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Abstract

Multilevel modeling (MLM) is becoming increasingly accessible and popular in the analysis of 

event-related potentials (ERPs). In this article, we review the benefits of MLM for analyzing 

psychophysiological data, which often contains repeated observations within participants, and 

introduce some of the decision-making points in the analytic process, including how to set up the 

data set, specify the model, conduct hypothesis tests, and visualize the model estimates. We 

highlight how the use of MLM can extend the types of theoretical questions that can be answered 

using ERPs, including investigations of how ERPs vary meaningfully across trials within a testing 

session. We also address reporting practices and provide tools to calculate effect sizes and simulate 

power curves. Ultimately, we hope this review contributes to emerging best practices for the use of 

MLM with psychophysiological data.

Psychophysiologists have long recognized that the multivariate and densely repeated-

measures nature of their data call for special approaches to data analysis (e.g., Games, 1976; 

Keselman & Rogan, 1980; Vasey & Thayer, 1987; Wilson, 1967). Over the past half-century 

most researchers have continued to use traditional approaches for analysis of 

psychophysiological data, including the use of repeated measures ANOVA to test differences 

in mean amplitude or latency of traditionally quantified event-related potential (ERP) 

components (see Jennings & Allen, 2017; Luck, 2014). In the early years of the field, this 

practice was likely driven by the lack of available alternatives or feasible means to carry 

them out. However, since statistical software packages for conducting complex data analyses

—and desktop-type computers with which to run them—became available in the early 

1980s, new analytic approaches have been developed that require more intensive 

computational resources for fitting models, including sophisticated approaches that do not 

rely on quantifying a particular ERP component at a single moment in time (e.g., Kiebel & 

Friston, 2004; Litvak et al., 2011; Pernet et al., 2011). However, it is beyond the scope of 

this article to describe all data analytic advancements for ERPs. Instead, we focus on one 
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popular approach—multilevel modeling (MLM), alternatively called hierarchical linear 

modeling, mixed linear modeling, mixed effects modeling, and mixed effect regression—

that has emerged for analyzing traditionally quantified ERP components.

MLM is appropriate for any data that is structured such that observations are recorded within 

naturally occurring groups, like schools. In the realm of ERPs, multiple observations are 

grouped within individuals. A number of previous articles have advocated for the use of 

MLM with psychophysiological data, including ERPs (see Bagiella et al., 2000; Boisgontier 

& Cheval, 2016; Goedert et al., 2013; Kristjansson et al., 2007; Krueger & Tian, 2004; Page-

Gould, 2017; Tibon & Levy, 2015; Tremblay & Newman, 2015; Volpert- Esmond et al., 

2018; Vossen et al., 2011). The purpose of this article is to provide a gentle orientation to 

psychophysiologists who are interested in learning more about how to apply MLMs to their 

ERP data, and to provide suggestions for best practices to increase the reproducibility of 

these analyses and orient researchers to available resources to make the best analytical 

choices.

Description of MLM and Its Advantages

Multilevel modeling is an extension of the General Linear Model (GLM) that estimates both 

fixed effects, as the GLM does, and random effects. Fixed effects refer to effects that are 

expected to generalize across the population and include the estimated effects of the 

specified independent variables (IV) on the dependent variable (DV). Fixed effects estimated 

with MLM, including betas, degrees of freedom, and associated p-values, are interpreted in a 

similar way as fixed effects estimated within a GLM. Unique to the MLM relative to the 

GLM are the random effects, which allow researchers to specify natural grouping variables 

(or “random factors”) in the data that result in non-independence of observations. In the case 

of ERP data, random factors will likely include participants and channels; however, other 

random factors are possible, including items or the stimuli used to elicit the ERP signal. The 

intercept of the random factor can be allowed to be random, meaning that a unique intercept 

will be estimated for each unit of that random factor (e.g., if participants are specified as a 

random factor, a different intercept can be estimated for each participant). Additionally, the 

slope associated with a particular predictor variable can be allowed to be random for each 

unit of the random factor (e.g., the effect of a particular predictor is estimated separately for 

each participant). The MLM will provide an estimate of the variance of the random intercept 

or slope, thereby providing an estimate of how much variability in the intercept or slope 

exists within a particular random factor.1

rANOVA is essentially a special case of MLM and, thus, a multilevel model can be specified 

in a way that reproduces the results of a rANOVA. However, because it is the general case, 

MLM is much more flexible and allows for experimental or analytic designs that rANOVA 

cannot accommodate. For example, whereas rANOVA handles participants as the single 

random factor that results in dependence of observations, MLM can include multiple 

random factors in a variety of structures. This is particularly useful in ERP studies because 

1It is worth noting that other approaches exist to model clustered data, and that some approaches do not involve specifying random 
factors (e.g., generalized estimating equations; McNeish et al., 2017). These approaches may be more useful when researchers are not 
interested in the random effects, as a GEE will provide similar inferences as an MLM.
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repeated measurement within other factors produces dependence of observations, namely, 

electrodes/channels. In rANOVA, channel is often included as a predictor, which can result 

in unwieldy higher-order interactions that are difficult to interpret, especially as the number 

of channels increases (Luck, 2014). Instead, in MLM, in addition to specifying participants 

as a random factor, we can include channel as a random factor and estimate fixed effects of 

interest at the “average” channel.

Additionally, by specifying multiple random factors, MLM can test questions about the 

relative amounts of variance explained by different random factors using a special case of 

MLM called covariance component models, alternatively called cross-classified models 
(Dempster et al., 1981; Goldstein, 1987; Rasbash & Goldstein, 1994). For example, consider 

a stimulus set of emotional faces in which each target person makes a series of expressions 

that vary by arousal and valence. Covariance component models could be used to determine 

whether variance in P300 amplitude elicited by these faces is determined more by the targets 

or the participants (i.e., do P300s vary more as a function of which perceiver they are 

recorded from or which target they are elicited by?). Using unique ERP waveforms for each 

perceiver and target combination, we can specify perceivers and targets as crossed random 

factors and compare the variance in the random intercept for each group. More variance in 

one random factor or another suggests that either the perceiver or the target accounts for 

more variance in P300 amplitude. Thus, MLM expands the types of theoretical questions 

that can be answered using ERPs.

A second advantage of MLM is the flexibility it allows in the assumptions made about the 

variance and covariance between the observations in the dataset. In the early years of the 

field (e.g., Games, 1976; Keselman & Rogan, 1980; Wilson, 1967), researchers were 

particularly concerned about the possibility that the use of rANOVA for the kinds of 

successive measurements commonly obtained in psychophysiological studies often violate 

core assumptions underlying the use of rANOVA, especially the assumption of sphericity 
(i.e., that the variance of all pairwise differences between repeated measurements is 

constant). As noted by numerous researchers tackling this issue (e.g., Blair & Karniski, 

1993; J. Richard Jennings & Wood, 1976; Keselman & Rogan, 1980; Vasey & Thayer, 

1987), the assumption of sphericity is unrealistic when applied to psychophysiological data. 

