
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8211  | https://doi.org/10.1038/s41598-021-87614-z

www.nature.com/scientificreports

Effort‑dependent effects 
on uniform and diverse muscle 
activity features in skilled pitching
Tsubasa Hashimoto1, Ken Takiyama1*, Takeshi Miki2, Hirofumi Kobayashi2, Daiki Nasu3, 
Tetsuya Ijiri2, Masumi Kuwata2, Makio Kashino3 & Kimitaka Nakazawa2

How do skilled players change their motion patterns depending on motion effort? Pitchers commonly 
accelerate wrist and elbow joint rotations via proximal joint motions. Contrastingly, they show 
individually different pitching motions, such as in wind-up or follow-through. Despite the generality 
of the uniform and diverse features, effort-dependent effects on these features are unclear. Here, 
we reveal the effort dependence based on muscle activity data in natural three-dimensional pitching 
performed by skilled players. We extract motor modules and their effort dependence from the muscle 
activity data via tensor decomposition. Then, we reveal the unknown relations among motor modules, 
common features, unique features, and effort dependence. The current study clarifies that common 
features are obvious in distinguishing between low and high effort and that unique features are 
evident in differentiating high and highest efforts.

High-speed throwing has been a fundamental motion for Homo sapiens in the past two hundred years1—for 
instance, it was a motion used for animal hunting a long time ago and is still used for baseball, football, handball, 
track and field, and a wide variety of sports. Fastballs thrown by baseball pitchers are one of the most representa-
tive and fastest examples of high-speed throwing.

Even today, the fastball pitch is still evolving, especially in baseball. An article in The Washington Post men-
tioned the increase of the fastball velocity in major league baseball (MLB) in the past ten years, and faster fastballs 
have resulted in lower hitting rates by opposing batters2. Fastball velocity can thus be a key factor for a sophisti-
cated performance in baseball. In contrast, a faster fastball substantially increases the possibility of injury to the 
pitcher’s elbow2, 3. Elucidating the motion features associated with a high throwing speed can provide insight 
that can be used for improving sports performance and lowering the risk of injury.

The motion features that contribute to higher and lower pitching speeds have been investigated in both 
between-subject and within-subject manners. In a between-subject manner, faster baseball pitchers showed dif-
ferent kinematic and temporal factors relative to slower pitchers4. Kinetic parameters, rather than joint positions 
and temporal parameters, showed differences among youth, high school, college, and professional pitchers5. In 
a within-subject manner, by dividing the throwing motions of the maximum effort by each pitcher into faster 
ball-velocity trials and slower ball-velocity trials, the kinematic, kinetic, and temporal parameters associated 
with faster balls were investigated6, 7.

The within-subject differences were examined not only in maximum effort pitches but also in three levels of 
effort or pitching velocity. A previous study investigated throwing motions while the subject was seated (referred 
to as unskilled throws in an earlier study8) with slow, medium, and maximum speeds9. The study revealed that 
muscle torques in proximal joints (e.g., shoulder) produced interaction torques in more distal joints (e.g., elbow 
and wrist). The interaction torque in the elbow via more proximal joints accelerated elbow angular velocity, which 
was key to achieving high ball speed. Similar relations were also observable among slow, medium, and maximum 
speeds in skilled pitching (i.e., usual throwing motions from wind-up to cocking, release, and follow-through 
while standing)10. Pitchers thus commonly accelerate wrist and elbow joint rotations via proximal joint motions 
across the three levels of pitching velocity.

In contrast to the common motion features, each pitcher throws a fastball with a diverse form setup with 
differences evident in their stride, arm-cocking, release, and follow-through. Pitching motion thus consists of 
common and unique motion features. The unique motion features originate from the redundancy inherent in 
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our motor system. Due to redundant numbers of joints and muscles, the same motion result (e.g., pitching a ball 
toward the same location) is achievable via diverse motion repertoires. It is thus reasonable that pitching veloc-
ity differs among individuals under the same ball endpoint. Because the difference in pitching velocity affects 
pitching performance and injury risk2, 3, it is indispensable to study diverse motion features. The diverse motion 
features are compatible with the uniform motion features in pitching motions, roll-and-rise motions11, drum 
hitting12, running13, piano playing14, and diverse motion repertoires.

Despite the universality of common and unique motion features, it remains unclear how motion effort modu-
lates these features. In other words, the relation of a faster fastball to common and diverse motion features is 
unknown. In playing the piano, pianists can be classified into clusters depending on effort-dependent effects on 
kinematic parameters14. Similarly, a possibility is that unique motion features can be more evident when greater 
effort is exerted in skilled pitching. Another possibility is that greater effort is associated with more evident 
common motion features because common features play roles in facilitating faster elbow and wrist rotations10. 
Notably, there are other possibilities for how uniform and diverse motion features depend on motion effort.

Here, we investigate effort-dependent effects on common and diverse motion features in skilled pitching. 
Specifically, we examine electromyographic (EMG) activity in skilled throws with three levels of effort or ball 
speeds. In contrast to kinematics and kinetics, fewer studies have measured muscle activity in pitching motions. 
In unskilled throws with slow, medium, and maximum speeds, the wrist EMG activity was not directly associ-
ated with the muscle torque around release timings at the wrist joint, indicating the relation of the interaction 
torque to the muscle torque8. In skilled throws with maximum effort, muscle activities showed sequential timings 
of peak activities15. Although EMG activities in unskilled throws with three levels of effort8 and skilled throws 
with maximum effort have been discussed15, few studies have investigated EMG activities in skilled throws with 
different levels of effort or ball speeds. Elucidating effort-dependent effects on EMG features can provide insight 
into ways to control the fastball velocity, improve the pitching performance, and decrease the risk of injury.

