Skip to main content
. 2021 Apr 1;9(4):e25000. doi: 10.2196/25000

Table 2.

Hyperparameters for grid search.

Algorithms and parameter name Search space Optimal
Logistic regression

  • Penalty

  • C

  • tol

  • solver

  • multi_class

  • (‘l1’, ‘l2’, ‘none’)

  • (0.01, 0.1, 1.0)

  • (0.0001, 0.001, 0.01)

  • (‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’) (‘auto’, ‘ovr’, ‘multinomial’)

  • l2

  • 1.0

  • 0.0001

  • lbfgs

  • auto

Random forest

  • n_estimators

  • max_depth

  • max_features

  • min_samples_splitmin_samples_leaf

  • (5, 10, 50, 100, 150)

  • (1, 2, 3, 5, None)

  • (’auto’, ’sqrt’)

  • (2, 5, 10)

  • (1, 2, 4)

  • 100

  • None

  • auto

  • 2

  • 1

Extra trees

  • n_estimators

  • max_depth

  • max_features

  • min_samples_splitmin_samples_leaf

  • (5, 10, 50, 100, 150)

  • (1, 2, 3, 5, None)

  • (’auto’, ’sqrt’)

  • (2, 5, 10)

  • (1, 2, 4)

  • 100

  • None

  • auto

  • 2

  • 1

Gradient boosting trees

  • Loss

  • n_estimators

  • max_depth

  • learning_rate

  • criterion

  • (‘deviance’, ‘exponential’)

  • (5, 10, 50, 100, 150)

  • (1, 2, 3, 5)

  • (0.001, 0.01, 0.1)

  • (’friedman_mse’, ’mse’, ’mae’)

  • deviance

  • 100

  • 3

  • 0.1

  • friedman_mse