
An evolutionary system of mineralogy. Part I: Stellar mineralogy 
(>13 to 4.6 Ga)

Robert M. Hazen1,*, Shaunna M. Morrison1

1Earth and Planets Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, 
Washington, DC 20015, U.S.A.

Abstract

Minerals preserve records of the physical, chemical, and biological histories of their origins and 

subsequent alteration, and thus provide a vivid narrative of the evolution of Earth and other worlds 

through billions of years of cosmic history. Mineral properties, including trace and minor 

elements, ratios of isotopes, solid and fluid inclusions, external morphologies, and other 

idiosyncratic attributes, represent information that points to specific modes of formation and 

subsequent environmental histories—information essential to understanding the co-evolving 

geosphere and biosphere. This perspective suggests an opportunity to amplify the existing system 

of mineral classification, by which minerals are defined solely on idealized end-member chemical 

compositions and crystal structures. Here we present the first in a series of contributions to explore 

a complementary evolutionary system of mineralogy—a classification scheme that links mineral 

species to their paragenetic modes.

The earliest stage of mineral evolution commenced with the appearance of the first crystals in the 

universe at >13 Ga and continues today in the expanding, cooling atmospheres of countless 

evolved stars, which host the high-temperature (T > 1000 K), low-pressure (P < 10−2 atm) 

condensation of refractory minerals and amorphous phases. Most stardust is thought to originate in 

three distinct processes in carbon- and/or oxygen-rich mineral-forming stars: (1) condensation in 

the cooling, expanding atmospheres of asymptotic giant branch stars; (2) during the catastrophic 

explosions of supernovae, most commonly core collapse (Type II) supernovae; and (3) classical 

novae explosions, the consequence of runaway fusion reactions at the surface of a binary white 

dwarf star. Each stellar environment imparts distinctive isotopic and trace element signatures to the 

micro- and nanoscale stardust grains that are recovered from meteorites and micrometeorites 

collected on Earth’s surface, by atmospheric sampling, and from asteroids and comets. Although 

our understanding of the diverse mineral-forming environments of stars is as yet incomplete, we 

present a preliminary catalog of 41 distinct natural kinds of stellar minerals, representing 22 

official International Mineralogical Association (IMA) mineral species, as well as 2 as yet 

unapproved crystalline phases and 3 kinds of non-crystalline condensed phases not codified by the 

IMA.
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“The science of Mineralogy has made rapid progress in the past six years; 
chemistry has opened to us a better knowledge of the nature and relations of 
compounds; and philosophy has thrown new light on the principles of 
classification. To change is always seeming fickleness. But not to change with the 
advance of science, is worse; it is persistence in error.”

James Dwight Dana, System of Mineralogy, Third 

Edition, 1850, p. 5

Introduction

Mineral diversity and distribution have evolved through almost 14 billion years of cosmic 

history, as a succession of physical, chemical, and ultimately biological processes led to the 

selection and concentration of mineral-forming elements in varied pressure-temperature-

composition environments. As such, minerals and other condensed phases bear vivid 

testimony to the ancient origins and storied evolution of diverse worlds, both in our solar 

system and in star systems far beyond. A central objective of Earth and planetary sciences is 

to tease out those histories from the rich, revealing mineralogical evidence left behind.

The present system of mineral classification of the International Mineralogical Association’s 

Commission on New Minerals, Nomenclature and Classification (IMA, CNMNC; e.g., 

Burke 2006; Mills et al. 2009; Schertl et al. 2018) is based on pure end-member chemical 

compositions and idealized crystal structures—the minimum information necessary to 

distinguish between any two species. Such a coherent and reproducible framework is 

essential for the field of mineralogy, and it will remain the foundation for mineral 

nomenclature and classification for decades to come. However, by design the IMA 

classification system does not incorporate the idiosyncratic compositional variations, 

distinctive physical properties, and diverse morphological characteristics of minerals and 

other condensed phases formed under varying environmental conditions at different 

historical stages of the cosmos (e.g., Santana 2019). Therefore, we have the opportunity to 

build on the present system of mineralogy, to capture more fully the evolving mineralogical 

diversity of Earth and other worlds through deep time.

We propose a complementary “evolutionary classification system” of minerals, which 

catalogs minerals by coupling species with their paragenetic modes. Accordingly, we adopt 

a binomial nomenclature, with a mineral name preceded by a descriptor of the paragenetic 

mode, such as “impact stishovite,” “pegmatitic hydroxylapatite,” or “biogenic pyrite.” The 

system is divided into chronological parts, each representing a different stage of mineral 

evolution (Hazen et al. 2008; Hazen and Ferry 2010). In Part I, we consider stellar 

mineralogy and the earliest condensed phases in the cosmos, to be followed by interstellar 

and nebular mineralogy (Parts II and III), planetesimal mineralogy (Parts IV and V), and a 

series of subsequent contributions focused on planetary processes. Within each part, 
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minerals are arranged according to the Dana System: Native Elements, followed by Sulfides, 

Oxides, and Hydroxides, etc. (J.D. Dana et al. 1973; Gaines et al. 1997; see http://

www.webmineral.com, accessed 28 September 2019).

We employ IMA-approved mineral names for the great majority of species. However, the 

evolutionary system of mineralogy deviates from IMA nomenclature in three significant 

ways (Hazen 2019). First, by employing a binomial nomenclature, we split many common 

minerals into multiple kinds based on their distinctive paragenetic modes. Thus, in our 

system diamond formed by lowpressure condensation in a stellar atmosphere (e.g., AGB 
diamond; see below) differs from diamond formed by shock alteration of carbon-rich 

material (impact diamond), or crystallized at high pressure and temperature in Earth’s 

mantle (e.g., Type 1 diamond).

On the other hand, in some instances, two or more IMA species would be lumped because 

they form by a single process in a continuous phase space. The occurrence of zoned minerals 

within complex compositional space, for example, in the pyroxene, amphibole, mica, and 

tourmaline groups, often results in multiple IMA species being present in a single mineral 

grain (e.g., dravite-schorl in zoned tourmaline crystals; Grew et al. 2015). In these instances, 

we lump two or more compositional end-member mineral species into a single natural kind. 

We also catalog various non-crystalline condensed phases as natural kinds—materials 

important in planetary evolution, even though they are not typically assigned official mineral 

names by the present IMA procedures.