In particular, the current study reveals the features of EMG activities relevant to motion effort from the per-
spective of muscle synergy or a muscle module16–18. In the module hypothesis, the central nervous system (CNS) 
controls muscle activity while grouping muscles rather than evaluating muscles independently. The number of 
muscles, or the number of degrees of freedom (DoF), is tremendous and more than what is necessary to achieve 
desired movements in massive cases. For example, let us consider the case of throwing a ball at a (not so fast) 
release speed. Although it is possible to achieve the motion by rotating only an elbow while recruiting at least 
two related muscles, we sometimes realize the motion by moving the elbows, shoulders, wrists, trunk, and legs 
while recruiting dozens or hundreds of muscles. The latter case denotes an example of the redundant number 
of DoFs required to achieve the desired movement. A possible way to reduce the redundant number of DoFs is 
to group muscles that are needed to achieve desired movements. The groups of muscles and these recruitment 
patterns are hereafter referred to as spatial modules and temporal modules, respectively. The spatial and temporal 
modules can originate from spinal cord activities16, 17 and provide insight into how muscle activities are related to 
motor repertoires, such as locomotion18, arm-reaching movements19, and maintaining balance while standing20.

The current study discloses how muscle activities are related to motion effort while focusing on spatial and 
temporal modules. We examine three factors, spatial modules, temporal modules, and effort dependence. A 
standard method used to extract spatiotemporal muscle modules is nonnegative matrix factorization (NNMF)21. 
Because NNMF enables us to analyze matrices with two factors (i.e., row and column), it is suitable for two-
factor analysis. For (more than) three-factor analysis, tensor decomposition rather than NNMF can be more 
effective22 (Fig. 1). While sorting an array of matrices along the third dimension (K in the left panel in Fig. 1), 
tensor decomposition enables us to analyze three factors (i.e., the column [S], row [T], and number of slices in 
the third dimension [K]). Previous studies have shown the effectiveness of tensor decomposition and its vari-
ants in discussing task-dependent effects on spatiotemporal muscle modules23–25. We thus expect to discuss how 
spatiotemporal modules show effort-dependent effects by using tensor decomposition for each subject. After 
extracting the effort dependence of the spatiotemporal modules in each subject, we examined how motion effort 
affected common and unique EMG features.

Results
Eight pitchers performed natural three-dimensional pitching with wind-up, cocking, acceleration, release, and 
follow-through phases (i.e., skilled pitching). Our experimental setup was close to a real baseball environment, 
i.e., 18.4 m from the mound to the home plate, with a catcher but without an opposing batter. The pitchers 
executed skilled pitching with either 50%, 80%, or 100% effort for ten trials for each level of effort. Among these 
conditions, there were significant differences in ball-release speed (Fig. 2, p = 0.00020 between 50 and 80% effort, 
p = 0.00092 between 50 and 100% effort, and p = 0.022 between 80 and 100% effort [Tukey’s comparison test]). 
In each subject, there were main effects of effort upon ball speed (F(2,18) > 53.6 and p < 2.64 × 10−8 via one-way 
ANOVA, with ball speed as a dependent variable and effort as an independent variable in each subject [Fig. S1]). 
In all the subjects, there was a significant difference in ball speed between 50 and 80% effort (p < 2.28 × 10−4 via 
Tukey’s comparison test). Although there was a significant difference in ball speed between 80 and 100% effort 
in 6 out of 8 subjects (p < 0.00762 via Tukey’s comparison test), there was no significant difference in the same 
comparison in the remaining two subjects (p > 0.106 via Tukey’s comparison test). These results indicated the 
success of performing skilled pitching while classifying motion into 50% and 80% effort and a slight difficulty 
in performing skilled pitching while classifying motion into 80% and 100% effort.

We focused on the effort-dependent effects on EMG activities from muscles in the trunk, upper body, 
and both arms (Table 1). The current study analyzed the EMG activities for 750 ms or resampled 150 time 
frames including ball-release timing at the 150th time frame. These timings include the stride, cocking, accelera-
tion, and release phases in skilled pitching15. In particular, the current study concentrated on the spatial module 
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(i.e., groups of muscles showing correlated activity), temporal module (i.e., time-varying recruitment pattern 
of the spatial module), and trial component (i.e., how each spatiotemporal module is recruited in each level of 
effort). To evaluate these three factors, we applied CANDECOMP/PARAFAC (CP) decomposition to the EMG 
activity data for each subject. Because EMG data were nonnegative, we utilized CP decomposition with non-
negative constraints for all values.

Figure 3 demonstrates the extracted spatial modules, temporal modules, and trial components in a typical 
subject. The combination of the spatial module, temporal module, and trial component is hereafter referred to 
as the tensor. The current study determined the number of tensors based on the criteria to explain 80% of the 
variance of the original data (the lower-right panel in Fig. 1). Of note, the number of extracted modules in the 
criteria was different in each subject (6–14, mean ± standard deviation was 10.375 ± 2.774). We also discussed 
the influence of the criteria on our results in a later section and in the supplementary material. In the CP decom-
position, the spatial module is associated only with the temporal module and the trial component within each 
tensor. In other words, the blue-colored spatial module in Fig. 3A1 was associated with the blue-colored temporal 
module (Fig. 3A2) and the blue-colored trial component (Fig. 3A3) in tensor #1. Differences in colors indicate 
different groups of the associated spatial module, temporal module, and trial component.

Tensor #1 indicated the spatiotemporal module possibly around the middle of the stride phase while moving 
the throwing arm backward, based on the increased recruitment pattern in the temporal module approximately 
500–350 ms before releasing the ball (Fig. 3A2). We interpreted the peak timing of each temporal module by 
comparing it to the pitching phases shown in a previous study15. In the spatial module, upper body muscles 
were recruited (middle part of the trapezius (TM) on the dominant side, upper part of the trapezius (TU) on 
the nondominant side, and deltoid middle strand (DL) on the dominant side, Fig. 3A1). These spatiotemporal 
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Figure 1.   Summary of CP decomposition, a variant of tensor decomposition. (Left): Tensor data consist of 
three factors: S columns, T rows, and K slices of matrices. In the current study, S, T, and K denote the number 
of muscles, the number of time frames, and the number of trials, respectively. We defined one tensor data point 
in each subject with all the trials and effort (i.e., the number of trials was 30 including 10 trials for 50% effort, 10 
trials for 80% effort and 10 trials for 100% effort). (Upper-right and middle-right): CP decomposition provides 
us with R rank-1 tensors, referred to as tensors for simplicity throughout this study. Each tensor includes a 
spatial module (the bar graph surrounded by a blue rectangle in the middle panel), a temporal module (the line 
plot surrounded by a green rectangle in the middle panel), and a trial component to indicate the trial-dependent 
or effort-dependent effects on the spatiotemporal module (the scatter plot surrounded by a red rectangle in 
the middle panel). Each tensor is not related to other tensors, i.e., the first spatial module is related only to the 
first temporal module and trial component. (Lower-right) The proportion of the variance in reconstructed data 
via R tensors to the variance in the original data. The proportion is determined by the uncentered coefficient 
of determination. The solid black line and black shaded area indicate the mean and standard deviation of the 
proportion across eight subjects. In major parts of this study, we chose R based on the criteria to explain 80% of 
the variance of the original data in each subject.
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modules were recruited across the three types of effort, although the recruitment pattern was slightly larger in 
50% effort trials (Fig. 3A3).