Other solutions have been proposed within the context of rANOVA, including well-known 

adjustments to the degrees of freedom of a test—and therefore the observed p-value—based 

on the degree of non-sphericity it introduces (e.g., Greenhouse & Geisser, 1959; Huynh & 

Feldt, 1970, 1980) and multivariate tests such as Hoteling’s T2 test (Mardia, 1975). MLM 

handles this issue by allowing models to be specified in a way that does not assume 

sphericity, thus making an adjustment unnecessary. Specifically, because MLMs are 

estimated with maximum likelihood methods, the assumed covariance structure of the data 

can be specified in a number of ways, including as an autoregressive covariance matrix, a 

compound symmetry covariance matrix (satisfies conditions of sphericity but more 

restrictive), or an unstructured covariance matrix, which makes no assumptions of 

equivalence among elements of the variance-covariance matrix (for a more in-depth 

discussion of variance-covariance structures, see Arnau et al., 2010; Page-Gould, 2017; 

Singer & Willett, 2003). In the case of violations of sphericity, MLMs with unstructured 

covariance matrices (and thus no assumption of sphericity) outperform rANOVA in 
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containing the Type 1 error rate (Haverkamp & Beauducel, 2017), and thus may be 

particularly appropriate for analyzing ERP data. Additionally, another positive benefit of 

using maximum likelihood estimation is robustness to missing data (e.g., Enders & Tofighi, 

2007; Graham, 2009; Krueger & Tian, 2004).

Lastly, in contrast with rANOVA, MLM allows for both continuous and categorical IVs. 

Continuous IVs can include observation-level variables, such as the hue of a particular 

stimulus if stimuli vary along a continuum of color, or a person-level variable, such as self-

reported depression symptoms. Depending on how the random and fixed effects are 

specified, researchers can investigate questions such as how continuous individual 

differences influence the effect of a particular experimental manipulation within a single 

model (i.e., a cross-level interaction), rather than using difference or residual scores to 

produce a single ERP observation per participant and examine how it correlates with the 

individual difference variable of interest. Lastly, this feature of MLMs also allows 

researchers to investigate single-trial ERPs with time or trial included as a continuous 

variable in the model to look at change in ERPs over time, which we will address in later 

sections.

To introduce readers to the application of MLMs to ERP data, we will first use an example 

dataset with the error-related negativity and correct-response negativity (ERN/CRN) 

quantified from signal averaged waveforms to illustrate the steps of the analytic process. 

Then, we will discuss several extensions that are possible with MLM that rANOVA cannot 

accommodate.

Using MLMs with Signal Averaged ERP Waveforms: An Example

In the example data set, seventy-three college student participants (all African American; 22 

male, 49 female, 2 trans/non-binary) completed a flanker task while EEG was recorded 

using 33 tin electrodes.2 All scalp electrodes were referenced online to the right mastoid; an 

average mastoid reference was derived offline. Signals were amplified with a Neuroscan 

Synamps amplifier (Compumedics, Inc.), filtered on-line with a bandpass of .05–40 Hz at a 

sampling rate of 500 Hz. Electrode impedances were kept below 10 KΩ. Ocular artifacts 

(i.e., blinks) were corrected from the EEG signal using a regression-based procedure 

(Semlitsch et al., 1986). On each trial of the flanker task participants saw a horizontal string 

of five arrowheads facing to the left or right, in which the central arrowhead matched 

(congruent condition) or did not match (incongruent condition) the direction of the four 

flanker arrowheads. Participants completed 200 trials total and were allowed to rest every 50 

trials. On each trial, participants first saw a fixation cross (jittered: 1400 ms, 1500 ms, 1600 

ms), followed by the string of arrows (100 ms). Participants had 800 ms from the onset of 

the stimulus to identify the direction of the target (central) arrowhead with their right or left 

index fingers using a game controller. If they did not respond within the 800 ms response 

deadline, a ‘TOO SLOW’ message was presented on the screen before the next trial.

2EEG was recorded at FP1, FP2, Fz, F1, F2, F3, F4, FCz, FC3, FC4, Cz, C1, C2, C3, C4, CPz, CP3, CP4, Pz, P1, P2, P3, P4, POz, 
PO5, PO6, PO7, PO8, Oz, TP7, TP8, T5/P7, and T6/P8. Additional electrodes were placed above and below the left eye and on the 
outer canthus of each eye (to record blinks and saccades) and over each mastoid.
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Following baseline correction (baseline window: −300 to −100 ms prior to the response), 

error trials and correct trials were averaged separately to create two averaged waveforms per 

participant (see Figure 1). Trials where no response was made and trials containing 

deflections +/− 75 μV were not included. Only participants with more than 6 artifact-free 

error trials were included in the analysis (Olvet & Hajcak, 2009), resulting in a sample of 60 

participants (19 male, 39 female, 2 trans/non-binary) for the analysis. We quantified the 

ERN/CRN as the mean amplitude from 0–100 ms following incorrect/correct button presses, 

respectively, at channels Fz, F1, F2, F3, F4, FCz, FC3, FC4, Cz, C1, C2, C3, and C4. In 

addition to the flanker task, participants completed several self-report measures, including 

symptoms of anxiety and depression using the GAD-7 (Spitzer et al., 2006) and PHQ-9 

(Kroenke & Spitzer, 2002), respectively.

As with any other analytic strategy, the first thing to do is determine the theoretical 

hypothesis to test, including the predictor and outcome variables in the model. A large body 

of literature describes the ERN as a negative-going deflection that is larger following 

incorrect relative to correct responses (Holroyd & Coles, 2002; Olvet & Hajcak, 2009; 

Yeung, Botvinik & Cohen, 2004). To confirm this pattern in the example dataset, we first 

need to set up our data in long format, which means each observation is in a unique row with 

columns identifying each variable associated with each observation (e.g., participant 

number, response type, channel). This is in contrast to wide format, which is typically used 

in rANOVA, where each participant is in a unique row and columns represent both different 

variables and (usually means of) repeated observations (see Figure 2 for an illustration). We 

can also include individual differences variables as unique columns (e.g., anxiety and 

depression scores). Since each participant has only one value for each individual difference 

variable, that value is repeated for every row associated with a particular participant when 

the data is in long format.