This contribution is the first in a planned series of publications on an evolutionary system of 

mineralogy that will examine chronologically the emerging diversity and distribution of 

condensed phases found on Earth, as well as on other planets, moons, and nebular 

environments. Here we explore stardust—remnants from the earliest episodes of mineral 

evolution. Stellar mineralogy, or “astromineralogy” (e.g., DePew et al. 2006; A.P. Jones 

2007), encompasses all solid phases that form in the atmospheres of stars—mineralization 

that commenced more than 13 billion years ago, long before the formation of our solar 

nebula. At least 41 different natural kinds of stellar minerals, representing 22 IMA-approved 

mineral species, two crystalline phases not yet approved by the IMA, and three non-

crystalline phases (Table 1), formed primarily from 11 relatively abundant chemical 

elements that emerged from stellar nucleosynthesis—C, N, O, Mg, Al, Si, S, Ca, Ti, Cr, and 

Fe (e.g., Clayton 1983; Rolfs and Rodney 2005; Schatz 2010; Fig. 1a). The expanding, 

cooling gaseous envelopes of aged stars, characterized by high-temperature (>1000 K) and 

low-pressure (<10−2 atm) condensation of a few refractory phases (Fig. 1b), represent the 

most ancient mineral-forming environments in the cosmos.

On the nature of stardust

Stellar minerals must have first formed within a few hundred million years of the Big Bang, 

as temperatures in the expanding gaseous envelopes of supernovae and early generations of 

other highly evolved stars (Abel et al. 2002; Robertson et al. 2015; Bowman et al. 2018) fell 

significantly below the maximum ~1700 K condensation temperature of diamond in a 

carbon-rich gas at ~10−4 atm (Lodders and Amari 2005). Varied nano- and microcrystalline 

Hazen and Morrison Page 3

Am Mineral. Author manuscript; available in PMC 2021 April 16.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

http://www.webmineral.com/
http://www.webmineral.com/


phases, collectively called the “ur-minerals” (Hazen et al. 2008), represent the earliest 

condensed matter in the history of the universe—the true beginnings of cosmic mineralogy.

The first evidence for mineral formation around stars came from observations of distinctive 

infrared absorption features from the dust-rich expanding envelopes of planetary nebulas and 

supernovae (Gillett et al. 1968; Woolf and Ney 1969; Treffers and Cohen 1974; see 

Boulanger et al. 2009 and references therein). Donald Clayton subsequently suggested that 

presolar stellar condensates may be preserved in meteorites and should have significant 

isotopic anomalies compared to solar abundances (Clayton 1975, 1978; Clayton and Ward 

1978)—speculations confirmed by laboratory discoveries in the late 1980s (Lewis et al. 

1987; Bernatowicz et al. 1987; Zinner et al. 1987; Amari et al. 1990). These ancient specks 

of stardust have become the focus of increasingly intense study by both mineralogists and 

astrophysicists (e.g., Clayton and Nittler 2004; Lodders and Amari 2005; Lugaro 2005; 

Davis 2011, 2014; Zinner 2014; Nittler and Ciesla 2016; and references therein).

Presolar grains are present in the least processed extraterrestrial materials, including 

meteorites and micrometeorites collected on Earth’s surface (e.g., Yada et al. 2008), 

interplanetary dust particles collected from Earth’s upper atmosphere by high-altitude 

aircraft (Hodge 1961; Dermott and Liou 1994; Messenger 2002), and samples of comet 

Wild-2 returned by NASA’s Stardust mission (e.g., McKeegan et al. 2006; Stadermann et al. 

2008). They are identified by their highly anomalous isotopic compositions, compared to 

materials that formed in the solar system, which point to an origin in the turbulent winds 

and/or explosions of previous generations of evolved stars. A significant suite of micro- and 

nanophases are now recognized by their distinctive chemistries, isotopic compositions, and 

morphologies—features that point to origins in various carbon- and/or oxygen-rich stellar 

environments (Table 1). Each individual presolar grain formed during a given time interval 

in a given evolved star and thus preserves a fossil memory of the physical and chemical 

conditions of its formation environment (Bernatowicz et al. 2003; Zinner 2014; Takigawa et 

al. 2018).

Studying stellar minerals is challenging on several fronts as a consequence of their 

diminutive scale. All stellar mineral grains are small, ranging from multi-micrometer-scale 

grains of graphite and moissanite (SiC) with many trillion atoms to nano-diamonds with 

fewer than 1000 atoms per particle (e.g., Lugaro 2005; Davis 2011). The first identified and 

best-studied presolar phases (SiC and C allotropes; Lewis et al. 1987; Bernatowicz et al. 

1987; Zinner et al. 1987) are highly refractory and acid-resistant, so they can be isolated 

from meteorites via acid dissolution of the dominant silicate, metal, and sulfide phases 

(“burning down a haystack to find a needle”). The development of nanoscale secondary ion 

mass spectrometry (NanoSIMS) technology later enabled high-resolution (<0.1 μm) isotopic 

mapping of interplanetary dust and meteorites to identify presolar grains in situ, especially 

presolar silicates, as these grains are destroyed by the acid dissolution methods (Messenger 

et al. 2003; Mostefouai and Hoppe 2004; Nagashima et al. 2004; Nguyen and Zinner 2004). 

Once identified by their anomalous isotopic compositions, presolar grains can be prepared 

by focused ion beam (FIB) methods and analyzed by transmission electron microscopy 

(TEM). Such investigations of individual grains are now providing remarkable insights 
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regarding the ancient origins and evolution of stardust (Amari 2014; Zinner 2014; Nittler 

and Ciesla 2016).

At least 22 different IMA-approved mineral species and five other phases have been 

confirmed as stellar minerals (Table 1). However, the varied grains in stardust, including 

several amorphous or glassy phases, display a wide diversity of observed attributes, 

including distinctive elemental and isotopic compositions, external morphologies, and 

microstructures that point to at least three major paragenetic modes, resulting in a list of 

natural kinds of condensed stellar phases significantly greater than the modest list of official 

mineral species. In this context, grains with similar isotopic and structural attributes are 

assumed to have had similar histories, arising in some cases from the same parent stellar 

environment. An important and as yet poorly constrained aspect of stellar mineralogy is that 

the temperature-pressure-composition regimes of dust-producing stars differ widely, both 

from star to star and spatially and temporally within the evolving dynamic atmospheres of 

any given star. Consequently, suites of these grains will vary significantly, depending on 

their specific peripatetic stellar histories. In some instances, presolar mineral grains 

(especially suites of refractory inclusions) appear to represent relatively pristine primary 

condensates—in essence pure fragments of a specific star. However, other grains may have 

experienced subsequent reworking that significantly altered the mineral’s elemental and 

isotopic compositions and/or structural state, both within a dynamic stellar environment and 

through subsequent nebular processing. As a result, stellar mineralogy, though limited to the 

most refractory high-temperature phases of cosmically abundant elements, is richly varied in 

ways that are only gradually coming to light.

