

[18F]PF-06684511 for in vivo imaging of BACE1; BACE1 has promising potential for use 

as a clinical diagnostic biomarker for screenings during the presymptomatic stages and 

monitoring the disease progression in sporadic AD (153–155,295–298).

The important role of BACE1 in the amyloidogenic pathway and modulation of BACE1 by 

many risk factors associated with sporadic AD has led to the exploration of the potential use 

of BACE1 as a therapeutic target for AD. BACE1 inhibitors have shown therapeutic effects 

in AD animal models; however, many BACE1 inhibitors have failed in different phases of 

clinical trials due to safety concerns (56,299–301). BACE1 null/knockout mice exhibit 

hypomyelination (302), a significant increase in astrogenesis with a corresponding decrease 
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in neurogenesis in their hippocampi during early development (110), abnormal neuronal 

clustering in the dentate gyrus (303), and axonal organization defects in the hippocampus 

(304). Toxicity induced by BACE1 inhibitors and the physiological role of BACE1 makes it 

difficult to use BACE1 as a treatment for AD.

6. Conclusion and future research:

Environmental neurotoxicants such as metals, pesticides, and dietary toxins have been 

shown to accumulate in the AD patient; experimental studies in vivo and in vitro have 

strengthened knowledge about mechanisms associated with it. BACE1 is the initiating and 

putatively rate-limiting enzyme in Aβ generation. BACE1 expression and/or enzymatic 

activity are altered in aging, MCI, ApoE ε4 genotype carriers with MCI, and after exposure 

to various environmental neurotoxicants, indicating that BACE1 is a crucial molecular link 

between these risk factors and sporadic AD pathogenesis. Although experimental studies 

have highlighted that oxidative stress, mitochondrial respiratory inhibition, and direct 

physical interactions might be a common mechanism in environmental neurotoxicant 

induced BACE1 alterations, the mechanism associated with many environmental 

neurotoxicants induced BACE1 alteration is still not clearly known. Given the key role that 

BACE1 has in risk factors associated-AD, future studies are needed to clearly understand 

these mechanisms. BACE1 undergoes physical interactions with copper and calcium; other 

metals and reactive environmental neurotoxicants should also be studied to determine if they 

directly interact with BACE1 to activate it or if they have a neurotoxic target in BACE1. 

Similar to findings in AD patients, in vivo and in vitro studies also report both normal and 

elevated BACE1 mRNA along with increased protein expression and/or activity on exposure 

to environmental neurotoxicants. There is inconsistency in BACE1 measurement; some 

studies just analyze mRNA or protein expression and/or enzymatic activity. Measuring 

mRNA, protein expression, activity, and the degradation pathway of BACE1 will help better 

understand the mechanism associated with BACE1 alteration.

Despite the challenges in BACE1 inhibitor development and failures of BACE1 inhibitor 

clinical trials, BACE1 inhibitor development should continue by taking into consideration 

the optimal timing and dose for treatment. There is substantial data indicating the important 

role of BACE1 in sporadic AD and proving BACE1 inhibitors as disease-modifying agents. 

Future studies should focus on understanding the physiological functions of other BACE1 

substrates and generating inhibitors with an APP selective BACE inhibitory effect. 

Correlation of BACE1 with disease severity and ease of measuring of BACE1 in plasma and 

CSF and through in vivo imaging makes BACE1 an ideal candidate for use as a clinical 

diagnostic biomarker, together with the existing suite of amyloid and tau biomarkers, for 

screening the presymptomatic stages and monitoring the disease progression in sporadic 

AD. BACE1 could also be used as a biomarker in drug development.
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Abbreviations:

MPP+ 1-methyl-4-phenyl pyridine

Aβ Amyloid beta

ADAM10 A Disintegrin and metalloproteinase domain-containing protein-10

AD Alzheimer’s disease

APOE4 Apolipoprotein

APP Amyloid beta precursor protein

APP-α-CTF APP-α-carboxyl-terminal fragment

AICD APP intracellular domain

AGE Advanced glycation end products

BACE1 β-Site amyloid precursor protein cleaving enzyme 1

BPA Bisphenol A

CCS Copper chaperone for superoxide dismutase-1

CTF83 C-terminal fragment of APP

CTF99 C-terminal fragment

CSF Cerebrospinal fluid

DDT Dichlorodiphenyltrichloroethane

DDE Dichlorodiphenyldichloroethane

ERK extracellular signal-regulated MAP kinase

eIF2α Eukaryotic translation initiation factor-2α

GLAP Glyceraldehydes-derived pyridinium

H2O2 Hydrogen peroxide

HAAs Heterocyclic aromatic amines

HIV human immunodeficiency virus

HNE 4-hydroxynonenal

JNK c-junN-terminal kinase
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MDA Malondialdehyde

MCI Mild cognitive impairment

NMDA N-Methyl- d-aspartic acid or N-Methyl- d-aspartate

NF-κB Nuclear factor κB

PFOS Perfluorooctane sulfonate

PI-3K Phosphatidylinositol-3-kinase

PhIP 2-Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine

PM Particulate matter

ROS Reactive oxygen species

RAGE Receptor for advanced glycation end products

SOD1 superoxide dismutase-1

AgNPs Silver nanoparticles
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Figure 1: Neurotoxic targets that lead to upregulation of BACE1 expression and activity:
BACE1 can be an important neurotoxic target in AD-like neurotoxicity induced by 

environmental neurotoxicants such as metals, pesticides, fungicides, herbicides, dietary 

toxins/toxicants and synthetic compounds. Environmental neurotoxicants increase BACE1 

expression and activity by inducing mitochondrial stress, oxidative stress or by direct 

interaction. Oxidative stress induced by environmental neurotoxicants can increase 

transcription and translation of BACE1 or induce redistribution of BACE1 to increase 

amyloidogenic processing of APP and increase amyloid beta production.
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