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Abstract
Artificial intelligence (AI) is a branch of Informatics that uses algorithms to tirelessly process data, understand its meaning 
and provide the desired outcome, continuously redefining its logic. AI was mainly introduced via artificial neural networks, 
developed in the early 1950s, and with its evolution into "computational learning models." Machine Learning analyzes and 
extracts features in larger data after exposure to examples; Deep Learning uses neural networks in order to extract meaningful 
patterns from imaging data, even deciphering that which would otherwise be beyond human perception. Thus, AI has the 
potential to revolutionize the healthcare systems and clinical practice of doctors all over the world. This is especially true for 
radiologists, who are integral to diagnostic medicine, helping to customize treatments and triage resources with maximum 
effectiveness. Related in spirit to Artificial intelligence are Augmented Reality, mixed reality, or Virtual Reality, which are 
able to enhance accuracy of minimally invasive treatments in image guided therapies by Interventional Radiologists. The 
potential applications of AI in IR go beyond computer vision and diagnosis, to include screening and modeling of patient 
selection, predictive tools for treatment planning and navigation, and training tools. Although no new technology is widely 
embraced, AI may provide opportunities to enhance radiology service and improve patient care, if studied, validated, and 
applied appropriately.

Keywords  Artificial intelligence (AI) · Interventional radiology (IR) · Augmented reality (AR) · Virtual reality (VR) · 
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Introduction

Artificial intelligence (AI) is a methodology of computer 
engineering that uses algorithms to tirelessly process data, 
understand its meaning and provide the desired outcome, 

continuously redefining its logic and selecting the optimal 
pathway to address the applied question.

Although its official birth is referred to as in 1955, when 
John McCarthy first defined it as “the science of making 
intelligent machines” [1], AI may have its roots with the 
invention of robots, whose first mention can be traced back 
to the third century in China. Over a millennium later, it was 
Leonardo Da Vinci, during the Renaissance, who made a 
detailed study of human anatomy and designed his human‑
oid robot. His sketches, rediscovered only in the 1950s, were 
in fact, a source of inspiration, even leading to the inven‑
tion of the surgical system carrying the Da Vinci name, that  
facilitates complex surgery with a minimally invasive 
approach and can be controlled by a surgeon from a remote 
console.

Over the years, AI development has relied upon the 
introduction of artificial neural networks (RNA) in the 
early 1950s, and their subsequent further evolution into the 
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"computational learning models," including Machine Learn‑
ing (ML) and Deep Learning (DL).

ML is based on algorithms that can improve task per‑
formance and decision making or predict outcomes. Spe‑
cifically, with a previous training period in which ML 
algorithms focus on specific or characteristic features 
through exposure to examples, they learn to extract desired 
meaningful patterns from data, even seeing features that 
are beyond human perception [2].

DL is made of multilayered, “or deep,” artificial neu‑
ral networks: the numerous neural layers between input 
and output contribute to the plasticity of DL and offer the 
potential to define new patterns of intelligent classifica‑
tions, mimicking the human brain mechanisms. Different 
from ML, DL can automatically discern the relevant fea‑
tures from data (often with an unknown mechanism or 
overall rationale) even if unlabeled, allowing to learn new 
patterns and to determinate more complex relationships, 
which is valuable if compared with a human reader who 
can only partially detect and use a fraction of the total big 
information content of digital images [3].

Combining ML/DL image processing with clinical 
and pathology/histology data, to find direct correlation 
between intrinsic Computed Tomography (CT) and Mag‑
netic Resonance Imaging (MRI) patterns and specific 
pathology and histology subtypes, is the purpose of a new 
amazing sector of research called “Radiomics” [4–6].

Thus, AI is capable of globally revolutionizing health‑
care and clinical practice, and will inform, influence, and 
transform radiologists more than most physician disci‑
plines. AI will augment and support instead of replacing 
radiologists, via enhanced performance, both in terms of 
speed and precision, facilitating and improving the effi‑
ciency and accuracy of the diagnosis process. This will 
also help to customize treatments and use resources with 
maximum effectiveness, which are important priorities for 
interventional radiologists, who often diagnose and treat 
in real time and at the same time. Moreover, the utiliza‑
tion of novel navigational techniques that superimpose 
virtual pre-procedural 3D anatomic data onto real-world 
2D visual images in real time, such as Augmented Reality 
(AR), multi-modality fusion, or Virtual Reality (VR), ena‑
bles improved accuracy for minimally invasive treatments 
and reduced risks, complications and radiation, which are 
central goals for Interventional Radiology (IR) [7].