On the paragenesis of stellar minerals

Long before the emergence of our solar system and its intriguing diversity of mineral-rich 

worlds, condensed crystalline and amorphous phases formed abundantly in the ejecta of 

supernovae and classical novae, as well as in the expanding, cooling gaseous envelopes of 

highly evolved stars (Mostefouai and Hoppe 2004; Lodders and Amari 2005; Hynes et al. 

2010; Davis 2011; Nittler and Ciesla 2016; Nittler et al. 2018a). Here we review stellar 

environments in which isotopes are synthesized and astrominerals emerge. In the following 

two sections, we briefly summarize two key aspects of stardust: (1) the nucleosynthetic 

origins of mineralforming elements, and (2) the three types of high-temperature stellar 

environments in which minerals most frequently condense. For detailed discussions of the 

stellar origins of astrominerals see reviews by Lodders and Amari (2005), Nittler and 

Dauphas (2006), Davis (2011), Zinner (2014), and Nittler and Ciesla (2016).

Stellar nucleosynthesis and the origins of mineral-forming elements

Minerals on Earth are known to incorporate almost 300 stable or long-lived isotopes of at 

least 72 chemical elements. Big-Bang Nucleosynthesis (BBN), by contrast, can account for 

significant quantities of only hydrogen, helium, and lithium (Bertulani 2013, and references 

therein), though trivial quantities of heavier elements, including carbon, nitrogen, and 

oxygen, also emerged from BBN (Iocco et al. 2008). Consequently, almost all 

mineralforming elements other than hydrogen arose through processes of stellar 
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nucleosynthesis (Burbidge et al. 1957; Cameron 1957; Schatz 2010; Bertulani 2013), which 

began ~100 Ma after the Big Bang with the first generation of massive stars (Abel et al. 

2002; Robertson et al. 2015; Bowman et al. 2018). A variety of nucleosynthetic 

mechanisms, each of which produces a distinctive pattern of elements and isotopes, 

contribute significantly to suites of mineral-forming elements and their isotopes in stars 

(e.g., Truran and Heger 2003; Zinner 2014; Nittler and Ciesla 2016).

Nucleosynthesis in stars is inextricably linked to stellar evolution, which can be 

characterized as a competition between the inward force of gravitational contraction and the 

outward force of nuclear fusion reactions. Gravitational compression within stars heats 

matter to the point where exothermic nuclear fusion reactions occur, providing energy to 

counteract collapse. When one nuclear fuel source is exhausted, depending on the mass and 

composition of the stellar core, gravity can cause core contraction until a new stage of fusion 

reactions commences. The formation of mineral-forming elements and isotopes is 

summarized below.

• Hydrogen burning.—Most stellar nucleosynthesis, most of the time, involves “hydrogen 

burning”—the three-step fusion mechanism that transforms four protons into a 4He nucleus 

(an α particle), with two protons and two neutrons. All stars spend most of their lives 

powered by hydrogen burning in their cores—the process that dominates stars on the main 

sequence of the Hertzsprung-Russell diagram (e.g., L.V. Jones 2009).

• Helium burning and carbon nucleosynthesis.—As the α particle concentration 

increases in a star’s core, “helium burning” commences, producing 12C through the triple-α 
process (e.g., Carroll and Ostlie 2017)—a process characteristic of “red giant branch” 

(RGB) stars. In stars more massive than the Sun, 12C catalyzes additional helium production 

from protons through the “CNO cycle” (e.g., Limongi and Chieffi 2012; Carroll and Ostlie 

2017), while increasing the concentrations of 13C and 15N relative to 12C and 14N. However, 

these fusion reactions do not generate a significant suite of mineral-forming elements other 

than carbon.

• Late-stage fusion processes—most elements to Fe.—Most elements to Fe. Most 

synthesis of essential elements in stellar minerals occurs during late-stage fusion processes 

in stars that have left the main sequence. The details of what occurs after core He burning 

depend critically on the initial mass of the star. For stars less massive than about 8 times that 

of the Sun, the C-O core remains stable against gravity due to quantum mechanical “electron 

degeneracy” pressure, but H and He burning continue to produce energy in narrow shells 

outside the core. A star in this post-RGB stage is referred to as an “asymptotic giant branch” 

or AGB star, which produces copious amounts of dust that drives strong winds. An AGB star 

expels much of its dust-rich envelope into interstellar space, temporarily appearing as a 

spectacular “planetary nebula” before leaving behind its cooling core as a white dwarf star 

(Fig. 2a). (Note that the misleadingly named “planetary” nebula is not related to planet 

formation, which occurs in a “solar nebula.”)

The nuclear histories and fates of stars greater than ~8 solar masses are even more dramatic. 

Following He burning, massive stars continue the sequence of burning increasingly heavier 
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fuels in their cores through the “a process” or “α ladder,” by which α particles fuse initially 

with 12C in a stepwise sequence: 12C → 16O → 20Ne → 24Mg → 28Si, etc., to 56Fe, thus 

producing several of the most abundant mineral-forming isotopes (e.g., L.V. Jones 2009). 

These and other fusion reactions, including myriad steps during carbon burning, neon 

burning, oxygen burning, and silicon burning, occur near the end of the lives of AGB stars 

significantly more massive than the Sun. This increasingly rapid sequence of fusion 

reactions is responsible for much of the production of isotopes up to 60Zn (e.g., Truran and 

Heger 2003; Carroll and Ostlie 2017).

• Core collapse in Type II supernovae.—56Fe has the highest binding energy of any 

common nucleus; therefore, it cannot produce energy through fusion reactions and 

eventually the battle against gravity is lost. Consequently, when the core of a large star 

becomes enriched in 56Fe, nuclear fusion reactions no longer exert an outward pressure and 

gravity takes over. The iron core collapses to form either a neutron star or a black hole and 

the outer layers are ejected in a spectacular Type II supernova explosion (Fig. 2b). The 

extreme temperatures and pressures of gravitationally induced core collapse result in a 

cascade of nuclear reactions, producing shortlived isotopes such as 26Al, 44Ti, and 49V, 

which decay rapidly to stable 26Mg, 44Ca, and 49Ti—diagnostic isotopes preserved in stellar 

minerals (Clayton 1975; Nittler et al. 1996; Timmes et al. 1996).

• Slow neutron capture (s-process).—In spite of their importance in producing the 

major elements of stellar minerals, the fusion processes outlined above generate only about a 

third of Earth’s mineral-forming chemical elements (Johnson 2019). Elements with atomic 

number greater than 30 arise primarily through neutron-capture processes in late-stage, 

evolved stars. Both the s-process and r-process (i.e., rapid neutron capture; see below) 

nucleosynthesis involve the addition of one neutron after another until a nucleus becomes 

unstable and undergoes β decay, thus increasing atomic number by 1. The new element 

captures additional neutrons and the process repeats. Owing to the ~10 min half-life of free 

neutrons, these neutron-capture scenarios must occur in specific stellar environments with 

intense neutron fluxes—conditions not met in main sequence hydrogen-burning stars. 

