Table 5.
Ref. No. | Author(s) and Year | Electrocatalyst | Preparation method | Particle size (nm) | Electrochemical orFuel cell performance |
---|---|---|---|---|---|
[213] | Show and Ueno (2017) | Pt/CB | In-liquid plasma method | 4.1 | OCP: 0.85 V, Power density: 216 mW/cm2 |
[214] | Guo et al. (2005) | Pt/CB | Borohydride reduction method | 3.8 | Current density: 40 mA/cm2 at 0.45 V |
[215] | Rao et al. (2011) | Pt/G, Pt3Co/G and Pt3Cr/G | Ethylene glycol reduction method | 3.5, 4.2 and 4.3 | Max. power density: 790, 875 and 985 mW/cm2 |
[216] | Yang et al. (2016) | Pt/CN-1 and Pt/CN-2 | Hydrothermal synthesis | 3, 40 | ECSA: 60.9 and 25.7 m2/g MA: 313 and 132 mA/mg |
[217] | Cho et al. (2012) | Pt/C and Pt1Ni1/C | Borohydride reduction method with acetate anions as stabilizer in anhydrous ethanol solvent | 4, 2.7 | ECSA: 24.4 and 28.2 m2/g Initial & final cell potentials: 0.69 & 0.45 V for Pt/C and 0.67 & 0.35 V for Pt1Ni1/C |
[218] | Alegre et al. (2015) | Pt/CX, Pt/CB with formic acid | Impregnation method with two different reducing agents and microemulsion method | 3.6, 4.6 | ECSA: 38.6, 41.4 m2/g Peak mass activity: 367, 300 mA/mg |
[219] | Lee et al. (2012) | Pt/C (M), Pt/C (P) | Modified polyol reduction method | 1.3, 2.9 | ECSA: 23, 16.4 m2/g Current density: 678 and 630 mA/cm2 at 0.6 V |
[220] | Fu et al. (2015) | Pt-Co/MWCNTs | Ultrasonic enhanced synthesis | 1.6 | E1/2: 0.763 V |
[221] | Hu et al. (2016) | Pt-Co nanoalloys | Tandem laser ablation synthesis in solution-galvanic replacement reaction (LASiS-GRR) | 4.15 at pH 11 | ECSA: 44.5 m2/g MA: 0.24 A/mg SA: 0.53 mA/cm2 E1/2: 0.875 V (vs. RHE) |
[222] | Woo et al. (2011) | Pt-Co | Pulse electrodeposition (atomic ratio: 76:24) |
3–5 | Current density: 1.051 A/cm2 at 0.6 V |
[223] | TrongchuanKij et al. (2011) | Pt-Co/C | Combined process of impregnation and seeding | 2–3 | Current & power density: 772 mA/cm2 & 460 mW/m2 at 0.6 V |
[224] | He and Mukerjee (2010) | Pt-Co/C | Water-in-oil micro-emulsion | 3–4 | ECSA: 24 m2/g E1/2: 0.871 V MA: 1.242 A/µg SA: 5.175 mA/cm2 at 0.8 V |
[225] | Liu et al. (2017) | Pt-Co/C-PANI | Microwave-assisted polyol method | 3 | E1/2: 0.943 V MA: 1.33 A/mg SA: 1.29 mA/cm2 |
[226] | Prasad et al. (2012) | Pt-MWCNT/PANI | Microwave synthesis | 10–15 | ECSA: 58.88 m2/g Current density: 1.7 mA/cm2 |
[227] | Chen et al. (2012) | Pt/C@PANI (20%), Pt/C@PANI (30%), Pt/C@PANI (50%) |
In situ chemical oxidation polymerisation |
2.5, 5, 14 | ECSA: 67.5, 60.7, and 6.5 m2/g E1/2: 829, 819, and 761 mV MA: 68, 47 and 9 mA/mg at 0.85 V |
[228] | Umezawa et al. (2017) | Pt61Ni39, Pt47Ni53 and Pt20Ni80 | Plasma gas condensation cluster deposition (PGCCD) method | 6–8 | Power density: 100.1, 93.6, 65.7 mW/cm2 |
[229] | Wang et al. (2015) | Pt3-Ni/C, Pt2-Ni/C, Pt-Ni/C | Glycerol stabilized NaBH4 reduction at room temperature | 2.4–3 | ECSA: 72, 81, 45 m2/g MA: 0.192, 0.345, 0.083 mA/mg (at 0.512 V) |
[230] | Do et al. (2015) | Pt1-Ni1/C | Electroless deposition method using NaBH4 | 4–8 | ECSA: 18.06 m2/g |
[231] | Lee et al. (2014) | PtNi/C(H), PtNi/C(A) |
One-step sonochemical synthesis | 3.7, 3.4 | ECSA: 0.77, 0.63 cm2/g E1/2: 873, 847 mV |
[232] | Rusnaeni et al. (2010) | PtNi/C | Polyol reduction method | 5.71 | ECSA: 36.56 cm2/mg SA: 99 µA/cm2 |
[233] | Kaewsai et al. (2018) | PtCr/C | Chemical reduction via seeding/ impregnation technique | 3–10 | Current density: 354 mA/cm2 at 0.6V Power density: 264 mW/cm2 |
[234] | Sahin et al. (2017) | PtCr/C | Modified microwave-assisted polyol method | 3.43 | Peak current density: 4.8, 5.1, 5.2 mA/cm2 at 690, 707 and 721 mV vs. RH at 20, 30 and 40 0C, respectively |
[235] | Min and Kim (2016) | Pt1Cr/C, Pt3Cr/C | An incipient wetness method | 2–10 | ECSA: 67 m2/g MA: 161, 203 A/g SA: 243, 308 µA/cm2 |
[236] | Taufany et al. (2011) | Pt3Cr1/C TD, Pt3Cr1/C EG |
Combination of chemical reduction and thermal decomposition | 3–3.5 | ECSA: 43.44, 62.96 m2/g MA: 26.1, 6.99 A/g |
[237] | Fedotov et al. (2013) | Pt/VXC-72 | Magnetron-ion sputtering method | 3.1 | ECSA: 44 m2/g Power density: 550 mW/cm2 (at 0.55 V) |
[238] | Bumaa et al. (2012) | Pt/PANI | Polyol method (EG) | 4.36 | Current density: 9.68 mA/cm2 at 0.36 V Maximum power density: 3.49 mW/cm2 |
[239] | Kim et al. (2018) | Pt/CP | Ultrasound irradiation (sonochemical) method | 4.84 | ECSA: 0.96 m2/gCurrent density: 0.413 A/cm2 at 0.6 V |
[240] | Tegou et al. (2011) | PtNi/GC, PtCo/GC | Electrodeposition galvanic replacement method | 7.29 | ECSA: 3.6, 2.6 cm2/g |
[241] | Hyun et al. (2013) | PtNi/C, PtCo/C, PtCu/C | Modified impregnation method | 4.3, 5.8, 6.3 | ECSA: 37.6, 37.5 and 24.0 m2/g; Max. power density: 0.587, 0.419, 0.448 W/cm2 |
[242] | Zhang et al. (2004) | Pt/C (HCHO) | Impregnation-reduction method | 5.3 | ECSA: 48.9 m2/g Maximum power density: 0.49 W/cm2 Current density: 906 mA/cm2 |