Based on the peak timings of the temporal modules, the spatiotemporal module recruited after tensor #1 
was tensor #6, although tensor #6 was recruited again around the time that the ball was released (Fig. 3F2). The 
temporal module showed large activation patterns at approximately 350–250 ms before the ball was released 
or before the transition from the stride to the arm-cocking phase (Fig. 3F2). In the spatial module, upper body 
muscles were recruited (TM in both dominant and nondominant sides, Fig. 3F1). These modules were largely 
recruited in 100% effort trials compared to 50% and 80% effort trials.

Tensors #2, #4, #5, #7, and #8 represented spatiotemporal modules around the arm-cocking phase (i.e., 
200–50 ms before release, Fig. 3B,D,E,G,H). In the spatial modules, large recruitment patterns were observable 
in both the upper body and arm muscles (the biceps brachii (BB) in the dominant side and the pectoralis major 
(PM) in the nondominant side in tensor #2, the extensor carpi radialis longus (ECR) in the nondominant side 
and the PM in the dominant side in tensor #4, Fig. 3B1 and 3D1), arm muscles (the flexor carpi ulnaris (FCU) 
in the dominant side and ECR in the dominant side in tensor #5, Fig. 3E1), both arm and trunk muscles (the 
FCU in the dominant side, the ECR in the dominant side, and the external oblique (EO) in the nondominant 
side in tensor #7, Fig. 3G1), or upper body muscles (the DL in the dominant side and the triceps brachii (TB) in 
the nondominant side in tensor #8, Fig. 3H1). In tensors #2 and #4, the trial components indicated slight effort-
dependent effects on the recruitment patterns of the spatiotemporal modules (Fig. 3B3 and D3). In contrast, in 
tensors #5, #7, and #8, large effort-dependent effects were evident (Fig. 3E3, G3, and H3).

Around release (i.e., around the 750th time frame), the recruitment of the spatiotemporal module in tensor 
#3 was obvious (Fig. 3C), based on the peak timing of the temporal module (Fig. 3C2). Both the upper body 
and trunk muscles were related (the TU on the dominant side and the EO on both sides, Fig. 3C1). The trial 
component denoted larger recruitment in 80% and 100% effort trials than in 50% effort trials.

In summary, CP decomposition enabled us to find several effort-dependent effects on the spatiotemporal 
modules, such as those observed in tensors #3, #5, #7, and #8 in a typical subject. Thus, CP decomposition 
allowed us to evaluate the effort-dependent effects on the time-varying and multiple muscle activities in skilled 
pitching. The results in Fig. 3 allowed us to interpret how the effort-dependent effects were apparent in each 
phase and muscle activation pattern.

We then investigated the tendencies across whole subjects to examine how uniform and unique motion 
features in each individual depended on motion effort. Nevertheless, there was a problem: the extracted spatial 
modules, temporal modules, trial components, and the number of extracted tensors were different among all 

Figure 2.   Ball-release speed in each level of effort. The horizontal solid black lines indicate the release speed 
averaged across all the trials and subjects in each condition (N = 8). Each circle represents the release speed 
averaged across all the trials in each subject. Each dotted black line indicates ball-release speed in each subject 
and effort. Single and double asterisks show statistically significant differences with p < 0.05 and p < 0.01 in 
Tukey’s comparison test.

Table 1.   We measured and analyzed the muscles summarized in this table on the right and left sides of the 
pitchers. 

FCU: Flexor carpi ulnaris ECR: Extensor carpi radialis longus BB: Biceps brachii

TB: Triceps brachii DL: Deltoid middle strand PM: Pectoralis major

TU: Upper part of the trapezius TU: Upper part of the trapezius EO: External oblique
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the subjects. To overcome this problem, we derived low-dimensional structures inherent in the trial components 
based on the following guidelines. CP decomposition permitted us to extract spatial modules, temporal modules, 
and trial components without orthogonal constraints. That is, some overlaps between spatial modules, temporal 
modules, and trial components were allowed. Due to these nonorthogonal properties, the extracted spatiotem-
poral modules indicated similar effort-dependent effects (e.g., in tensors #3, #5, #7, and #8). An advantage of this 
nonorthogonality was that we were able to discuss how each spatiotemporal module was recruited depending 
on effort in detail. On the other hand, a disadvantage associated with the nonorthogonality of this approach was 
the larger number of extracted tensors than the number of tensors extracted via the analysis with orthogonal 
constraints. A smaller number of tensors provides better interpretability. The current study thus extracted useful 
and lower-dimensional features to discuss effort-dependent effects on time-varying multiple muscle activities 
across the subjects using a method with orthogonal constraints. In particular, we applied principal component 
analysis (PCA) to extract the most and second-most prominent dimensions intrinsic to trial components (Fig. 4, 
see Methods for details). The two dimensions allow us to visualize the results in an interpretable manner. After 
extracting the two dimensions in all the subjects, we then compared the dimensions among the subjects.

The two essential dimensions of the trial components explained 75–91% of the variance in the original trial 
components (85.4 ± 5.9% [mean ± standard deviation]). If each trial component uniformly incorporated the origi-
nal information, the two dimensions would explain 10.8% of the variance. In contrast to this uniform assumption, 
the extracted two dimensions include enough detail to interpret the original trial components. We then applied 
a classification tree algorithm to discuss effort-dependent effects in the two dimensions (Fig. 4). One of the most 
powerful features of the tree algorithm is its interpretability. The classification error was 0–0.2 (0.0917 ± 0.0792 
[mean ± standard deviation]), indicating approximately 90% classification accuracy. Because there were three 
categories (i.e., 50%, 80%, and 100% effort), a random classifier would demonstrate a classification error of 0.67. 