Rather, s-process nucleosynthesis is thought to occur primarily in the helium-burning cores 

of certain red giant stars, as well as in low- to intermediate-mass asymptotic giant branch 

stars undergoing helium burning. Neutrons, which are initially captured on iron nuclei from 

previous generations of stars, lead to cascades of reactions that produce most of the stable 

elements heavier than iron (Käppeler 1999; Johnson 2019). In particular, as an Fe nucleus 

becomes neutron-rich, it undergoes β decay and transforms to cobalt, the next element in the 

periodic table. The s-process continues, element by element, to Bi, with the relative 

abundances of resulting isotopes approximately inversely proportional to their neutron 

capture cross-sections (leading, for example, to the notable generation of Mo, Zr, Ru, Sr, Ba, 

W, and Pb). The s-process can thus produce diagnostic suites of trace and minor elements in 

AGB minerals.

• Rapid neutron capture (r-process).—Approximately 40% of elements heavier than 

iron, including all uranium and thorium atoms, arise from the rapid neutron capture process. 

Note that in the early history of the universe, before the emergence of the multi-generation 
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iron-rich stars that fuel the s-process, the r-process must have dominated nucleosynthesis of 

heavy elements (e.g., Sneden et al. 2008). The r-process requires remarkable neutron fluxes, 

corresponding to free-neutron densities as high as 10 kg/cm3—extreme conditions that point 

to the environments of neutron stars. Recent observations of a gravitational wave event 

(designated GW170817), coupled with intense electromagnetic radiation pulses in a wide 

range of wavelengths from host galaxy NGC4993, suggest that the r-process occurs in 

colliding neutron binary stars—energetic events dubbed “kilonovae” (Kasen et al. 2017; 

Coulter et al. 2017; Ghirlanda et al. 2019). An important diagnostic marker of the r-process 

is the anomalous abundance of the most neutron-rich stable isotopes (“r-only isotopes,” such 

as 134Xe and 136Xe) of elements heavier than iron. It is important to note that the distinctive 

isotopic attributes of presolar minerals have provided the first tangible evidence for the s-

process, r-process, and other major nucleosynthetic mechanisms, which were long 

hypothesized (e.g., Burbidge et al. 1957; Cameron 1957) but not previously supported by 

observations (e.g., Nittler and Ciesla 2016).

• Proton capture nucleosynthesis.—Some proton-rich isotopes are thought to form in 

very high-temperature environments (>109 Kelvins) with high proton densities, for example, 

during the accretion of hydrogen onto a neutron star (Bildsten 1998).

• Cosmic-ray spallation.—Most lithium, beryllium, and boron nuclei form through the 

fragmentation of more massive nuclei—transformations triggered by cosmic-ray fluxes in at 

least three galactic environments. Intense spallation occurs during classic core-collapse 

supernova events (e.g., Clayton 1983), in contrast to much more gradual spallation as a 

consequence of exposure to the essentially isotropic galactic cosmic ray flux. A record of 

spallation-induced nucleosynthesis in proximity to the early active Sun is also preserved in 

the most ancient solar system materials (Caffee et al. 1987; Hohenberg et al. 1990; Feigelson 

et al. 2002; Sossi et al. 2017; Kööp et al. 2018).

An intriguing aspect of nucleosynthesis is that the average composition of the universe 

evolves, from the initial 9:1 hydrogen-to-helium mixture of 13.8 billion years ago to the 

present state, when ~2 wt% of H + He has been converted to heavier elements (Pagel 1997; 

Matteucci 2003; Johnson 2019). This evolving diversity and distribution of chemical 

elements has had a profound effect on the cosmic evolution of minerals, as well. In 

particular, the wide range of observed ratios of the isotopes of C, N, O, Si, and other 

elements in stellar minerals reflect a parent star’s starting composition overlaid by its 

internal nucleosynthetic processes.

An example of this effect is provided by comparing the lower metallicity AGB stars in the 

Magellanic Clouds (a pair of nearby dwarf galaxies in the Local Cluster), with the more 

metal-rich AGB stars in the Milky Way. The atmospheres of evolved stars in the Magellanic 

Clouds are dominated by carbon-rich dust, in contrast to Milky Way stars that are much 

richer in SiC. That contrast arises because all AGB stars form and dredge up carbon, but 

silicon content depends on their initial metallicity (Sloan et al. 2016).
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On the variety of mineral-forming stars

Three contrasting types of highly evolved stars—AGB stars, Type II supernovae, and 

classical novae—are thought to be the primary producers of dust in the universe and to have 

formed the majority of the refractory phases observed as isotopically anomalous presolar 

grains in chondrite meteorites. Here we review these three major types of mineral-producing 

stars.

Most stars for most of their lifetimes do not produce minerals. Like the Sun, the majority of 

stars are now fusing hydrogen to form helium in their cores; these stars lie on the so-called 

“Main Sequence” of the Hertzsprung-Russell diagram (e.g., Karttunen and Oja 2007; Carroll 

and Ostlie 2017). Approximately 90% of stars visible in the night sky are in the midst of 

their stable hydrogen-burning phase—extended intervals during which condensed phases are 

unlikely to form.

For stars greater than about one-third of the Sun’s mass, additional nucleosynthesis 

processes eventually occur after an extended period of hydrogen burning—more than 9 

billion years for the Sun, but much shorter for more massive stars [e.g., an estimated ~30 

million years for stars eight times the mass of the Sun (Schröder and Connon Smith 2008; 

Peeples and Somerville 2013)]. Subsequent synthesis of elements heavier than helium (for 

example, the nucleosynthesis of carbon by the triple-α process), coupled with convective 

overturn to bring these heavier elements to a star’s surface—a phenomenon known as 

“dredging”—produce the conditions by which mineral-forming elements may enter a star’s 

dynamic atmosphere and condense as refractory phases. Consequently, stellar mineralogy 

primarily emerges from relatively late-stage processes in the lifetimes of stars of sufficient 

mass.

Stars form minerals when stellar atmospheres sufficiently enriched in C, O, Si, and other 

mineral-forming elements expand and cool below the condensation temperatures of 

refractory phases. The range of environments in presumed mineral-forming stars varies 

significantly in several attributes, including mass, metallicity, composition, age, and the 

rapidity of the mineral-forming events. All of these characteristics significantly affect the 

production, attributes, and survival of stellar minerals and other condensates, but the two 

factors that most strongly influence the formation of minerals by stars are mass and 

metallicity. Stellar mass plays the major role in the production of elements heavier than 

helium. Consequently, stars with masses from slightly less than the Sun to many times the 

solar mass have the potential to produce minerals at some stages of their lifetimes. In 

general, more massive stars produce a wider range of elements by nucleosynthesis, they 

produce those elements more rapidly, and they are more efficient at dispersing those 

elements into the interstellar medium.