The purpose of this article is to emphasize how AI is 
relevant not only for Diagnostic Radiology, but also for IR. 
The potential applications of AI in IR go beyond computer 
vision, to include screening and modeling of patient selec‑
tion, predictive and supportive tools for treatment planning 
and execution, training and intra-procedural registration, 
segmentation, navigation and treatment planning. Their 
real-time utilization in the angiography suite, with the 

help of augmented/virtual reality, could improve patient 
selection, operator’s expertise, drug discovery, and mul‑
tidisciplinary pursuit of delivery of tailor-made precision 
medicine.

Fields of application

Workflow solutions: patient scheduling, screening 
and counseling

AI may directly optimize the interventional radiologist’s 
daily practice with intelligent patient scheduling, beforehand 
identifying patients at high risk and taking steps to avoid the 
risk, as well as reducing the likelihood of missing care, via 
intelligent scheduling and patient selection [8].

In addition, AI algorithms can generate a relevant sum‑
mary from the available patient records, including patient 
problem lists, clinical notes, laboratory data, pathology 
reports, vital signs, prior treatments, and prior imaging 
reports to give the radiologist the most pertinent contextual 
information during the evaluation of a patient for diagnosis 
or therapy [9, 10].

In addition, intelligent algorithms are proposed for patient 
safety screening or reports, which have the potential for 
applications in radiology practice (for example, MRI safety 
screening or administration of contrast material) [11].

Moreover, the AR/VR can improve patient’s compliance 
through the possibility to show a simulation of the expe‑
rience in angiography suite, allowing the patient to arrive 
calmer and more aware of what awaits at the time of the 
procedure [12, 13].

Clinical and Imaging decision support tools 
for treatment planning

One of the hardest challenges for IR is the identification 
of an accurate way to predict the success rate of a specific 
treatment in a specific patient, and to estimate/forecast the 
outcomes and benefits of a treatment in advance. Similarly, 
big data science has attempted to investigate how a patient’s 
demographic and pathologic characteristics before the treat‑
ment can influence its efficacy [14].

ML- or DL-based predictive models can try to classify 
patients as responders and non-responders to specific treat‑
ment algorithms. Such AI models based on DL or ML may 
help interventional radiologists to overcome this patient 
selection challenge, especially in the field of interventional 
oncology. Such tools hold the potential to reduce unneces‑
sary and useless procedures and interventions, healthcare 
costs, and decreasing the risk for the patient [15].

From this perspective, both clinical and imaging deci‑
sion support tools have been created. Among clinical ones, 
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ML has been showcased in the evaluation of the relative 
prognostic significance of the Child–Turcotte–Pugh score 
and albumin–bilirubin grade, along with other risk fac‑
tors, within a cohort of patients undergoing trans-arterial  
chemoembolization [16]. In addition, a ML algorithm based 
on serum creatinine in electronic health records was capa‑
ble of predicting Acute Kidney Insufficiency (AKI) up to 
72 h before onset, in specific patients, potentially allowing 
clinicians to intervene before kidney damage manifests, in 
advance of diagnostic and interventional radiology proce‑
dures and treatments [17].

Among imaging decision support tools, image tex‑
ture analysis has made it possible to extrapolate “radio‑
logical biomarkers” that allow a prognostic pre-treatment 
evaluation.

For instance, the performance of pre-ablation CT texture 
features may predict post-treatment local progression and 
survival in patients who undergo tumor ablation, using ML 
to identifying specific CT texture patterns, as demonstrated 
by Daye et al. for adrenal metastases. During pre-procedural 
assessment, in fact, when CT-derived texture features were 
included in addition to clinical variables, there was an 
increase in accuracy to more than 95% [18]. Similarly, using 
MRI texture features and the presence or absence of cirrho‑
sis, Abajian et al. assessed a ML algorithm able to predict 
chemoembolization outcomes in patients with hepatocellular 
carcinoma, obtaining a very good negative predictive value 
(88.5%) [19].

Additionally, in Neuroradiology, AI algorithms have been 
used to assist not only the diagnosis, but especially the treat‑
ment decisions in acute ischemic stroke, from estimating 
time of onset (that is one of the most relevant clinical criteria 
to decide if a patient is eligible for lytic treatment) [20, 21], 
lesion estimation [22], and salvageable tissue (essential in 
decision making before endovascular treatment) [23, 24]. 
This aided in analysis of cerebral edema [25, 26], and pre‑
dicting complications, such as hemorrhagic transformation 
after treatment [27–29] and patient outcomes, as well as 
identifying factors that will contribute to neurological dete‑
rioration and increased morbidity or predict motor deficit in 
stroke patients after treatment.[30–33].