Setting Up the Model

To fit the model, we will use the lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 

2017) packages in R. All R code is downloadable at [https://github.com/hivolpertes/

MLMbestpractices]. First, we need to determine the hypothesis we want to test, and thus the 

outcome variable and the fixed effects or predictor variables to include in the model. In this 

example, we want to test differences in the mean amplitude of the ERN/CRN following 

incorrect/correct responses. Thus, mean amplitude of the ERN/CRN is the outcome variable 

and response (e.g., incorrect, correct) is the predictor (or fixed effect).

Then, we must specify which random factors and structure to use, which reflects the 

hierarchical nature of the data. This includes which grouping variables (alternatively called 

random factors) to include and which slopes and intercepts you allow to vary for each 

random factor. ERP studies using averaged waveforms often have multiple observations for 

each channel and for each participant and thus, the most common random factors are 

participants and channels. Participants and channels can either be specified as independent 

factors (i.e., cross-classified model) or channels can be nested within participants (i.e., 

hierarchical model). A hierarchical model assumes that lower-level units (in this case, 

channels) belong to one and only one higher-level unit (in this case, participants). This might 
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be the case if you expect the placement of the cap on each participant to vary, such that Fz 

measured for one participant is substantially different from Fz measured for another 

participant. In contrast, a cross-classified model assumes that lower-level units do not belong 

to one and only one higher level unit.

Additional random factors can be selected depending on the data set and theoretical 

hypothesis being tested, such as stimulus items. Importantly, any random factor should 

contain enough units or clusters that observations are clustered within, although the 

threshold of what is enough is debated and depends on what estimated parameter you are 

most interested in (Gelman & Hill, 2007; Huang, 2018; McNeish & Stapleton, 2016a, 

2016b; Snijders & Bosker, 1999). In general, the fewer the units or number of clusters within 

a random factor, the poorer the estimation of the variance associated with the random factor 

(Maas & Hox, 2005). A common rule of thumb is the 30/30 rule (30 units or clusters with 30 

observations within each cluster). However, when examining fixed effects, others 

recommend a minimum threshold of 10 (Snijders & Bosker, 1993), some suggest a minimal 

threshold of 5 when examining fixed effects but 10–100 when examining random effects 

(McNeish & Stapleton, 2016a), and others suggest that having fewer than 5 units within a 

random factor does no harm but also does not differentiate the multilevel model from a 

classical regression model when examining the fixed effects (e.g., Gelman & Hill, 2007). 

Since most ERP studies using MLM are primarily interested in the fixed effects, we 

recommend including measurements from at least 5 units or clusters within a random factor 

(e.g., at least 5 channels in order to use channel as a random factor). In the current example, 

we have repeated measurements within channels (13 channels total) and participants (60 

participants total), so both are used as random factors. Since the same channels are being 

used for all participants, and we expect channels measured for one participant to be the same 

as for another participant, we will use a cross-classified model for this example.

Now that we have our random factors, we can think about which variables correspond to 

each level of the model. Level 1 variables correspond to individual observations, such as 

response type, other experimental manipulations, or aspects of the stimuli or trials that are 

included as predictors. Level 2 variables correspond to one level above that. In a cross-

classified model where participants and channels are crossed random factors (and on the 

same “level,” so to speak), variables corresponding to either participants or channels are 

Level 2 variables. In a hierarchical model where channels are nested within participants, 

variables corresponding to channels are Level 2 variables and variables corresponding to 

participants are Level 3 variables.

Once you have chosen your random factors and decided to use a hierarchical or cross-

classified model, you must decide which slopes and intercepts will vary by random factor. In 

general, allowing the effect of a variable to vary by a random factor (i.e., including it as a 

random slope) will not affect the estimate of the fixed effect for that variable, because the 

fixed effect is essentially the average of the random slopes. However, including a random 

slope will generally expand the standard error of the fixed estimate, thus increasing the 

associated p-value (Barr et al., 2013; Gelman & Hill, 2007). In other words, including a 

random slope (especially when there is a lot of group-related variance) controls the Type 1 

error rate of the test of the fixed effect more tightly and provides a more conservative (and, 
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some argue, more appropriate) test (Heisig & Schaeffer, 2019). When choosing which 

effects to include as random slopes, you can use either a theory-driven approach or an 

empirical or data-driven approach.

Theory-driven approach.—A linear model is a formal representation of a hypothesis, 

which extends to how you believe units within a random factor differ from one another. If 

you think that people differ in terms of the outcome variable (e.g., average amplitude of a 

given ERP component), then you will want to estimate random intercepts for each 

participant. If you think that the effect of a particular predictor on the outcome will differ 

across people in either size or direction, then you will want to estimate a random slope for 

that particular predictor by participant. Similar justifications can be made for including 

random intercepts and slopes for other random factors, such as channels. However, given 

that adjacent electrodes are theorized to measure similar brain activity, the effect of a 

predictor is not often expected to differ across channels and random slopes are not often 

used in this case. Thus, one way to make decisions about random effects specification is 

based on past empirical data or theory.

Empirical approach.—Of course, your theory may be wrong (or limited). Within the last 

decade, researchers in psycholinguistics began calling for researchers to follow a data-driven 

procedure where the maximal random effects are specified for every model (“maximal 

model;” Barr et al., 2013). In a maximal model, all Level-1 predictors3 are specified as 

random slopes. However, others have noted that using maximal models can result in 

significant loss of power (Matuschek et al., 2017). Additionally, as noted by Barr et al. 

(2013), the maximal model is frequently too complex to properly converge. When the 

maximal model is too complex to converge, parameter estimates are incorrect and models 

must be simplified. Thus, the maximal model may not always be appropriate and 

parsimonious models may be preferable. To determine the most appropriate parsimonious 

models, a number of strategies are used, including comparing nested models using 

likelihood ratio tests (for a comparison of strategies for model selection, see Seedorff et al., 

2019). Regardless of whether you use a theory-driven or empirical approach to specify 

random effects, we believe that best practices involve at minimum including random slopes 

for the main fixed effects of interest to properly control for Type 1 error, as intercept-only 

models are frequently too liberal and may result in spurious findings (Bell et al., 2019). 

Once you have accounted for the main fixed effects of interest, you can make decisions 

whether to include more complex interactions as random slopes using a data-driven 

approach.