Superposed on the evolution of any individual star is its initial composition—the 

“metallicity,” defined as the percent of a star’s mass comprised of elements heavier than 

hydrogen and helium. The metallicity of distant stars is measured relative to the Sun, which 

had an estimated initial composition 4.5 billion years ago of ~71 wt% hydrogen, ~27.5 wt% 

helium, and ~1.5 wt% “metal” (e.g., Johnson 2019). The earliest stars in the cosmos, 

represented by an ancient group of “Population III stars” (Tominga et al. 2007), formed from 
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the abundant hydrogen and helium characteristic of Big Bang Nucleosynthesis and thus 

began their lives with metallicities less than a millionth that of the Sun—i.e., with essentially 

no mineral-forming elements (Frebel et al. 2009). Other stars that formed subsequently from 

the debris of earlier stellar generations display a range of metallicities, from significantly 

less than the Sun to more than twice the solar abundance of elements heavier than helium 

(Taylor 1996; Feltzing and Gonzales 2001; Peeples and Somerville 2013). As a general rule, 

stars with greater metallicity are more amenable to production of s-process elements from 

neutron capture by iron, and they are more likely to host mineral-like condensates in their 

turbulent atmospheres.

The composition of stellar atmospheres may be further complicated by significant mass 

transfer, both large-scale mixing from the mergers of different galactic sources (Clayton 

1997, 2003; Lugaro et al. 1999; see Nittler and Dauphas 2006, and references therein) and 

local mixing, for example from a companion binary star of different type (e.g., Nittler et al. 

2008; Zega et al. 2014a). The consequent intimate connection between astrophysics and the 

earliest phases of cosmic mineral evolution is a gradually emerging, intensely fascinating 

facet of natural condensed materials science.

Three types of stars—AGB stars, Type II supernovae, and classical novae, each representing 

post-hydrogen-burning stages of stellar evolution—have been implicated in the formation of 

most stellar minerals. It is important to note that these types of stars feature a complex and 

dynamic range of mineral-forming environments. Distributions of mineral-forming elements 

and their isotopic ratios reflect both the pressure-temperature-composition regime in which 

nucleosynthesis occurs and the dynamic convective (or explosive) processes that bring those 

elements to the cooler atmospheres where condensation can take place. These stars occur 

with a range of initial masses and metallicities, and they experience a succession of 

evolutionary phases, each of which may contribute in different ways to the inventory of 

stardust.

Asymptotic giant branch (AGB) stars.—The largest producers of stardust are 

asymptotic giant branch (AGB) stars, which evolve from red giant stars between about 0.6 

and 8 solar masses. AGB stars form spectacular planetary nebulas, which are a major source 

of mineral-rich dust in the galaxy (Fig. 2a). Planetary nebulas form when AGB stars enter a 

late-stage of nucleosynthesis characterized by fusion in a carbon- and oxygen-rich core, an 

inner shell of helium burning, and a surrounding shell of hydrogen burning. An important 

characteristic of AGB stars is a prolonged period of s-process nucleosynthesis, the 

mechanism by which existing nuclei capture neutrons one at a time to increase atomic mass, 

trigger β decay, and generate new heavier isotopes and elements—notably Mo, Zr, Ru, Sr, 

Ba, W, and Pb. S-process nucleosynthesis thus enriches some AGB stars in idiosyncratic 

isotopes and trace elements.

Several significant “dredge up” episodes of convective overturn bring C- and/or O-rich core 

material to the surface, where these and other mineral-forming elements are introduced to 

the stellar atmosphere. The “first dredge-up,” which occurs after the main sequence as stars 

are commencing their red giant phase, has a relatively minor effect on mineral-forming 

elements, though it adds 13C, 15N, and 17O from the CNO cycle and thus changes the 
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isotope values of C, N, and O significantly. The second dredge-up, which only occurs in 

stars greater than four times the Sun’s mass, leads to increased 14N relative to 12C and 16O.

A sequence of “third dredge-up” (TDU) episodes, during which carbon and s-process 

elements such as Mo and Zr are brought to the star’s surface, occurs during the AGB phase 

of stars less than ~8 solar masses. The significant transfer of 12C to the surface during TDU 

episodes may ultimately produce a star in which C/O > 1—an environment in which 

diamond, graphite, and/or carbide grain formation is favored. Depending on the variable and 

evolving ratio of C/O, which may range from C > O to O ≫ C, the dominant mineralogy 

will range from carbon allotropes and silicon carbide to oxides and silicates. As the primary 

producers of carbon in the universe, AGB stars are thought to be the source of most of the C-

bearing presolar mineral grains. Indeed, more than 95% of presolar SiC grains are attributed 

to AGB stars (Daulton et al. 2003; Davis 2011).

Though not fully understood, an additional hypothesized phase of an AGB star’s evolution 

has been called “cool bottom processing” (CBP), which is thought to occur as significant 

mass convects from the outer stellar envelope into hot interior regions. There, additional 

nuclear fusion reactions may occur before mass is returned to the surface (Nollett et al. 

2003; however, see Lugaro et al. 2017). Characteristic changes ascribed to CBP may include 

the rapid production of short-lived 26Al (which decays to 26Mg) and destruction of 18O, 

leading to a significant decrease in 18O/16O. Furthermore, the significant destruction of 12C 

by CBP may lead to C/O < 1, thus precluding carbide grain formation, while destruction of 
15N leads to increased 14N/15N. The distinctive isotopic compositions of some SiC grains 

may thus require such cool bottom processing (Alexander and Nittler 1999; Zinner et al. 

2006).

In addition to this complex evolutionary sequence, some “bornagain” AGB stars are thought 

to experience a late-stage surge of helium burning that leads to a pulse of 13C and other s-

process, neutron-rich isotopes (Herwig et al. 2011; Fujiya et al. 2013). This distinctive 

isotopic mix matches some of the observed compositions of a scarce population of 13C-rich 

silicon carbide grains.

Finally, enigmatic J-type carbon-rich stars (Abia and Isern 2000) are characterized by C > O 

and extreme enrichment in 13C (1 < 12C/13C < 10, compared to solar values ~90), as well as 

enrichment of 14N relative to 15N. J stars, which contrast to the more abundant 12C-rich N-

type stars (also known as “C-rich AGB stars”), account for as many as 15% of carbon-rich 

stars (Morgan et al. 2003). Their origins are not well understood, but their unique 

compositions appear to be reflected in some presolar grains, for example, a distinctive 

population of “AB-type” silicon carbide grains (Liu et al. 2017a).