However, AI is not able to provide an explanation of the 
underlying cause and pathophysiology: more complex inter‑
pretation problems like these require deductive reasoning, 
medical knowledge and mechanisms to integrate the findings 
within a clinical, personal, and societal context. This is why 
the holistic human intelligence and the medical judgment of 
interventional radiologists will be augmented and cannot be 
completely replaced [34].

Image guidance: pre‑procedural assessment 
and intraprocedural supportive tools

First of all, during pre-procedural assessment in a proce‑
dure room setting such as the angiography suite, it is criti‑
cal to evaluate anatomy and its pathophysiologic changes. 
In this regard, Augmented Reality (AR) or Virtual Reality 
(VR) may find its best application. Through advanced 3D 
rendering and manipulation of imaging in space, AR and 
VR allow operators to conceptualize difficult anatomy, to 
increases realism in procedural planning (when compared 
with standard 2D images), and to improve procedural skills 
in a previous simulated environment, with no risk to patients 
[12].

Furthermore, by typical AI tasks may be applied to  
preoperative imaging to semi-automatically detect or iden‑
tify specific patterns or organ or lesion segmentation. This is 
already used in breast, lung, liver and prostate cancer diag‑
nosis, but is also valuable for interventional radiologists, 
such as with the biologic evaluation of an atherosclerotic 
plaque, which may allow adaptation of treatment technique 
[35].

For intra-procedural guidance, AI finds application in a 
wide range of settings:

•	 Automation of protocols, based on information gathered 
from the electronic health records and tailored to opti‑
mize radiation exposure in a quicker and automatic way 
[36].

•	 Real-time evaluation for proper catheter, sheath, or 
implant selection, such as stent or prothesis to treat  
stenotic vascular lesions or aortic aneurisms [37].

•	 Prediction of ischemia-related lesions, from quantitative 
CT angiography, for instance in myocardial or diabetic 
foot treatment [38, 39].

•	 Real-time estimation of fractional flow reserve, based 
on fluoroscopic imaging, for identifying ischemia-related 
stenosis in coronary artery or venous disease [40].

•	 Automatic vessels analysis, by use of intravascular ultra‑
sound (IVUS): in complex cases of peripheral vascular 
diseases, it benefits by aiding with analysis of vessel size, 
lesion characteristic and potential post-treatment effects.

•	 Fusion of pre-procedure 3D images onto intraopera‑
tive 2D images: synchronizing MRI, CT or Cone Beam 
CT cross-sectional preoperative imaging with intraop‑
erative real-time fluoroscopic or ultrasound images, 
allows for more precise guidance for biopsies [41–45] 
and local image guided therapies [46, 47] (Figs. 1, 2, 
3) and improves problem solving during procedures 
[48–50]. Moreover, it is possible to generate, from CT 
images alone or in combination with MRI data, a virtual  
angiography [51] or “angioscopy” that could be a valu‑
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able procedure planning tool for interventional radiolo‑
gists such as for aortic endovascular repair (Figs. 4, 5).

•	 Augmented Reality and AI-based navigation systems: by 
superimposing virtual 3D anatomic data, acquired using 
CT, CBCT or MR onto real-world 2D visual images in 
real-time, planning software generates a virtual device 
trajectory that is overlaid onto visual surface anatomy, 
facilitating accurate visual navigation, theoretically 
without need for fluoroscopy [7, 52–54]. Via integrated 
matching AI software, automatic landmark recognition 
and motion compensation was enabled using fiducial 
markers linked by a computer algorithm. This system is 
already applied in a range of minimally invasive surgery 

procedures including lesion targeting/localization, spi‑
nal/para-spinal injections, arthrograms, tumor ablation, 
bone biopsies and more recently in vertebroplasty, with 
reduction in patient radiation exposure compared with 
fluoroscopy alone [7, 47].

•	 Automatic tools for multi-modality registration and seg‑
mentation, as an enhanced and more ergonomic approach 
for fusion guided procedures, such as biopsy and abla‑
tion. This would enhance standardization and normaliza‑
tion, potentially enabling lesser experienced IRs to per‑
form more advanced procedures, reproducing the skill or 
experience or techniques of experts.