Last, after having determined the fixed effects and random effects, you should choose the 

type of variance-covariance matrix to use, which specifies assumptions about how 

observations within and across units in a random factor (e.g., within and across participants) 

vary and covary. Some variance-covariance matrices involve more stringent assumptions, 

3This applies only to Level-1 predictors, as Level-2 predictors cannot be included as a random slopes within a Level-2 random factor, 
because they are invariant within Level-2 units. In other words, if participants are being used as a random factor, Level-2 predictors 
(like depression or anxiety scores) will only have one observation for each person, so the effect of these variables on the outcome 
cannot be estimated separately for each person. In order to estimate a different random slope for each unit in a random factor, you need 
at least two observations per unit.
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such as a compound symmetry variance-covariance matrix, which more closely 

approximates a rANOVA. We suggest using an unstructured variance-covariance matrix, 

which removes the sphericity assumption of rANOVA, as the assumption of sphericity is 

unrealistic when applied to psychophysiological data (e.g., Blair & Karniski, 1993; J. 

Richard Jennings & Wood, 1976; Keselman & Rogan, 1980; Vasey & Thayer, 1987). By 

default, the lme4 package in R uses an unstructured variance-covariance matrix, although 

SAS by default uses a VC variance-covariance matrix (for more information on variance-

covariance matrixes, see Haverkamp & Beauducel, 2017; Page-Gould, 2017).

As mentioned before, in our example, we are testing the effect of Response Type (RespType) 

on the mean amplitude of the ERN/CRN. The model includes two crossed random factors 

(Participant, Channel), which we are estimating using an unstructured variance-covariance 

matrix. Using a theory-driven approach to determine the random effects, we included 1) a 

random intercept by participant, 2) response type as a random slope by participant, and 3) a 

random intercept by channel. The full model is described using Wilkinson notation as:

MeanAmp RespType + (Resptype ∣ Participant) + (1 ∣ Channel)

Our interpretation of the fixed effects depends on how Response Type is coded, similarly to 

interpreting fixed effects from a single-level regression model. When Response Type is 

dummy-coded (correct = 0, incorrect = 1), the estimate of the intercept is b = 5.926, 95% 

CIs [4.51, 7.34] and the estimate of the effect of Response Type is b = −4.294, 95% CIs 

[−5.20, −3.39]. From these estimates, we can calculate the estimated marginal means for 

each group: the estimated marginal mean in the correct condition is 5.926 μV (the estimate 

of the intercept, since correct is coded as 0) and the estimated marginal mean in the incorrect 

condition is 1.632 μV (the estimate of the intercept minus the estimate of Condition). When 

Condition is effect-coded (correct = −1, incorrect = 1), the estimate of the intercept is b = 

3.779, 95% CIs [2.42, 5.13] and the estimate of the effect of Response Type is b = −2.147, 

95% CIs [−2.60, −1.69], which means that across all trials, the estimated marginal mean is 

3.779 μV. Then, we can calculate the estimated marginal means for each condition by adding 

or subtracting the estimate of Response Type to the intercept, which gives us the equivalent 

marginal means for correct and incorrect trials as the dummy-coded model. Using 

unstandardized estimates in this way gives us a sense of the magnitude of the difference 

between conditions in a meaningful unit (μV). When examining latency as the outcome 

variable, estimates similarly can be interpreted in whichever meaningful unit the outcome 

variable was measured on (such as milliseconds).

Researchers using the null hypothesis significance testing (NHST) approach will 

additionally want to know if the effect of Response Type is statistically different from zero. 

Compared to single-level regression, determination of degrees of freedom (and thus, the p-

value associated with a test of a fixed effect) is much more complicated in MLM. A number 

of possibilities exist for testing the significance of a fixed effect, including likelihood ratio 

tests of nested models, applying the z distribution to the Wald t values, Markov-chain Monte 

Carlo (MCMC) sampling, parametric bootstrapping, and different approximations for 

denominator degrees of freedom. We recommend the Satterthwaite approximation for 

denominator degrees of freedom, partly because it more appropriately controls Type 1 error 
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and is less dependent on sample size than other methods, especially for REML-fitted models 

(Luke, 2017) and because of the ease of implementation—Satterthwaite approximation is the 

default for SAS and can be applied in R using the lmerTest package (Kuznetsova et al., 

2017) in conjunction with the lme4 package (Bates et al., 2015). All examples presented in 

this paper use the Satterthwaite approximation when reporting p values.

Critics of NHST suggest that whether the effect of a particular predictor is different from 

zero is not always informative—instead, it may be more useful to understand the proportion 

of variance explained by the fixed effects (and therefore make judgements of the 

meaningfulness of the effect). In a single level regression or GLM, readers are familiar with 

R2 as the variance explained by all of the fixed effects included in the model. However, in 

multilevel models, the variance explained is a little more complex, since there are now 

multiple residual terms. Thus, several methods of calculating a pseudo-R2 have been 

proposed (e.g., Edwards et al., 2008; Johnson, 2014; Nakagawa et al., 2017; Nakagawa & 

Schielzeth, 2013; Snijders & Bosker, 1999). Importantly, there is a distinction between the 

marginal R2, which is the proportion of the total variance explained by the fixed effects, and 

the conditional R2, which is the proportion of the variance explained by both fixed and 

random effects. Either the marginal or conditional R2 can then be converted to other effect 

sizes that may be more common in your particular research literature. For example, the 

model R2 can be used to compute Cohen’s f2 (Cohen, 1992) using:

f2 = R2

1 − R2

To estimate the variance explained by a particular predictor (i.e., to obtain an estimate of the 

local effect size), several methods exist. One method is to estimate Cohen’s f2 for each local 

effect by estimating R2 for two nested models:

f2 =
R2

2 − R1
2

1 − R2
2

where R2
2 represents the variance explained by a model with the effect of interest (the full 

model) and R1
2 represents the variance explained by a model without the effect of interest 

(the restricted model). Cohen’s f2 for a local effect can easily be directly calculated using 

this method in SAS (Selya et al., 2012) and in R by fitting each model separately and 

estimating the pseudo-R2 as mentioned previously using the r.squaredGLMM() function in 

the MuMIn packag (Bartoń, 2020) using the or the r2beta() function in the r2glmm package 

(Jaeger, 2017).

An alternative method is to calculate a partial R2 statistic for each predictor, Rβ
2(Edwards et 

al., 2008). One Rβ
2 statistic can be calculated for each predictor using the ANOVA output of 

an MLM model to get the F-statistic, the numerator (effect) degrees of freedom, and the 

denominator (residual or error) degrees of freedom that correspond to each predictor.
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Rβ
2 =

dfnumerator
dfdenominator

F

1 +
dfnumerator

dfdenominator
F

In the realm of ERPs, it remains unclear how large of an effect is meaningful, as meaningful 

differences in amplitude may vary depending on the ERP component of interest and the 

variance in the outcome is related to a number of factors, including the noisiness of the data 

and how many trials are included in each averaged waveform. Thus, descriptions of effect 

size in future ERP studies are essential to triangulate what may be a meaningful effect size 

in the study of ERPs.