Supernovae.—Most presolar mineral grains have isotopic compositions that conform to 

mixtures that are plausibly derived from AGB stars. However, a small fraction of anomalous 

grains, notably those with extreme concentrations of neutron-rich isotopes, demand 

alternative origin hypotheses. In particular, stars more massive than approximately 8 times 

the Sun are relatively short lived (<30 My; Karakas and Lattanzio 2014) and end in 

catastrophic core-collapse events called Type II supernovae (“SN-II”, Fig. 2b). Following a 
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short and intense period of corecollapse nucleosynthesis, including brief “neutron bursts” 

that may produce a suite of heavy element isotopes distinct from the s- or r-processes 

(Meyer et al. 2000; Rauscher et al. 2002), SN-II events eject a significant fraction of their 

mass into the interstellar environment, with consequent jumbling of isotopes from different 

stellar layers as the cooling, expanding, turbulent atmosphere produces various presolar 

minerals (Nittler et al. 1996, 2008; Travaglio et al. 1999; Hoppe et al. 2000). Shock waves 

associated with SN-II explosions have also been implicated in the formation and/or 

alteration of some presolar grains, notably nanodiamonds (Stroud et al. 2011). Diagnostic 

features of Type II supernovae include elevated 18O/16O, as well as the production of a 

distinctive suite of isotopes, notably 26Al, 44Ti, and 49V, which decay to stable 26Mg, 44Ca, 

and 49Ti, respectively. Analyses of short-lived isotopes in supernova-derived SiC grains 

suggest that dust formation commences more than 2 yr after and continues for at least 10 yr 

following, the explosion (Liu et al. 2018).

Additional mineral condensation may occur as a consequence of Type Ia supernovae, which 

are an end stage for some white dwarf stars—the collapsed remnants of a main sequence star 

up to ~8 solar masses. White dwarf stars have exhausted their helium-burning phase, but 

they lack the critical mass (the Chandrasekhar limit; Chandrasekhar 1931) to trigger a core-

collapse (SN-II) supernova. However, if that limit is eventually exceeded through mass 

transfer from a binary companion star, then collapse is accompanied by explosive hydrogen 

burning and rapid consumption of a significant fraction of carbon and oxygen to yield ejecta 

concentrated in heavier elements (Khokhlov et al. 1993; Mazzali et al. 2007). Type Ia 

supernova nucleosynthesis probably accounts for only a small fraction of observed presolar 

grains, and few if any examples have been confirmed. Nevertheless, recent investigations of 
54Cr-rich grains by Nittler et al. (2018a) may best be ascribed to SN-Ia origins.

Other varieties of exploding/colliding stars may also play as yet unconfirmed minor roles in 

the formation of stellar minerals. In addition to “kilonovae,” which are colliding binary 

neutron stars that may facilitate abundant r-process nucleosynthesis (see above; Kasen et al. 

2017; Coulter et al. 2017; Ghirlanda et al. 2019), “electron-capture supernovae” are another 

putative stellar source of presolar grains with anomalous excesses of neutron-rich 48Ca, 50Ti, 
54Cr, and 60Fe (S. Jones et al. 2019a, 2019b).

Novae.—A “nova” is a transient event, during which a star’s brightness suddenly increases 

many orders of magnitude and then gradual dims over weeks or months. All novae occur in 

binary systems with one white dwarf star. The most common type of nova, and the one most 

closely tied to the creation of stardust, is the so-called “classical nova.” If the white dwarf 

star and its companion (typically a main sequence or red giant star) are close enough, 

significant transfer hydrogen-rich material can occur. The white dwarf’s newly accreted 

hydrogen atmosphere is heated to extreme temperatures, resulting in thermonuclear ignition 

and runaway fusion, with the associated production of CNO-cycle isotopes 13C, 15N, and 
17O (e.g., Prialnik 2001). Expulsion of this atmosphere may be accompanied by the 

condensation of carbon- and oxygen-rich phases, including amorphous carbon, moissanite, 

oxides, and silicates (Gyngard et al. 2010a; Leitner et al. 2012a; Nittler and Ciesla 2016; 

Iliadis et al. 2018). Classic novae are significantly less energetic than supernovae and they 
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produce correspondingly less ejecta. However, they make up for some of this difference in 

stardust production because they occur much more frequently than supernovae.

Pressure-temperature regimes of mineral-forming stars

Pressures and temperatures within stellar atmospheres (Fig. 1b) are generally coupled 

through adiabatic cooling during expansion, though they can be modified by extreme 

turbulence, with accompanying mixing and shockwave alteration. Given these complex 

environments, pressure-temperature ranges of the mineral-forming zones of stellar 

atmospheres are not always well known, though the occurrences of specific mineral species 

and mineral associations provide some constraints. The maximum possible temperature for 

formation of a stellar mineral is the >2000 K condensation temperature of diamond in a 

carbon-rich atmosphere, though actual formation temperatures in low-pressure stellar 

atmospheres are likely much lower (and evidence for stellar diamond is as yet ambiguous; 

Dai et al. 2002; Verchovsky et al. 2006; Stroud et al. 2011; Heck et al. 2014; Lewis et al. 

2018). Soker and Harpaz (1999) documented AGB-sourced graphite grains with TiC cores, 

which limits both temperature (T < 2200 K) and pressure [P < 7 × 10−4 atm; see also Croat 

et al. (2005) for similar analyses based on ZrC and MoC inclusions]. Surveys of moissanite 

polytypes by Daulton and coworkers (Daulton et al. 2002, 2003) found that the lowest-

temperature cubic (3C) form is dominant, which constrains temperature to a range from 

~1500 to 1700 K.

Stellar oxide and silicate minerals form at temperatures similar to or lower than those of the 

observed carbon allotropes and carbides. Corundum and hibonite are the most refractory 

oxides, with formation temperatures estimated to exceed 1700 K (Ebel 2006 and references 

therein). By contrast, Zega et al. (2014a) documented the occurrence of pristine stellar oxide 

spinel grains that imply lower-temperature regimes, as MgAl2O4 condenses at 1161 K at 

10−6 atm, and 1221 K at 10−3 atm.

A few rare nanoscale presolar grains point to significantly lower temperatures of formation. 

For example, Haenecour et al. (2016) describe an 80-nm-diameter iron sulfide grain as an 

inclusion in a presumed Type II supernova graphite (though origins in a low-metallicity 

AGB star could not be ruled out). Lodders (2003) estimates the highest condensation 

temperature for an iron sulfide to be troilite, FeS (~700 K at 10−4 atm). If the grain described 

by Haenecour et al. (2016) is a primary condensate, then it must have formed in a relatively 

cool regime and was subsequently transported to a much hotter region, where the graphite 

could precipitate around it. Sarangi and Cherchneff (2015) suggest that supernova ejecta can 

feature clumpiness and compositional heterogeneities that might support this scenario. 