FCU (D, ND), ECR (D, ND), BB (D, ND), TB (D, ND), DL (D, ND), PM (D, ND), TU (D, ND), TM (D, ND), EO (D, ND)FCU (D, ND), ECR (D, ND), BB (D, ND), TB (D, ND), DL (D, ND), PM (D, ND), TU (D, ND), TM (D, ND), EO (D, ND)
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Figure 3.   Spatial modules, temporal modules, and trial components extracted via CP decomposition with 
nonnegative constraints in a typical subject. � indicates the contribution of each tensor in reconstructing the 
original data (detailed descriptions were provided in the Materials and methods section). Each color indicates 
the associated combinations of the spatial module, temporal module, and trial component. For example, the 
blue-colored spatial module in panel A1 is associated with the blue-colored temporal module in panel A2 and 
the blue-colored trial component in panel A3. (A1–H1): Extracted spatial modules. Horizontal and vertical axes 
indicate the muscle number and the recruitment of each muscle in the spatial module. Each muscle number 
corresponds to the name listed at the bottom part of this figure. The definitions for the abbreviated muscle 
names in the bottom part of this figure are listed in Table 1. The abbreviations D and ND associated with each 
muscle indicate the dominant and nondominant side. (A2–H2): Extracted temporal modules. Horizontal 
and vertical axes indicate the time frame number and the recruitment magnitude. (A3–H3): Extracted trial 
components. Horizontal and vertical axes indicate the effort type and the magnitude of the trial component. The 
trial component in each trial is shown as a dot. The horizontal solid lines indicate the trial component averaged 
across trials in each level of effort. Larger values in the component indicate larger recruitment of the associated 
spatial and temporal modules in that level of effort.
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The two dimensions of the trial components possessed enough details to discuss both the original trial compo-
nents and the difference among the three levels of effort.

In six out of eight subjects (Fig. 4B–E,G,H), two dimensions were used to classify three types of effort. In five 
of these six subjects (Fig. 4B,C,E,G,H), the first principal component (PC1) in the trial components was effective 
in distinguishing between low effort (i.e., 50%) and high effort (i.e., 80% and 100%), and the second principal 
component (PC2) was efficient in classifying high effort (i.e., 80%) and the highest effort (i.e., 100%). In the 
remaining subject (Fig. 4D), it was possible to distinguishing between 100% effort and other levels of effort using 
PC1, and PC2 allowed us to classify 50% and 80% effort. In the remaining two subjects (Fig. 4A,F), one dimension 
was enough to classify the level of effort. Among seemingly diverse features used to classify effort, it was possible 
to find consistency. Although PC2 was not utilized in the classification tree in Fig. 4A and 4F, 80% effort trials 
were associated with a lower value of PC2, and 100% effort trials were associated with a more substantial value 
of PC2—the features in Fig. 4A,F were thus consistent with the elements in Fig. 4B,C,E,G,H, in which PC2 was 

Figure 4.   PC1 and PC2 of the trial components in each subject and the decision boundaries estimated 
by a classification tree algorithm. Horizontal and vertical axes indicate PC1 and PC2. Magenta, black, and 
cyan dots demonstrate the PC1 and PC2 values in each trial with 50%, 80%, and 100% effort, respectively. 
Magenta, black, and cyan areas denote the data area to be classified into 50%, 80%, and 100% effort estimated 
by the classification tree algorithm. Panels (A–H) denote the PC1 and PC2 values in each subject. Panel (C) 
surrounded by the black dotted rectangle corresponds to the typical subject in Fig. 3.
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effective in classifying 80% and 100% effort. The subject denoted in Fig. 4D shows the exchanged roles of PC1 
and PC2 compared to other subjects. If we exchanged the role of PC1 with that of PC2, the exchanged PC2 (i.e., 
the original PC1) worked to classify between 50% and other efforts (i.e., 80% and 100%), and the exchanged 
PC1 (i.e., the original PC2) worked to classify 80% and 100% effort. In sum, two dimensions were sufficient to 
classify three types of effort in all the subjects. One dimension, PC1 in major subjects, could be used to success-
fully classify the effort into 50% effort and high effort. The other dimension, PC2 in major subjects, showed a 
tendency to classify the high effort into 80% and 100%.

The current study further investigated the spatial and temporal modules related to classifying three levels of 
effort. Using the PC1 and PC2 coefficients of the trial components, we calculated the spatiotemporal modules 
associated with PC1 and PC2 (see Methods for details). The spatiotemporal modules linked with PC1 could be 
related to classifying low (i.e., 50%) and high effort (i.e., 80% and 100%). Similarly, the spatiotemporal modules 
related to PC2 could be related to classifying high effort (i.e., 80%) and the highest effort (i.e., 100%). Of note, to 
compute the average across all the subjects and statistical features, PC1 and PC2 in Fig. 4D were reversed because 
these roles were reversed compared to their roles in other subjects. Despite the nonnegative constraints in the 
spatiotemporal modules (Fig. 3), the PC1 and PC2 coefficients included negative values. Thus, the spatiotemporal 
modules associated with PC1 and PC2 incorporated both positive and negative values. We sorted the sign of 
spatiotemporal modules associated with PC1 and PC2 without affecting any results (see Methods for details). 
After sorting the signs, the current study examined the muscles and timings that could be used classify effort.

The PC1-related trial components showed a clear separation between 50% and higher effort (p < 0.0014, 
Tukey’s comparison test, Fig. 5C). We then investigated the consistency of the PC1-related spatiotemporal mod-
ules across the subjects. The current study performed a t-test with Bonferroni’s correction to evaluate the muscles 
and timings different from 0 consistently across the subjects. If there were consistent recruitments of some mus-
cles across the subjects, the associated p-values would be smaller than some criteria (e.g., 0.05 or 0.01). In the 
PC1-associated spatial module (Fig. 5A), there were significant recruitments of the FCU in the dominant arm 