Visualizing Data

In addition to statistical tests, visualizing data is an important component of understanding 

statistical results. As most ERP studies are interested in the effect of categorical predictors, a 

common approach using rANOVA is to use bar or line graphs to depict mean amplitude 

averaged across participants and channels in each condition. However, depicting averages 

from the data does not account for the multilevel structure of the data, nor does it depict how 

much variability in the effect exists across people. When using multilevel modeling, we can 

plot 1) the fixed effects estimates to summarize patterns across the whole sample, 2) the 

variance within each grouping variable (e.g., how participants vary from each other), or 

both. To plot mean differences across experimental conditions and still account for the 

multilevel structure, we can plot the model-estimated means from the fixed effects. For both 

bar and line charts, this should include the values of the outcome variable that are predicted 

from your model for each condition (i.e., estimated means) and the standard errors of these 

model-estimated means as error bars. Estimated means can be calculated using a user-

friendly, online tool available at http://www.quantpsy.org/interact/ (Preacher et al., 2006) or 

the emmeans package in R (Length, 2020) and then plotted as in Figure 3.

However, one benefit of MLM is being able to estimate unique effects for each unit in a 

random factor (e.g., participant) by including random slopes in the model. To visually 

represent the variance in a particular effect, plot the best linear unbiased predictions 
(BLUPs) estimated for each participant using a “spaghetti plot”. Spaghetti plots illustrate the 

variance in the effect, which we can see in differences in the slopes of the lines. If all lines 

are relatively parallel, there is little variance in the effect of Condition across participants 

(which will be reflected in a small estimate of variance of the random slope of Condition by 

participant), whereas lots of intersecting lines that are not parallel suggest a large amount of 

variance in the random slope. We suggest plotting each line with an opacity level below 

100% to make each line easier to see and consider making each line its own color, if color 

visualizations are an option for your publishing outlet of choice (see Figure 4 for an 

example). As we can see in this example, most participants show the same pattern as the 

fixed effect (more negative ERN amplitude in the incorrect condition compared to the 

correct condition), but some slopes are flatter than others, and some participants even show 

an effect in the opposite direction.
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Of course, one can also plot both the estimated means for each condition and variance across 

individuals by overlaying the two plots. We suggest plotting the “average” effect (i.e., the 

fixed effect) in a slightly thicker width or different color to make it stand out (e.g., see 

Figure 5).

Extended Applications of MLM

One of the major benefits of MLM that rANOVA cannot accommodate is including 

continuous variables in the model. One example of this is testing how individual difference 

variables moderate the effect of the manipulated predictor. Past work has shown a link 

between trait anxiety and the size of the ERN/CRN, such that those who are more anxious 

show a more pronounced negativity following errors (Hajcak, McDonald & Simons, 2003; 

Weinberg, Olvet & Hacjak, 2010; Meyer, 2017). To test the effect of trait anxiety on the size 

of the ERN/CRN using MLM, we can simply include trait anxiety as a predictor in the 

model (Response Type is effect coded; Correct = −1, Incorrect = 1):

MeanAmp RespType + Anx + (RespType|Participant)+(1|Channel)

As mentioned earlier, we would not include anxiety as a random slope by participant 

because there is only one observation per participant (and is thus invariant). In this model, 

the effect of Response Type remains significant, b = −1.87, 95% CIs [−2.61, −1.12], t(58.0) 

= −4.92, p < .001, such that mean amplitude is more negative following incorrect responses 

than correct responses. The effect of trait anxiety is marginally significant, b = 0.19, 95% 

CIs [−0.01, 0.39], t(58.0) = 1.91, p = .061. Most importantly, to examine whether trait 

anxiety moderates reactivity to errors, we would look at the Response Type x Anxiety 

interaction. In this sample, the interaction is not significant, b = −0.05, 95% CIs [−0.15, 

0.05], t(58.0) = −0.93, p = .356. This is a similar test as correlating trait anxiety scores with 

a difference score of the ERN and CRN (e.g., ΔERN). Previous research has shown 

differences in ΔERN between anxious and control groups (Ladouceur et al., 2006; Pasion & 

Barbosa, 2019; Weinberg et al., 2010, 2012, 2015) and significant relationships between 

symptoms of generalized anxiety disorder and ΔERN (Bress et al., 2015; Klawohn et al., 

2020), such that more anxious participants show a more negative ERN relative to the CRN, 

although other studies have not found consistent significant correlations between self-

reported anxiety and ΔERN (e.g., Meyer et al., 2012).

Another application that MLM allows for is the investigation of ERP responses to specific 

stimuli or events from individual trials, allowing researchers to investigate how ERP signals 

meaningfully change over the course of different trials or meaningfully differ in response to 

specific instantiations of stimulus presentations. As mentioned previously, prior to data 

analysis researchers typically average all responses elicited by stimuli of the same type or 

experimental condition (i.e., signal averaging; Luck, 2014), which results in a data structure 

in which each participant has a single observation per channel for each experimental 

condition. This technique is effective for isolating physiological responses to events of 

interest (i.e., increasing signal-to-noise ratio) but makes assumptions that might not be 

tenable, including that the signal is constant across trials, and that any trial-to-trial variation 

is solely the result of noise, and therefore meaningless. A number of factors, including 
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habituation, fatigue, sensitization, or momentary lapses in attention can result in meaningful 

variation (i.e., not merely noise) in ERPs across trials, thereby undermining the validity of 

signal averaging in some situations.

A number of approaches to analyzing single trial ERPs have been proposed (Blankertz et al., 

2011; Coles et al., 1985; Debener et al., 2005; Gaspar et al., 2011; Jung et al., 2001; Pernet, 

Sajda, et al., 2011; Philiastides et al., 2006; Quiroga & Garcia, 2003; Ratcliff et al., 2009; 

Regtvoort et al., 2006; Rousselet et al., 2011; Sassenhagen et al., 2014). Multilevel modeling 

provides an extremely useful additional tool for researchers interested in trial-level variation 

in ERPs. Note, however, that because noise is not first being removed from the waveforms 

using the signal averaging approach, it is important that the EEG data are as clean as 

possible when a trial-level approach is used. Researchers should spend additional time and 

effort during the data collection process to ensure the highest quality data possible to reduce 

noise in the data and increase the ability of multilevel models to detect fixed effects of 

interest from individual trials.