However, Lodders (personal communications) suggests an equally plausible alternative 

scenario by which troilite formed from the “sulfurization” of a grain of presolar iron metal 

through secondary gas/solid reactions that occurred in reduced AGB winds (Lauretta et al. 

1998).

Similarly, reports of stellar magnetite grains (estimated condensation at ~400 K at 10−4 atm) 

by Zega et al. (2015) have been explained by gradual oxidation (104 to 106 years) of primary 

native iron grains that condensed at much higher temperatures (Yoneda and Grossman 1995; 

Hong and Fegley 1998; Lodders 2003).

Hazen and Morrison Page 13

Am Mineral. Author manuscript; available in PMC 2021 April 16.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Formation pressures of stellar minerals are constrained in part by the observed sequence of 

condensation. For example, stellar graphite has not been found to incorporate moissanite 

(SiC) inclusions—an observation that places a lower pressure bound for carbon-rich stars, as 

SiC condenses before graphite only at pressures greater than 3 × 10−5 atm (Bernatowicz et 

al. 1996). Several observations also point to transient events that may raise local pressures to 

significantly greater than 10−3 atmospheres in some stellar environments. For example, the 

observed sizes of the largest AGB-derived presolar grains (>1 μm), including moissanite 

(Bernatowicz et al. 2006) and corundum (Takigawa et al. 2018), imply sustained exposure to 

regions of higher pressure, which in turn suggests that the pressure environments 

surrounding AGB stars are not radially symmetric. Mass outflows from such stars are likely 

influenced by jets and clumps, as well as by periodic shocks in the atmosphere above the 

photosphere. These events enhance local density and thus promote grain growth 

(Bernatowicz et al. 1996; Chigai et al. 2002; Gobrecht et al. 2016). In addition, stacking 

disorder observed for several minerals in TEM studies (Stroud et al. 2011; Zega et al. 

2014a), as well as surface irregularities on otherwise subhedral crystals (Takigawa et al. 

2018), could point to grain-to-grain impact-induced strain in stellar atmospheres. Finally, the 

shock waves of supernovae have been implicated in the formation of some presolar 

nanodiamonds (Stroud et al. 2011), as well as the possible transformation of MgSiO3 

enstatite to the high-pressure bridgmanite polymorph (Vollmer et al. 2007).

The application of cluster analysis to stellar minerals

A central theme of the evolutionary approach to mineral classification is that many IMA 

mineral species emerge multiple times during the evolution of stars, planets, and moons. 

Each new paragenetic process is likely to impart a distinctive suite of attributes to minerals 

as they form; therefore, we classify each unique combination of mineral species and 

paragenetic mode as a distinct natural kind.

Two types of information contribute to the recognition of mineral natural kinds. In the 

proposed evolutionary system of mineralogy, we link mineral species to distinctive mineral-

forming environments—major paragenetic modes. Thus, moissanite formed in the explosive 

regime of a Type II supernova (“SN-II moissanite”) is different from moissanite formed in 

the evolving atmosphere of an AGB star (“AGB moissanite”) or in a classic nova explosion 

(“CN moissanite”). Additional mineral-forming stellar environments may be confidently 

documented in the future, at which time the classification system could easily be expanded.

Extending this approach, the opportunity exists to further subdivide minerals based on 

distinctive combinations or “clusters” of attributes, including trace and minor elements, 

isotopic ratios, solid and fluid inclusions, grain size and morphology, structural defects, and 

other diagnostic characteristics. Tabulations of attributes of analyzed mineral specimens, for 

example the Presolar Grain Database that now incorporates information on ~20 000 

moissanite grains (Hynes and Gyngard 2009; see https://presolar.physics.wustl.edu/ accessed 

24 Jan 2019), present the opportunity to examine clusters of minerals based on multiple 

attributes in ever greater detail. Thus, for example, stellar moissanite grains have been 

subdivided into as many as 12 groups based primarily on ranges of Si and C isotopes (e.g., 

Davis 2011; Zinner 2014). Several of these groups are ascribed to AGB stars of differing 
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mass, metallicity, and/or age—aspects of a star that are reflected in evolving element and 

isotope ratios. Cluster analysis thus has the potential to reveal a range of SiC subsets that 

have implication for understanding stellar evolution (Boyd 1991, 1999; Bailey 1994; 

Millikan 1999; Everitt 2011; Hazen 2019). However, for the purposes of this evolutionary 

system of mineralogy, origins in the atmosphere of an AGB star—whatever the mass, 

metallicity, or dredge-up stage—is considered to be one paragenetic mode. Similarly, 

stardust formation through Type II supernovae explosions, in spite of varied shells and 

stages of mineral formation in the evolving object, is also treated as one paragenetic mode.

Systematic evolutionary mineralogy: Part I—Stellar mineralogy

At least 24 different crystalline and three amorphous condensed phases, associated with 41 

natural kinds, have been identified as stellar minerals (e.g., Lodders and Amari 2005; Davis 

2011; Zinner 2014), as detailed in Table 1. The following section summarizes stellar 

mineralogy based on stardust analyzed since the first discoveries of 1987 (Lewis et al. 1987; 

Bernatowicz et al. 1987; Zinner et al. 1987) and lists all confirmed or likely species of stellar 

minerals of which we are aware as of 10 October 2019. Table 1 also lists 14 as yet 

unconfirmed stellar minerals, including native elements, nitrides, silicides, phosphides, and 

oxides, that have been reported as nanoscale inclusions but have not yet been fully described 

or independently confirmed.

This field is evolving rapidly, both in terms of the variety of stellar mineral species identified 

and the ranges of distinctive chemical and physical properties displayed by those minerals. 

For example, Lodders and Amari (2005; their Table 9) catalog more than 30 IMA-approved 

mineral species that might occur in stellar atmospheres on the basis of thermodynamic 

equilibrium condensation sequences of the most refractory phases of 17 cosmically abundant 

elements, including Na, Mn, Ni, P, Cl, and K, for which no stellar condensed phases have 

yet been confirmed. Consequently, we expect that the list of condensed phases known to 

form in the atmospheres of stars will expand significantly in the coming years.

A note regarding nomenclature

Minerals are arranged first by chemical class (i.e., Native Elements; Sulfides; Oxides; etc.), 

as employed in the revolutionary third edition of James Dwight Dana’s System of 
Mineralogy (J.D. Dana 1850; see also Hazen 1984) and subsequently widely adopted and 

expanded (e.g., Edward S. Dana and Ford 1947; James D. Dana et al. 1973; Gaines et al. 

1997). Secondary headings indicate IMA-approved mineral species (i.e., “diamond” or 

“corundum”) or, in the case of non-crystalline phases, an appropriate compositional name 

(e.g., “amorphous Al2O3” or “silicate glass”).