FCU (D, ND), ECR (D, ND), BB (D, ND), TB (D, ND), DL (D, ND), PM (D, ND), TU (D, ND), TM (D, ND), EO (D, ND)
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Figure 5.   The spatiotemporal modules associated with PC1 and PC2 of the trial components. (A–C): PC1-
associated spatial module, temporal module, and trial component. Double asterisks and single asterisks in 
panel (A) indicate significant differences from 0 with p < 0.01 and p < 0.05 through a t-test with Bonferroni’s 
correction. Red and black asterisks in panel (B) demonstrate significant differences from 0 with p < 0.01 and 
p < 0.05 via a t-test with Bonferroni’s correction. The muscle type associated with the muscle number in panel 
(A) is listed at the bottom part of this figure. The dotted lines in panel (C) indicate the effort-dependent effects 
on trial components in each subject. Double asterisks above the horizontal solid black line demonstrate a 
significant difference with p < 0.01 (Tukey’s comparison test). A single asterisk indicates a significant difference 
with p < 0.05. (D–F): PC2-associated spatial module, temporal module, and trial component.
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(p = 0.0328 [corrected], effect size [es] = 1.72), the ECR in the dominant arm (p = 0.0070 [corrected], es = 2.24), 
the ECR in the nondominant hand (p = 0.0266 [corrected], es = 1.79), the BB in the dominant hand (p = 0.0097 
[corrected], es = 2.12), the DL close to the dominant arm (p = 0.0237 [corrected], es = 1.82), and the DL close to 
the nondominant arm (p = 0.0055 [corrected], es = 2.33). In the PC1-related temporal module (Fig. 5B), there 
were significant recruitments around when the ball was released and 300 ms before the moment of release 
(p < 0.05 [corrected], es > 2.35) or at the transition from stride to arm-cocking phases. Fig. S6 summarizes the 
effect size. Due to the common features in both the spatial and temporal modules, we regarded the PC1-related 
spatiotemporal module as common EMG features across the subjects rather than diverse EMG features.

The PC2-related trial components showed a clear separation between 80 and 100% effort (p = 0.00247, Tukey’s 
comparison test, Figs. 4, 5F). There was also a significant difference between 50 and 80% effort (p = 0.00681). 
Of note, based on the classification tree, PC2 was not necessary to distinguish 50% effort from higher levels of 
effort. There was no consistent recruitment in each muscle across the subject (p > 0.5212 [corrected], es < 0.968 
[Fig. 5D]), indicating diverse individual differences to classify effort into 80% and 100% categories. In the PC2-
related temporal module, there were significant recruitments 400 ms before the release (p < 0.0366 [corrected], 
es > 2.42 [Fig. 5E]) or in the middle of the stride phase. Because of the minor common and major unique features 
in the spatiotemporal modules, we regarded the PC2-related spatiotemporal module as diverse EMG features 
rather than common EMG features.

The common EMG features (Fig. 5A,B) were evident when switching from 50% effort to higher levels of effort 
(Fig. 5C). In contrast, unique EMG features were obvious when switching from 80 to 100% effort (Fig. 5D–F). 
By combining CP decomposition and PCA, we revealed that common and diverse EMG features demonstrated 
different types of effort dependence.

We heretofore examined the effort dependence of the spatiotemporal modules with the criteria explaining 
80% of the variance of the original data to determine the number of tensors. The current study next checked the 
influence of the criteria on our results. PC1 and PC2 in the trial components were useful for classifying effort 
into three levels from time-varying and multiple EMG activity data, indicating the significance of PC1 and PC2 
to discuss effort-dependent effects on EMG features.

Thus, we investigated the similarities of PC1 and PC2 in the trial components across different criteria. The 
PC1 values were highly consistent across the criteria to explain 70%, 75%, 80%, and 85% of the variance in the 
original data (Fig. 6A, the absolute value of the correlation coefficients averaged across the subjects [abbreviated 
as absolute correlation hereafter] were larger than 0.8774). In contrast, the PC2 values were more inconsistent 
than those in PC1 (Fig. 6B, the absolute correlations were larger than 0.3807). In particular, in PC2, there was 
a large difference between the criteria to explain the lowest (i.e., 70%) and the highest (i.e., 85%) variance (the 
absolute correlation was 0.3807). Between the criteria regarding 75% and 80% variance (the absolute correlation 
was 0.7216) or 80% and 85% variance (the absolute correlation was 0.6603), the tendencies in Fig. 4 were not 
significantly different from the perspective of the absolute correlation. Despite the lower absolute correlations 
in PC2 than in PC1, the qualitative tendencies were consistent across the four types of criteria (Figs. S2–S5 in 
Supplementary material). The common EMG features in PC1 across the subjects that classified the effort into 
50% and higher levels of effort were invariant across the criteria to explain the variance of the original data. 
The diverse EMG features in PC2, to classify the effort into 80% and 100% categories, slightly depended on the 
criteria. Of note, irrespective of this observed dependence on criteria, our results were invariant. The EMG fea-
tures associated with PC1 were robust against the criteria that determined the number of tensors (Figs. S2-S5), 
indicating that the commonly observed EMG features (Fig. 5A–C) were also invariant against the criteria. The 
EMG features associated with PC2 were not robust against the criteria, indicating that the unique EMG features 
(Fig. 5A–C) were also observable in several thresholds.

)B()A(

Figure 6.   Similarities of PC1 and PC2 in trial components among different criteria to determine the number 
of tensors. (A) Absolute values of Pearson’s correlation of PC1 coefficients. (B) Absolute values of Pearson’s 
correlation of PC2 coefficients.
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Discussion
The current study extracted the effort-dependent effects on spatiotemporal modules via tensor decomposition 
(Figs. 1, 3). The extraction allowed us to visualize how the recruitment of each muscle at each time was related 
to each level of effort or the speed of the fastball (Figs. 2, 3). To examine effort-dependent effects on common 
and diverse EMG features, we extracted low-dimensional spaces inherent in the trial components that indicated 
the effort dependence of the spatiotemporal modules. Two dimensions were enough to classify effort into 50%, 
80%, and 100% (Fig. 4). One dimension was needed to separate 50% from higher levels of effort, and the other 
dimension was needed to classify effort as either 80% and 100%. In the dimension used to separate 50% from 
higher levels of effort, several arm muscles and upper body muscles were consistently recruited approximately 
300 ms before the ball was released and around the release timings across subjects (Fig. 5A–C). In the other 
dimension to separate 80% from 100% effort, there were distinct individual differences in muscle recruitment but 
slight consistent activations at approximately 400 ms before the moment of release across subjects (Fig. 5D–F).