Fig. 1   "Endobronchial navigation for lung tumor biopsy". a Pre-procedural CT planning; b 3D roadmap with tumor segmentation; c Real-time 
3D fluoroscopic image

Fig. 2   “Automatic 3D detection of arterial bleeding of the leg in a 
traumatic patient”—a CTA reveals arterial bleeding of the leg in a 
traumatic patient. b Initial 2D angiography does not demonstrate 
bleeding. c Target segmentation was performed on the CTA dataset 
after CBCT-CT fusion; then 3D CBCT datasets were synchronized 

with the C-arm and overlaid on live fluoroscopy, during the interven‑
tion, to facilitate catheter navigation to the damaged vessel. d Once 
the target arterial culprit was engaged, a selective angiogram is per‑
formed to confirm correct targeting of the bleeding site
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•	 Touchless interaction devices directly correlate pre-
procedural, patient-specific and literature-derived infor‑
mation, which reduces distraction, errors, and proce‑

dure time. These include eye-tracking systems, inertial 
sensors, cameras or webcams, and voice-driven smart 
assistants. In particular, the possibility of interrogating 

Fig. 3   “Automatic 3D detection of prostatic arteries using Cone-Beam CT during Prostatic Arterial Embolization”—a CBCT identification of 
prostatic arteries; b Realization of 3D roadmap; c Overlap on fluoroscopic images”

Fig. 4   “Endovascular navigation: virtual aortoscopy”—a Preoperative CT image; b, c 3D volume rendering of Aorta, d Creation of virtual  
angioscopy of the Aorta

Fig. 5   “Endovascular navigation: virtual aortic dissection angioscopy “—a, b Preoperative assessment on CT images; c Creation of virtual  
angioscopy to evaluate the approach for dissection treatment



1003La radiologia medica (2021) 126:998–1006	

1 3

a previously instructed intelligent assistant to obtain 
suggestions on which device is most appropriate dur‑
ing a specific intervention procedure, before removing 
it from the sterile container, or what is the availability 
of the same in hospital stock or make a cost analysis 
with respect to another device, is even being stud‑
ied by a group of researchers from the University of 
California. Its application could allow the operator to 
choose between two devices not only according to the  
appropriateness for the treatment but also in relation to 
the outcome data or patient-specific anatomy, optimizing 
results in terms of time and resource savings [55].

Other hypothetical examples could be ML models that 
analyze the relationships between catheter or needle posi‑
tion, therapeutic effect and patient outcomes; particularly 
in the field of ablative therapies, this would allow for the 
estimation of ablation margins, optimal probe placement and 
selection of energy settings, potentially even minimizing risk 
of damage to nearby structures [1, 56].

Training and education

Machine learning combined with augmented reality systems 
could give trainees a new platform for honing their proce‑
dural skills, leading to novel ways of assessing performance 
and improving their competency [37]. In particular, AR and 
VR applications have been shown to improve upon current 
training methods in motivation, interactivity and learning 
of material; advanced 3D rendering and manipulation of  
imaging in space allows trainees to conceptualize anatomy 
and to improve procedural skills in a simulated environment, 
with no risk to patients. Moreover, VR increases realism for 
trainees in procedural planning when compared with stand‑
ard 2D images and improve multidisciplinary communica‑
tion with remote colleagues [12].

Limitations

Despite continuous progress over the past decades, AI has 
not and may never reach the holistic intelligence of humans; 
AI algorithms are intensely data-hungry, which can be dif‑
ficult to obtain, and training can be time-consuming and 
expensive and require the clinically relevant question to be 
posed. Deep learning annotations for training may require 
bulk of human ground truth, and data curation may be a 
hurdle.

Whereas human intelligence can be acquired through 
even one simple observation and without feedback, AI 
software must see the same object potentially hundreds of 

thousands of times to recognize it, needing constant iterative 
feedback, to indicate whether it has guessed correctly or not.

One of the main weaknesses of AI systems is the lack of 
experience in real life, which is necessary to make it reli‑
able for realistic questions, and capable of abstraction and 
generalization. Moreover, clinical practice is studded with 
atypical presentations of diseases that current AI systems 
might misdiagnose, because no finished training set can fully 
represent the variety of obscure or rare cases that can be seen 
in real clinical practice. Clearly, rare findings or features 
present possible weaknesses due to lack of large volume of 
particular features.

In addition, more complex problems of interpretation 
of radiology typically require deductive reasoning, using 
knowledge of disease processes and selective integra‑
tion of information from previous examinations or patient 
records, and currently there is no learning system capable of  
achieving the most complex integration of thinking. [3]. 
In fact, some clinical problems, which may seem solvable 
in theory, are unsolvable in practice and are intractable for 
computers. Beyond the pre-treatment decision-making pro‑
cess, interventional radiologists perform sophisticated pro‑
cedures that require technical expertise and instant intrap‑
rocedural decisions and in these situations, and even the 
fastest computer can get stuck in an infinite cycle or take 
an unimaginably long time to produce an accurate decision 
or result [34].