To examine the linear effect of time on change in psychological processes, researchers can 

include time or trial number as an additional fixed predictor in the model (e.g., Berry et al., 

2019; Brush et al., 2018; Volpert- Esmond et al., 2018). As an example, the model may be 

specified as:

DV IV + Trial + (IV|Participant)+(1|Channel)

Note that the inclusion of Trial in this way can only capture long-range trends such as 

habituation and fatigue. Quadratic and other non-linear effects can be included as additional 

predictors, although little research has been done in this area and polynomial fitting comes 

with its own set of challenges (Kristjansson et al., 2007; Tremblay & Newman, 2015). By 

examining the fixed effect of time, or interactions between time and other fixed predictors, 

researchers can infer large-scale change in the amplitude or latency of ERP components over 

the course of an experiment, as well as different rates of change for different experimental 

conditions. Additionally, the variable indexing time can be included as a random slope by 

participant so that researchers can examine how the effect of time (including processes such 

as habituation or learning) differs across participants. To get estimates of individual 

differences in the rate of change in ERPs, researchers can extract the BLUPs, which are 

participant-specific estimates of the effect of time. However, including time as a random 

slope often results in non-convergence issues, which must be addressed before interpreting 

the BLUPs. Last, using MLM with single-trial ERPs opens the door to using ERP amplitude 

or latency as a predictor of other trial-level variables (such as reaction time or other 

downstream ERP components; Volpert-Esmond & Bartholow, 2020; Von Gunten et al., 

2018).

Including continuous variables introduces increased complexity surrounding issues of 

centering variables that are unique to MLM. In typical single-level OLS regression, 

researchers often center and/or standardize continuous variables in order to interpret all other 

fixed effects as the effect observed at the mean of the centered variable. We suggest taking a 

similar approach to all continuous Level 2 variables (e.g., individual difference variables). 
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However, in multilevel data, continuous Level 1 variables can either be centered across the 

entire data set (grand-mean centering) or centered within each level of the grouping 

variables (group-mean centering). The type of centering one chooses can significantly 

impact the interpretation of the fixed effects. There are a number of other resources 

discussing centering (e.g., Brauer & Curtin, 2018; Enders & Tofighi, 2007; Kreft et al., 

1995; Paccagnella, 2006; Page-Gould, 2017) and contrast coding (Schad et al., 2020) within 

multilevel data.

One particular case of centering that may be of interest may be disaggregating between- and 

within-participant effects of a continuous predictor (e.g., Curran & Bauer, 2011). This is 

particularly relevant when using single-trial ERPs as a continuous predictor of some other 

outcome, such as a behavioral response within the same trial or an ERP response on a 

subsequent trial. In the absence of disaggregation, the relationship between trial-level ERPs 

and reaction time (for example) conflates the between-person effect (i.e., Do people with 

particularly large ERP responses also respond faster to stimuli in a particular task?) and the 

within-person effect (i.e., Does a larger ERP response on a particular trial, relative to a 

person’s average ERP response, facilitate a faster reaction time?). Depending on the 

theoretical question, researchers may be more interested in one relationship than the other. 

To disaggregate within- and between-person effects, the researcher can effectively separate 

the predictor variable of interest into two separate predictors. The first predictor—each 

participants’ mean—is entered as a Level-2 (person level) predictor and represents the 

between-person effect. The second predictor—the participant-centered variable—is entered 

as a Level-1 predictor and represents the within-person effect.

Reporting Practices

Because of the complexity surrounding MLMs, researchers have a number of degrees of 

freedom with respect to how MLMs are estimated and reported, including what covariance 

structure to use, which variables to include as fixed and random effects, how to test for 

interactions, how to center or effect-code variables, etc. Because of the flexibility of these 

models, it is imperative to provide enough information for an independent party to replicate 

the analysis and evaluate its suitability for the dataset at hand. Of course, providing code in 

an online repository such as Open Science Framework or GitHub is preferable. But we 

encourage researchers to include all essential information in the manuscript as well. At 

minimum, the entire model, including variance-covariance structure and random effects 

should be described (Meteyard & Davies, 2020). To most effectively communicate the 

structure of each model used, we suggest using Wilkinson notation, which specifies the DV, 

IVs, and random effects. For example,

DV IV1 + IV2 + (1 + IV1|Participant) + (1|Participant: Channel)

specifies that two predictors were included, but not their interaction; that the intercept and 

the effect of the first predictor was allowed to vary by participant (i.e., IV1 was included as a 

random slope by participant); and that the intercept was allowed to vary by channel nested 

within subject. Alternatively, the following model specifies participants and channels as 

crossed random factors:
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DV IV1 + IV2 + (1 + IV1|Participant) + (1|Channel)

R users will recognize that Wilkinson notation is used in the lme4 package to specify models 

(and is also used in Matlab), thus providing less of a barrier than formal mathematical 

notation. The statistical software used to fit the models should additionally be reported, 

along with any changes to the default specifications (e.g., which covariance structure is 

specified). More extensive recommendations about reporting practices regarding model 

selection, model output, etc., can be found in Meteyard and Davies (2020).

In addition to reporting the structure of the models using Wilkinson notation, we suggest 

reporting the intraclass correlation coefficient (ICC) for each random factor, which can be 

calculated from the variances estimated in the random effects:

ICC = τ2
τ2 + σ2

where τ2 is the between-cluster variance (the variance associated with the random factor) 

and σ2 is the residual variance (Lorah, 2018). This gives you the proportion of total variation 

in the data that is accounted for by a particular random factor where higher ICCs represent 

more variance between units within that random factors (Gelman & Hill, 2018). Since the 

complexity of the model affects the calculation of ICC, you should use variance estimates 

from an intercept-only model (i.e., a model with no fixed predictors):

DV 1 + (1|Participant) + (1|Channel)

When including more than one random factor (e.g., including participants and channels in a 

cross-classified model), one would include the variance of all groups in the denominator. As 

an example, let’s look at sources of variance in the mean amplitude of the P2 ERP 

component elicited by Black and White male faces during a race categorization task4. To 

calculate the ICC associated with subject, we would look at the output for the random effects 

from the following intercept-only model5, first using the signal averaged data:

Model: P2amp 1 + (1|Participant) + (1|Channel)

Random effects output:

4Data were previously published in Volpert-Esmond, Merkle, and Bartholow (2017). Although the original study manipulated where 
participants fixated on the face, data used here include only trials presented so that participants fixated in a typical location (i.e., 
between the eyes). The sample includes 65 participants and the average number of trials included per participant was 107.7 (min = 54, 
max = 127). Data from 7 channels were used (C3, C4, CP3, CP4, CPz, Cz, Pz).
5This is an example of a cross-classified model, where subject and channel are included as separate grouping variables, rather than 
channel being nested within subjects in a typical hierarchical model. Calculating ICCs for groups nested within each other is similar 
(i.e., estimates of variance for all groups plus the residual variance is used in the denominator).
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Random Name Variance Std. Dev.

