Skip to main content
. 2021 Apr 1;23(4):e22394. doi: 10.2196/22394

Table 2.

Accuracy measures of radiomic studies for the systematic review.

Study, year Model basisa Patients, n Total sample (PCa+, PCa-)b Crossvalc/ split/none MLd methodse TP,f n FN,g n FP,h n TN,i n Senj (lower-upper) Spek (lower-upper)
Zhao, 2015 [44] LB 71 238 (92, 146) 120 (60, 60) ANN 57 35 16 130 0.620
(0.517-0.713)
0.890
(0.829-0.932)
Valerio, 2016 [45] LB 53 106 (53, 53) None LDA 51 2 1 53 0.962
(0.861-0.991)
0.981
(0.880-0.997)
Lay, 2017 [46] LB 224 410 (123, 287) Crossval RF 109 14 57 230 0.886
(0.817-0.931)
0.801
(0.751-0.844)
Reda, 2017 [47] LB 18 53 (26, 27) Crossval SNCSAE 26 1 1 27 0.963
(0.779-0.995)
0.964
(0.786-0.995)
Starobinets, 2017 [48] LB 169 509 (291, 218) Crossval LR 264 27 24 194 0.907
(0.868-0.936)
0.890
(0.841-0.925)
Wang, 2017 [36] PB 172 172 (79, 93) Crossval DCNN 55 24 15 78 0.696
(0.587-0.787)
0.839
(0.750-0.900)
Le, 2017 [52] LB 364 913 (463, 450) 275 (139, 135) multimodal CNN 125 14 6 129 0.899
(0.837-0.939)
0.956
(0.905-0.980)
Kwon, 2018 [49] LB 204 191 (36, 155) Crossval LASSO LR 35 5 9 90 0.875
(0.733-0.947)
0.909
(0.834-0.952)
Song, 2018 [50] LB 195 547 (261, 286) 55 (23, 32) DNN 20 3 3 29 0.870
(0.665-0.957)
0.906
(0.746-0.969)
Chen, 2019 [56] PB 381 381 (182, 199) 155 (55, 60) LR 55 1 1 59 0.982
(0.884-0.997)
0.983
(0.891-0.998)
Devine, 2019 [51] LB 65 97 (81, 16) Crossval LR 61 20 2 14 0.753
(0.648-0.835)
0.875
(0.614-0.969)
Gholizadeh, 2019 [54] LB 11 297 (161, 136) Crossval SVM 161 1 9 127 0.994
(0.958-0.999)
0.934
(0.878-0.965)
Ma, 2019 [58] PB 81 81 (44, 37) None LR 42 2 5 32 0.955
(0.836-0.989)
0.865
(0.714-0.943)
Mazaheri, 2019 [53] LB 67 170 (102, 68) 91 (52, 39) CART 51 1 19 20 0.981
(0.876-0.997)
0.513
(0.360-0.664)
Qi, 2019 [57] PB 199 199 (85, 114) 66 (28, 38) LR 23 5 3 35 0.821
(0.636-0.924)
0.921
(0.782-0.974)
Zhang, 2019 [59] PB 140 140 (60, 80) Crossval RF 14 6 5 22 0.700
(0.473-0.859)
0.815
(0.625-0.921)

aLB: lesion-based model; PB: patient-based model.

bPCa: prostate cancer.

cCrossval: cross-validation techniques.

dML: machine learning.

eANN: artificial neural networks; LDA: linear discriminant analysis; RF: random forest; SNCSAE: stacked nonnegativity constraint sparse autoencoders; LR: logistic regression; DCNN: deep convolutional neural networks; LASSO: least absolute shrinkage and selection operator; DNN: deep neural networks; SVM: support vector machine; CART: classification and regression tree.

fTP: true-positive.

gFN: false-negative.

hFP: false-positive.

iTN: true-negative.

jSen: sensitivity.

kSpe: specificity.