A further limitation of AI, in particular of DL algorithms, 
is that they are relatively opaque: it remains difficult to  
clarify mechanisms or what the different parts of a large 
network do. This makes it difficult to delineate the limits 
of the network or debugging errors in image interpretation.

Ethical issues, privacy, and data sharing on the use of 
patient data for training the AI models are timely, relevant, 
and variable by geography. Although AI might improve 
reproducibility or standardization of specific medical prac‑
tices, physicians must take responsibility for the medical 
diagnosis and treatment provided to patients. The clinical 
advice provided by AI software should always be reviewed 
by an experienced healthcare professional, who may or may 
not approve the recommendation provided.

In fact, AI applications could produce significant ethical, 
legal and governance problems in the healthcare sector if 
they cause abrupt disruptions to its contextual integrity and 
relational dynamics.

Actually, the current regulation of AI in healthcare is 
subject to a miscellaneous guidelines and subjectivity of 
the authorities; the EU policy observes the following three 
Directives on medical devices: 93/42/EEC Council Direc‑
tive concerning Medical Devices [57], 90/385/EEC Council 
Directive on the approximation of the laws of the Member 
States relating to active implantable medical devices [58], 
Directive 98/79/EC of the European Parliament and of the 
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Council on in vitro diagnostic medical devices [59]. Many 
diverse and different data sharing, and privacy policies gov‑
ern how different geographies interact. Federated learning 
might overcome some of these challenges, whereby the AI 
model weights are exchanged instead of the actual private 
or identifiable patient imaging data.

With many of these limitations, today’s AI systems are 
produced as an auxiliary tool for radiologists rather than 
a replacement; decision making within the IR is likely to 
remain a matter of natural intelligence for radiologists, or a 
multidisciplinary team (supported by the AI), but with the 
physicians taking full responsibility, considering the input 
from the AI but not necessarily following it in a prescriptive 
manner [60].

Technology remains neutral and is only as useful or 
strong as the human guidance used to annotate or ask the 
appropriate questions of the correct data. Since the data used 
to train ML and DL algorithms are generated by humans, the 
utility all depends on how it is designed and implemented.

Conclusions

Although concerns have been expressed about the impact 
of AI on the radiology professional community, AI is not 
actually a threat, but a great opportunity. Used correctly, it 
could augment conventional practice of Diagnostic and also 
Interventional Radiology. Although futuristic and specula‑
tive, AI combined with Augmented Reality/Virtual Reality 
could help the interventional radiologist make faster, correct 
and more accurate and efficient, cost-effective decisions in 
terms of diagnosis, planning and treatment management, by 
allowing earlier disease identification, earlier treatments at 
an earlier stage and with less invasiveness, thus improving 
patient care and satisfaction.

Human and medical judgment, and even more empathy 
and compassion in communicating critical findings (upon 
which millions of patients rely in their medical care), are 
difficult to quantify and even more difficult, or even impos‑
sible, to simulate.

Therefore, modern radiologists need to be aware of the 
basic principles of AI; thanks to their ability to adapt and 
innovate, they will remain essential for medical practice and 
take a more decisive role in the process of digitization and 
personalization of medicine.

Essentials

•	 AI can improve patient’s compliance through the pos‑
sibility to show a simulation of the experience in  
angiography suite through the use of AR/VR, allowing 

patient to aware of what awaits him/her at the time of the 
procedure.

•	 Through the use of ML DL algorithms, AI models pre‑
dict the success rate of a specific treatment in a specific 
patient, to estimate/forecast the outcomes and/or the cost 
efficiency and benefits of a treatment before performing 
it, perhaps via investigation of demographic and patho‑
logic characteristics in advance.

•	 During pre-procedural assessment in the IR/angiogra‑
phy suite, advanced 3D rendering and manipulation of  
imaging in space allow operators to conceptualize diffi‑
cult anatomy, to increases realism in procedural planning 
when compared with standard 2D images, and to improve 
procedural skills in a previous simulated environment, 
with no risk to patient.

•	 One of the main weaknesses of AI systems is the lack 
of clear mechanistic rationale and real-life experience, 
and the lack of the capability to abstract and generalize. 
Atypical presentations of diseases could be misdiagnosed 
by AI systems, because no finished training set can fully 
represent the variety of cases that can be seen in clinical 
practice.

•	 Radiologists and IR should embrace AI tools that aug‑
ment the practicality, quality, and efficiency of their prac‑
tice and reject any AI model that does not.
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