Factors

Participant (Intercept) 8.314 2.883

Channel (Intercept) 0.141 0.376

Residual 2.306 1.5184

ICCpar = 8.314
8.314 + 0.141 + 2.306

=.77

ICCelec = 0.141
8.314 + 0.141 + 2.306

=.01

In other words, variance between people accounts for 77% of the total variance, suggesting 

there is a lot of between-person variability in ERPs, whereas variance between channels 

accounts for 1% of the total variance, suggesting is there not a lot of variability between 

channels, which is expected given similarities in waveforms at adjacent channels. In 

contrast, when using trial level data, the ICC associated with subject is .09, suggesting 

between-person variability only accounts for 9% of the total variance. Because of the 

amount of within-person variance from trial to trial, between-person variance accounts for 

much less of the total variance when using single-trial ERPs instead of signal-averaged 

ERPs.

Estimating Power

Another barrier in transitioning to using MLM is the daunting prospect of having to do a 

power analysis. Evaluating the power of a hypothesis test, which is defined as the probability 

that the test will correctly reject the null hypothesis when the null hypothesis is false, is 

important in assessing how likely a particular result is true and able to be replicated. 

Additionally, ERP studies are often underpowered to find small effects (Clayson et al., 

2019). Given that estimating an effect of zero—or estimating effects completely at random

—is more accurate at determining the true population mean than using sample means 

derived from poorly powered studies (Davis-Stober et al., 2018), and that EEG studies are 

time-intensive and costly to run, an a priori power analysis can inform a researcher whether 

they have the resources to conduct a study that is well-powered enough to be informative. 

Additionally, according to recent guidelines for best practices in reporting of ERP studies 

(Keil et al., 2014), researchers should always report the achieved power of a particular 

design. Many tools are available to estimate power for typical single-level designs (e.g., Faul 

et al., 2009; Murphy et al., 2014), although discussion is still ongoing about the most 

appropriate ways to conduct and use a power analysis (Anderson, Kelley, & Maxwell, 2017; 

Cribbie, Beribisky, & Alter, 2019; Albers & Lakens, 2018; Lakens & Evers, 2012).
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In multilevel designs, how power relates to sample size is more complicated, as both the 

number of groups (e.g., the number of individuals who participate during the study) and the 

number of observations per group (e.g., the number of trials or observations per individual) 

can vary. In multilevel models, power is affected by group sample size, observation sample 

size within each group, the ICC associated with group, whether you are testing a Level 1 

(observation-level) or Level 2 (participant-level) effect, and numerous other parameters of 

the model (Arend & Schäfer, 2019). As a general rule of thumb, increasing the number of 

Level 2 units (e.g., the number of people participating in the study) has a larger effect on 

power to detect fixed effects than increasing the number of Level 1 units (e.g., the number of 

experimental conditions or trials within each participant; Maas & Hox, 2005; Snijders, 

2005). For a more specific approximation of the sample size (at both Level 1 and Level 2) 

needed to achieve the desired level of power for a particular test, most researchers use a 

simulation approach to power using Monte Carlo simulations. This approach repeatedly 

simulates data from the hypothetical distribution that we expect our sampled data to come 

from and then fits the same multilevel model to each data set. Power is estimated by how 

often the true effect is detected.

To set up a power simulation, you need to make assumptions about the true treatment effect 

and also specify all the other parameters that characterize the study, including the size of the 

fixed effect of interest, ICCs of any random grouping variables, variances of random 

intercepts and slopes, correlations between random intercepts and slope, etc. Because of the 

large number of parameters needed to simulate an appropriate data set, it is often easier to 

conduct a power simulation on a set of pilot data, although parameters can be assumed and 

simulated without pilot data (Gelman & Hill, 2007). The simr package in R (Green & 

MacLeod, 2016) has emerged as a popular tool for power simulations using multilevel 

models. The package allows users to input a sample data set (either a pilot or simulated data 

set) and calculate observed power for a desired effect, as well as produce power curves in 

which power is plotted as a function of a particular aspect of the design, such as number of 

participants, number of observations within each participant, or effect size. To provide an 

example of a power curve generated using simr, we use previously published data6 looking 

at how the race of a face influences mean P2 amplitude:

Model: P2amp Race + (Race|Participant) + (1|Channel)

When using signal averaged data, the effect of race is significant, b = −0.59, t(64.0) = −4.82, 

p < .001, such that Black male faces elicit larger P2s than White male faces. A post-hoc 

power simulation indicates that the observed power for this effect with the given sample size 

(65 participants, 7 channels for each participant, and 2 observations for each channel) is 

99.6%, suggesting this design is very well-powered (and maybe even overpowered) to detect 

this effect. Thus, we achieve 80% power to detect an effect of this size with about 25 

participants. However, using pilot data to estimate the true effect size may result in an 

underpowered follow-up study (Albers & Lakens, 2018; Anderson, Kelley & Maxwell, 

2017). Thus, we suggest either adjusting the anticipating effect size to be smaller than that 

6Same data as used in ICC example.
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achieved in a pilot study when planning a follow up study or producing a sensitivity power 

curve to identify what sample size would be needed to detect the smallest meaningful effect 

size. Figure 6 demonstrates the decrease in power as the effect size decreases, indicating that 

with a sample of this size, we would be able to detect an effect as small as b = −0.35 with 

80% power.

Limitations

MLM is not a panacea. As with any analytic approach, MLM comes with significant 

limitations. First, effectively using MLM involves gaining the expertise to organize data in 

the appropriate format, learning how to implement models in statistical software, making 

appropriate decisions for model specification, correctly interpreting the output, etc. 

Additionally, due to the continued evolution and development of knowledge about MLMs, 

there currently is a perceived lack of consensus and established, standardized procedures 

(Meteyard & Davies, 2020). Many resources are becoming available for researchers 

interested in learning this statistical approach, including workshops at prominent 

conferences (i.e., Society for Psychophysiological Research), stand-alone workshops hosted 

by societies, private organizations, and universities (e.g., APA Advanced Training Institutes, 

Statistical Horizons, University of Michigan, University of North Carolina, University of 

Connecticut, Arizona State University), and numerous tutorials and articles on applying 

MLM to both behavioral data (Arnau et al., 2010; Baayen et al., 2008; Brauer & Curtin, 

2018; Gueorguieva & Krystal, 2004; Jaeger, 2008; Judd et al., 2012; Maas & Snijders, 2003; 

Quené & van den Bergh, 2004, 2008) and psychophysiological data (Bagiella et al., 2000; 

Kristjansson et al., 2007; Page-Gould, 2017; Tibon & Levy, 2015; Tremblay & Newman, 

2015; Volpert- Esmond et al., 2018; Vossen et al., 2011). However, little is known about the 

effectiveness of this training and how it is implemented in practice (King et al., 2019). 