Although the effort-dependent modulations of spatiotemporal modules were not thoroughly examined, we 
predicted some possible results. The first possibility was that unique motion features were more evident when a 
greater effort was exerted in skilled pitching, based on pianist research14. The second possibility was that greater 
effort was associated with more evident common motion features because common features play roles in facili-
tating faster elbow and wrist rotations10. Our results supported the coexistence of the two possible results. In 
Fig. 5A–C, the dimension to separate 50% from higher effort can consist of common EMG features across subjects 
rather than unique EMG features. In Fig. 5D–F, the dimension to separate 80% from 100% effort can consist of 
unique EMG features rather than common EMG features. Our results clarified the common and diverse EMG 
features and their different effort-dependent effects from time-varying and multiple EMG activity data via CP 
decomposition.

The common and diverse EMG features were extracted via the combination of CP decomposition and PCA 
(Figs. 4, 5). A strength of the combination is that it allows us to discuss interpretable low-dimensional features 
shared across the subjects, which complements the detailed analysis for each subject via CP decomposition. In 
the dimension to separate 50% effort from higher levels of effort (Fig. 5A–C), there were larger recruitments of 
the FCU in the dominant arm, the ECR in the dominant and nondominant arms, the BB in the dominant arm, 
and the DL in the dominant and nondominant sides approximately 300 ms before the ball was released and just 
before the ball was released in higher levels efforts. In the dominant arms and sides, these larger recruitment 
patterns when greater effort is exerted correspond to larger angular velocities of the shoulder internal rotation, 
elbow extension, and wrist flexion when utilizing interaction torques10, 26. We can expect similar functional roles 
of a more considerable involvement of the ECR and the DL in the nondominant arm and side. The extracted 
common EMG features can thus correspond to the previous findings in kinematics and kinetics. In addition, our 
analysis sheds light on the effort-dependent effects on pitching features. Furthermore, in addition to thoroughly 
investigating functional roles on the pitcher’s dominant side, our results indicated significant functional roles on 
the nondominant side in skilled pitching.

The diverse features extracted via CP decomposition and PCA were essential to separate 80% effort from 
100% effort (Fig. 5D–F). Although we found a few common features only in the temporal module approximately 
400 ms before the ball was released, there was no consistent tendency in the spatial module across subjects. A 
possible origin of the individual difference is the difficulty of separating 80% and 100% effort in skilled pitching. 
In the comparison of release velocity (Fig. 2), there was less of a difference between 80 and 100% effort than 
between 50% effort and higher levels of effort. In the result of the classification tree (Fig. 4), it was feasible to 
separate 50% effort from higher levels of effort with perfect accuracy (i.e., the separation of magenta dots from 
other dots). In contrast, classification accuracy was lower in separating 80% and 100% effort (the separation 
between black and cyan dots). Another possible origin of the individual difference is a diverse way of increasing 
effort or ball velocity. Some subjects increased effort and ball velocity while modulating the recruitment of PC1 
and PC2 (Fig. 4A,F). Other subjects increased effort and ball velocity while modulating the recruitment of only 
PC2 (Fig. 4B,C,E,G,H). These different manners to increase effort and ball velocity added to the complexity of 
detecting common features.

When analyzing a typical subject (Fig. 3), each temporal module showed a different time peak. By focusing 
only on the muscles whose recruitment pattern in the associated spatial module was large on the dominant side, 
the following sequential activation patterns were observed: TM (in tensors #1 and 6 approximately 400 ms before 
the ball was released), FCU and ECR (in tensor #5 approximately 250 ms before the ball was released), PM (in 
tensor #4 approximately 200 ms before the ball was released), BB and ECR (in tensors #2 and #7, respectively, 
approximately 120 ms before the ball was released), FCU, ECR, TB, and DL (in tensors #5 and #8 approximately 
70 ms before the ball was released), EO and TU (in tensor #3 approximately 15 ms before the ball was released), 
and TM (in tensor #6 around the time the ball was released). Effort-dependent effects were observable in ten-
sors #3, #5, #7, and #8. For example, in tensor #7, the ECR was recruited in the arm-cocking phase depending 
on effort. This effort-dependent recruitment of the wrist extensor muscle may reflect a more significant wrist 
flection velocity in proportion to throwing speed10, 26 after a more considerable wrist extension. In tensor #7, the 
EO in the nondominant side also demonstrated more substantial involvement, possibly starting to yield more 
significant angular velocity in shoulder internal rotation. For another example, in tensor #3, the recruitment 
of EO in the dominant and nondominant sides just before the ball was released may reflect the use of a more 
significant rotation to facilitate larger angular velocity in distal parts10, 26. Additionally, as another example, in 
tensor #6, the recruitment of the TM in the dominant and nondominant sides just around the time of release 
were evident. In addition, this recruitment was larger in cases of 100% effort than in other levels of efforts. These 
more considerable TM involvements on both sides may also indicate a larger angular velocity in shoulder internal 
rotation. CP decomposition enables us to discuss effort-dependent effects on these aspects while considering 
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cooperatively activated muscles. In particular, we observed the cooperative activity of muscles on the dominant 
side and nondominant side through effort-dependent effects on spatiotemporal modules. If we wanted to focus 
on the sequential activation patterns within a specific level of effort, such as in previous works8, 15, we should focus 
on trials with one level of effort. CP decomposition allows us to discuss the features inherent in the peak timings 
and onset time while considering spatial modules. Furthermore, if we wanted to focus on the variability of the 
speed of the fastball within a specific level of effort, as in previous studies6, 7, we should focus on one level of effort.

Although the 80% criterion is a standard criterion threshold for extracting spatiotemporal modules in EMG 
data, determining the number of modules or tensors is an ongoing question in PCA, NNMF, and CP decompo-
sition (see27). Thus, we compared the robustness of our results against the criteria to determine the number of 
modules. The dimension to separate 50% from higher effort was robustly invariant against the criteria (Fig. 6A). 
The difference between 50% and higher efforts was evident not only in the ball-release velocity (Fig. 2) but also 
in the trial components (Figs. 3, 4, 5). Compared to this dimension, the dimension to separate 80% effort from 
100% effort was influenced by the criteria (Fig. 6B). A possible reason is that a difference between 80 and 100% 
effort was less evident than the difference between 50% effort and higher levels of effort in the ball-release speed 
(Fig. 2). Another reason is that the effort-dependent effects of the spatiotemporal modules emerged in tensors 
whose contributions to explaining the original data were less, such as in tensors #6, #7, and #8. If we changed the 
criteria, the trial components with effort-dependent effects changed to some degree, resulting in a fluctuating 
representation. Of note, although the representation in the dimension used to separate 80% from 100% effort 
was influenced more strongly by the aforementioned criteria than was the dimension used to separate 50% 
from higher efforts, the dimension used to separate 80% from 100% effort showed a degree of consistency with 
a correlation coefficient larger than 0.66 among the criteria used to explain 75%, 80%, and 85% of the variance 
of the original data. Additionally, the dimension to separate 80% effort from 100% effort showed qualitative 
consistencies (Figs. S2–S5).