Moreover, the mere fact that these opportunities exist does not ensure that researchers will or 

can take advantage of them, and therefore this situation is far from ideal in terms of ensuring 

adequate quantitative methods training in the field—likely contributing to a significant gap 

in psychologists’ quantitative training. Thus, learning how to appropriately apply MLM to 

ERP data may be a significant barrier.

In addition to the time cost of learning the approach, MLM is often quite computing-power 

intensive and models can take much longer than a typical rANOVA to run. In the case of the 

P2 example given previously, the first author ran these models on a MacBook Air with a 1.6 

GHz Dual-Core Intel Core i5 processer with 8 GB of RAM. To test the effect of face race on 

P2 amplitude using signal-averaged data, it took only a few seconds to fit the model. To run 

the same model using trial-level data, it took less than 10 seconds to fit the model. However, 

as the data set becomes larger and the model becomes more complex, the time required to fit 

a MLM increases dramatically. For example, this more complex model testing the effect of 

target race, target gender, fixation, task, and participant race on trial-level P2 data recorded 

in two face processing tasks (256 trials in each task)7 took over 12 hours to fit:

7Data previously reported in Volpert-Esmond and Bartholow (2019). Data set includes 65 participants and the average number of trials 
included per participant was 201.5 (min = 131, max = 250) in the gender categorization task and 210.2 (min = 130, max = 252) in the 
race categorization task. Data from 11 channels were used (C1, C2, C3, C4, CP1, CP2, CP3, CP4, CPz, Cz, Pz).
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P2amp ~ TarRace ∗ TarGender ∗ Fix ∗ Task ∗ parRace +
(TarRace ∗ TarGender ∗ Fix ∗ Task|Participant) +
(1|Participant:Channel)

Similarly, because power simulations require fitting the same model to multiple simulated 

data sets, power simulations can take quite some time. To produce the power curve for the 

signal averaged data shown in Figure 1 (varying the sample size), the power simulation took 

roughly 90 min to run. The power curve shown in Figure 2 (varying the size of the effect) 

took roughly three hours to run. To produce the same power curve depicted in Figure 1 for 

trial-level data rather than signal-averaged data, the first author did not have enough 

processing power—when she attempted it, the simulation ran for one week straight (24 

hours/day) and was only a quarter of the way finished before the author stopped the 

simulation. Thus, processing power is essential for running MLMs, especially when using 

hundreds of trial-level observations, which is increased 20-fold when running power 

simulations. Given limitations in researchers’ access to powerful computers or server 

clusters, this may be a significant limitation in the use of MLMs for ERP data, especially 

when using trial-level data.

Lastly, researchers may encounter estimation problems when running the model, the most 

common of which are convergence problems, very long estimation times, and singularity 

issues. Most estimation problems can be addressed with two guiding principles: Simpler 
models and better fitting models will have fewer estimation problems. Generally speaking, 

the more complex your random effects are, the more difficult the model parameters are to 

estimate. As mentioned earlier, one approach is to trim the most complex random effect 

(e.g., random slope for an interaction term), run the model again, and then progressively trim 

random effects in order of decreasing complexity until the model converges.

Additionally, the time that it will take to run an MLM is directly related to how well your 

model specification reflects reality. If it takes a very long time to run an MLM but you 

received a warning (e.g., the Hessian matrix was not positive-definite), look at the variance 

estimates in the random effects to see if any variances are zero or very close to zero. If so, 

then it means that the random effect does not vary much from group to group, and thus is an 

over-specification. Trim any random effects that have zero variance, and run the model 

again.

The process of troubleshooting estimation problems is done iteratively (i.e., remove one 

term, rerun the MLM), so that the model does not get oversimplified in the process. Given 

how many choices that can be made when handling these problems, it is a good idea to 

establish a common approach to troubleshooting estimation problems that you apply across 

all your research studies that use MLM and reporting your approach in your method 

sections.

Conclusion

Despite its limitations, MLM has great potential to advance the study of neurocognitive 

processing through advanced modeling of psychophysiological data. We have focused here 
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on the use of MLM for ERP data, but of course MLM also can be used with other 

psychophysiological data that are structured similarly (e.g., Bourassa et al., 2016; Briollais 

et al., 2003; de Looff et al., 2019). Not only can MLM address limitations inherent to the use 

of rANOVA with such data, such as violations of assumptions leading to inflated Type 1 

error rate and the need for listwise deletion when observations are missing, MLM can 

greatly expand the types of research questions that can be posed and tested with 

psychophysiology. For example, here we highlighted that MLM permits examination of 

change over time in physiological and behavioral responses using trial-level data, and also 

how trial-level data can be used to test for within- and between-trial associations among 

dependent measures (e.g., ERP amplitudes predicting reaction time; Volpert-Esmond & 

Bartholow, 2020). Even if researchers stick with a traditional signal averaging approach to 

signal processing, MLM affords more precise modeling of effects and more appropriate 

parsing of error variance (e.g., by estimating random slopes differing across individuals and 

independent variable conditions) than does rANOVA. Thus, we recommend that researchers 

invest the time—and, if necessary, the resources to bolster their computing power—to learn 

MLM, and discover the flexibility the technique affords for their psychophysiological 

research programs. Finally, we strongly recommend that researchers who adopt MLM pay 

close attention to the latest developments in the rapidly evolving literature on best practices 

in the use of the technique and its limitations.
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Highlights

• Paper describes benefits of multilevel modeling for analyzing ERP data

• Uses example data set to show decision-making points throughout process

• Effect size calculation, visualization, and power addressed
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Figure 1. 
Averaged Waveforms from Example Dataset (ERN-CRN)
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Figure 2. 
Illustration of wide and long data formats

Volpert-Esmond et al. Page 27

Int J Psychophysiol. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Model-estimated means plot illustrating fixed effect of Response Type
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Figure 4. 
Spaghetti plot illustrating variance in effect of Condition across participants (i.e., random 

slopes)
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Figure 5. Spaghetti plot with model estimated means overlaid
Note. The thick black line represents the average relationship estimated by the fixed effect 

and the thinner, multicolored lines represent the specific relationships estimated for each 

person (the random slopes).
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Figure 6. Power to detect the fixed effect of race on P2 amplitude as a function of effect size
Note. 14 observations are included for each participant (7 channels with 2 observations at 

each channel). The sample size is set at 65 participants.
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