A limitation of tensor decomposition is that the number of the extracted spatiotemporal modules is larger 
than that for PCA or NNMF (but tensor decomposition has a lower number of parameters compared to these 
methods, see Methods for details). The larger number of modules often causes complicated interpretations of the 
modules—the current study utilized PCA to overcome this disadvantage (Figs. 4, 5). PCA provided a clear inter-
pretation by reducing the dimensionality, but nonnegative constraints were removed instead. Another limitation 
of tensor decomposition is its difficulty in addressing task-relevant and task-irrelevant components except for 
some special cases. The spatiotemporal module framework is a way to highlight how to manage a large number 
of DoF in the human body. Another perspective on the redundancy problem is the decomposition of motion 
data into task-relevant and task-irrelevant components28, 29 and the suppression of motor variability, especially 
in task-relevant motion components29. To discuss task-relevant and task-irrelevant features, different types of 
data-driven methods30–32 are preferable rather than tensor decomposition. Because the current study focused on 
the effort-dependent effects on multiple and time-varying muscle activities, we relied on tensor decomposition. 
Modifications to tensor decomposition are also possible while allowing the association of one spatial module 
with more than one temporal module by different weight values22, 24, 25 (i.e., Tucker decomposition and its vari-
ants). In the cases of extracting smoother temporal modules, it is also possible to define smooth constraints in 
temporal aspects33–35. Depending on the research purpose, we should use appropriate data analysis methods.

In conclusion, we clarified the following two features: (1) how spatial and temporal modules in baseball pitch-
ing motion were common and individually different, and (2) the effort-dependent modulations of the common 
and unique modules. Tensor decomposition was crucial for clarifying these features by analyzing time-varying 
EMG data in multiple muscles at three levels of motion effort simultaneously.

Materials and methods
Participants.  Nine subjects participated in our experiment (nine males, two left-handed and seven right-
handed; age 19–49  years; height 167–180  cm; bodyweight 70–82  kg; and baseball pitching experience for 
5–38 years). They abstained from physical activities 24 hours before participating in the experiments. Of note, 
we did not find an influence of age on our results. For example, Fig. 4B,G,H denote the essential dimensions of 
EMG modulations for subjects aged 21, 49, and 25 years old, respectively. In these subjects, one dimension was 
related to classifying motion into 50% and 80% effort, and the other dimension was related to classifying motion 
into 80% and 100% effort. In contrast, one dimension was essential for separating three levels of motion effort in 
19- and 24-year-old subjects, denoted in Fig. 4A,C, respectively. In summary, the age-dependent difference was 
not as significant as the individual difference.

Our inclusion criteria were that all of the subjects were trained as baseball pitchers for more than five years, 
and they participated in university or Japanese professional baseball leagues as pitchers. We excluded one out 
of the nine subjects because the measured EMG data in more than ten muscles were larger than the mean + 3 × 
standard deviation in more than ten trials. In total, we focused on eight subjects. Three of them were baseball 
pitchers in a Japanese university baseball league. Two subjects were retired pitchers that were in a Japanese 
university baseball league. The remaining three subjects were retired baseball pitchers that were in the Japa-
nese professional baseball league. The experimental procedures were approved by the Ethical Committee of the 
Graduate School of Arts and Sciences of the University of Tokyo (the approval number was 366–2) and were 
performed in accordance with the relevant guidelines and regulations. All the participants were informed of the 
experimental procedures in accordance with the Declaration of Helsinki, and all participants provided written 
informed consent before the start of the experiments.

Apparatus and procedure.  After an appropriate warmup session, the subjects were instructed to throw 
a baseball (diameter: 7.2 cm, weight: 145 g) thirty times from a pitching mound toward the low outside corner 
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indicated by both a home plate and a catcher. The experimental environment was almost the same as a real base-
ball environment, such as having a distance of 18.4 m from the mound to the home plate, but without an actual 
batter present. When a subject was left-handed, the lower outside corner meant lower and rightward direction 
from the subject’s viewpoint. Similarly, when a subject was right-handed, the lower outer corner meant a lower 
and leftward location from the subject’s viewpoint. The outside corners were based on the assumption that a left 
(right)-handed pitcher competed with a left (right)-handed batter. We focused on the lower outer corner because 
it is the furthest location from an opposing batter within the strike zone.

The thirty throws consisted of ten throws with 50% subjective effort, ten throws with 80% subjective effort, 
and ten throws with 100% subjective effort. We instructed the subjects to throw a baseball with 50% effort dur-
ing the first ten trials, 80% effort during the next ten trials, and 100% effort during the last ten trials. Because 
we did not provide any other details, each subject determined the motion effort by themselves. These pitching 
trials were interleaved with appropriate rest periods depending on the fatigue in each trial and in each subject. 
The rest periods were approximately 30 s and not more than one minute. The ball-release velocity was measured 
via Trackman Baseball.

We measured EMG activities from 18 muscles in the trunk, upper body, and both arms with the Trigno Wire-
less EMG System (Trigno Wireless EMG System; Delsys, Boston, MA, USA) at a 2000 Hz sampling rate. Table 1 
summarizes the measured muscles. The electrodes were carefully located to minimize crosstalk from adjacent 
muscles. To avoid the crosstalk, the inter-electrode distance was set to be 10 mm.

Preprocessing.  After the offset value of EMG data in each muscle was subtracted, the EMG data were digi-
tally full-wave rectified. Following the full-wave rectification, the EMG signal was low-pass filtered with 10 Hz 
using a built-in IIR filter in MATLAB 2019b. We set the steepness parameter to be 0.99, indicating that the 
transition width of the filter corresponded to 1% of the difference between the Nyquist frequency and passband 
frequency. The low-pass-filtered EMG data were resampled at a 200-Hz sampling rate and normalized such that 
the minimum and maximum values were 0 and 1, respectively. We focused on the 750 ms before the ball was 
released, i.e., 150 time frames in the resampled EMG. Ball-release timings were detected visually based on the 
videos measured via a high-speed camera.

Tensor decomposition.  The current study focused on CP decomposition22. Let us assume the size of ten-
sor data Xi,j,k as S × T × K , where S denotes the number of muscles analyzed, T indicates the number of time 
frames, and K indicates the number of trials ( i = 1, ...., S, j = 1, ...,T , k = 1, ...,K ). In the framework, tensor data 
Xi,j,k is decomposed as

 where R is the number of modules to be determined; si,r is the i th element of the r th module; tj,r is the j th ele-
ment of the r th module; and uk,r is the k th element of the r th module. In other forms, the k th slice of tensor data 
is approximated as

 where sr = (s1,r , s2,r , ...sS,r) is the r spatial module (or muscle synergy), tr = (s1,r , s2,r , ...sT ,r) is the r temporal 
module, and sTr  is the transpose of sr . CP decomposition thus enables us to estimate how spatiotemporal mod-
ules are common or uncommon among all trials through the r th trial component ur . If the r th spatiotemporal 
modules were common across all the trials, all the uk,r components would have the same value in k = 1, ...,K . 
If the r th spatiotemporal modules were recruited only in the first trials, u1,r would have a nonzero value and 
u2,r , ..., uK ,r = 0.

We calculated the spatiotemporal modules and trial components by minimizing the following squared error 
with nonnegative constraints:

 where �r ≥ 0 is the scaling factor to let srsTr = 1 , tr tTr = 1 , and uruTr = 1 . Due to the nonnegative constraints, 
si,r ≥ 0 , tj,r ≥ 0 , and uk,r ≥ 0 . The current study utilized the tensor toolbox for MATLAB and the “cp_nmu” 
function36.

We focused on the criteria to explain 80% of the variance inherent in the original data. The explained variance 
was calculated as the uncentered coefficient of determination. This 80% criterion seems lower than previous 
studies with NNMF due to the number of parameters. In our study, S = 18 (i.e., the number of muscles), T = 150 
(i.e., the number of time frames), and K = 30 (i.e., the number of trials). If we extracted common spatial modules 
among all the trials by using NNMF, the number of parameters would equal R × S + R × (T × K) = 36, 144 
when R = 8 . If we extracted spatial and temporal modules in each trial by using NNMF, the number of param-
eters would equal (R × S + R × T)× K = 40, 320 when R = 8 . In contrast, in CP decomposition, the num-
ber of parameters equaled R × S + R × T + R × K = 1, 584 . Furthermore, larger amounts of criteria can 
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reconstruction the noise that is inherent in data22. While considering the influence of the number of parameters 
and the goal of avoiding noisy reconstruction, we chose the criteria to explain 80% of the original variance.

Principal component analysis (PCA).  Because CP decomposition does not require any orthogonal con-
straints, the obtained modules and trial components show (at-a-glance) similarities to each other. To extract 
more interpretable differences among 50%, 80%, and 100% effort, the current study applied PCA to trial com-
ponents.

The PCA allowed us to extract low-dimensional components to explain the variance of the original data. The 
PCA to the trial components provided the following PC1 v1 and PC2 v2:

 and

 where v1r and v2r represent the coefficients used to calculate v1 and v2 , respectively. Trial components projected 
onto v1 and v2 explained the largest and the second largest portion of the variance in the covariance matrix of 
the trial components, respectively. That is, blending trial components via v1r and v2r provided the dimensions to 
explain differences among the trials with 50%, 80%, and 100% effort. We thus applied the most and the second-
most informative coefficients v1r and v2r to spatiotemporal modules. The PC1-associated spatiotemporal modules 
were calculated as 1
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culated the PC2-associated spatiotemporal modules in a similar manner. Of note, v1r and v2r were estimated 
without nonnegative constraints to discuss the most and the second most informative dimensions. Some of the 
terms in PC1- and PC2- associated spatiotemporal modules thus took negative values.

For visualization in Fig. 4, we sorted the signs of the PC1 values so that the projected trial components 
associated with 100% effort were larger than those associated with 50% effort trials in PC1. We also sorted the 
signs of the PC2 values so that the projected trial components associated with 100% effort were larger than 
those associated with 80% effort trials in PC2. Of note, these sorting procedures were for mere visualization: 
the results were invariant independent of these procedures. In detail, PCA enables us to decompose the original 
data as the multiplication of each PC component as 
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of the PCA results.
To compare the PC1- and PC2-associated spatiotemporal modules among the subjects, the signs of the mod-

ules should be sorted. After sorting, averaging the modules across all the subjects and statistical comparisons 
provided meaningful information. We sorted the signs as follows. We checked whether both the spatial module 
and temporal module were different from 0 based on the t-test with p < 0.05. If both modules were significantly 
different 0 and the averages of both modules were negative, we multiplied both modules by -1. Because the 
original data were decomposed into the products of the spatial module, temporal module, and trial component, 
there was no change if two of them were multiplied by -1.

Classification tree.  After determining the optimal and minimum leaf size in each subject, we performed 
the classification tree algorithm. The algorithm enables us to determine the decision boundary in each dimen-
sion and calculate the 30% hold-out validation error.

Statistical analysis.  To compare ball-release speed in each level of effort, we performed Tukey’s compar-
ison test. We also utilized Tukey’s comparison test to analyze the classification-relevant trial components in 
Fig. 5C,F. In analyzing classification-relevant spatial and temporal modules (Fig. 5A,B,D,E), the current study 
utilized a t-test with Bonferroni’s correction. All statistical tests were performed using MATLAB 2019b.

To discuss the recruitment of each component in the PC1- and PC2-associated spatiotemporal modules 
(Fig. 5), we performed a t-test with Bonferroni’s correction. The effect size was determined using Cohen’s d.

Data and materials availability
The datasets analyzed in the current study are available from the corresponding author upon reasonable request. 
The MATLAB code for CP decomposition is available on the website of the corresponding author.
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