The evolutionary system of mineralogy emphasizes paragenetic modes of minerals in 

addition to their chemical compositions and atomic structures. Therefore, we adopt a 

binomial nomenclature for each suspected natural kind of mineral in stardust (e.g., “SN-II 

diamond” or “AGB chromite”). The case of stellar mineralogy is especially revealing in this 

regard. All minerals formed in stellar environments are characterized by significantly non-

solar major and trace isotopic compositions—attributes that clearly differentiate these 

minerals from their terrestrial or solar nebular counterparts. The sometimes extreme isotopic 
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deviations from solar averages, as well as idiosyncratic suites of trace and minor elements, 

often point to a specific type of host star. Such diagnostic element and isotope signatures 

suggest that presolar minerals, though often examples of relatively common terrestrial 

mineral species, represent distinctively non-terrestrial natural kinds.

An added complexity when dealing with stardust mineralogy is the occurrence of 

compositionally homogeneous domains, subgrains, or inclusions only a few nanometers in 

diameter that are encased in larger mineral grains. For example, it is difficult to know 

whether reports of isolated concentrations of Fe-Ni-Si atoms (Hynes 2010) constitute valid 

condensed silicide phases. In instances where such localized chemical concentrations have 

been observed, but no diagnostic electron diffraction or other structural information has been 

obtained, we record “Other possible phases” under the appropriate compositional group.

Native Elements

Allotropes of carbon, including diamond, graphite, and varieties of non-crystalline C, are 

abundant presolar phases (Davis 2011). These and other carbon-bearing phases were among 

the earliest stellar minerals to be recognized, both because of their extreme isotopic 

anomalies and their relative ease of concentration through acid dissolution.

At least three forms of iron, alloyed variously with Ni, Ru, Os, and other metallic elements, 

have been confirmed as “refractory metal nuggets,” which occur as inclusions in stellar 

graphite (Croat et al. 2003, 2008, 2013; Hynes et al. 2010). In some alloys Ni or Ru may be 

locally greater than Fe. In addition, nano-inclusions of native Os with minor Mo, Ru, and Fe 

have been reported as inclusions in SN-II graphite (Croat et al. 2005, 2013).

Diamond (C).—Diamond was suggested by Hazen et al. (2008) to be the first mineral in 

the cosmos, presumably formed by vapor deposition as the carbon-bearing atmospheres of 

highly evolved stars expanded and cooled significantly below the 4400 K maximum 

condensation temperature of diamond. In parallel to that idea, diamond was the first presolar 

mineral to be positively identified (Lewis et al. 1987), and it remains the most abundant 

known presolar phase, both in terms of wt% (~1400 ppm in CM chondrites) and numbers of 

grains (Davis 2011). Based on microstructural studies, for example by Daulton et al. (1996), 

the source of these nanodiamonds is likely vapor deposition. However, in spite of these 

discoveries, an ancient stellar (as opposed to solar nebular) source for meteoritic presolar 

nanodiamonds has not been unambiguously verified (Nuth and Allen 1992; Ozima and 

Mochizuki 1993; Richter et al. 1998; Dai et al. 2002; Stroud et al. 2011). In the words of 

Zinner (2014), “Although diamond is the most abundant presolar grain species (~1400 ppm), 

… it remains the least understood.”

The principal difficulty in characterizing presolar diamond has been their diminutive size, 

typically less than 10 nm diameter, with an average size of 2 to 3 nm diameter, 

corresponding to fewer than 2000 carbon atoms. As a result, most analytical studies have of 

necessity measured average compositions of millions of grains—averages that, in general, 

do not deviate significantly from the observed solar 12C/13C ~ 90 or 14N/15N ~ 249 (Russell 

et al. 1991, 1996; Daulton et al. 1996; Dai et al. 2002). [Note that throughout this 

contribution we use the somewhat quirky isotope ratio conventions employed in most 
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astromineralogy publications; namely, 12C/13C, 14N/15N, 17O/16O, 18O/16O, 29Si/28Si, and 
30Si/28Si (as opposed, for example, to d notation), because of the extreme deviations from 

solar averages (e.g., Davis 2011; Zinner 2014).] Until recently it has been impossible to 

characterize individual diamond grains that might bear the distinctive isotopic signatures of 

stars (Heck et al. 2014; Lewis et al. 2018).

Two studies point to plausible stellar sources for some presolar diamonds. Verchovsky et al. 

(2006) successfully isolated a slightly larger size fraction of crystallites—the largest 1% of 

grains that collectively yield isotopically light carbon, heavy nitrogen, and noble gas 

signatures characteristic of some AGB stars. However, Stroud et al. (2011) found the co-

occurrence of a “glassy carbon” fraction in these residues, calling into question whether the 

AGB isotopic anomalies are associated with diamond, the amorphous phase, or both.

Additional evidence for populations of stellar diamonds comes from Lewis et al. (2018), 

who employed NanoSIMS with a minimized high-resolution 50 nm beam diameter to 

examine tens of thousands of discrete small volumes, each with approximately 1000 

nanodiamonds per observation. They suggest that if stellar diamonds with large isotopic 

anomalies are present in the sample, then the Gaussian statistical distribution of observed 
12C/13C should display a significant broadening compared to similar measurements on a 

homogeneous diamond population. Lewis and coworkers found that the average carbon 

isotopic value was close to solar, in agreement with prior studies, but they also documented 

significant broadening, which they attributed to multiple isotopic values, including both 13C-

enriched and depleted grains, presumably from multiple stellar sources. Nevertheless, the 

likely occurrence of amorphous carbon in all diamond residues (Stroud et al. 2011) makes 

unambiguous recognition of stellar diamond problematic.

With these uncertainties in mind, we provisionally list two kinds of stellar diamond:

AGB diamond.: Nanometer-scale diamond with isotopically light carbon (e.g., high 12C/
13C), heavy nitrogen (low 14N/15N), and noble gas signatures characteristic of AGB stars 

(Verchovsky et al. 2006; Lewis et al. 2018).

SN-II diamond:  Nanometer-scale diamond with low 12C/13C, possibly associated with 

isotopically anomalous xenon isotopes (Lewis et al. 1987; Clayton et al. 1995; Lewis et al. 

2018).

Graphite (C).—Grains of stellar graphite were among the first presolar minerals to be 

discovered, initially based on anomalous neon isotopes (Amari et al. 1990), and they have 

received intense subsequent study (Amari et al. 1994, 1995a, 1995b, 2004; Bernatowicz et 

al. 1996, 2006; Croat et al. 2003, 2005, 2008; Stadermann et al. 2005; Davis 2011; 

Groopman et al. 2012; Zinner 2014 and references therein; Groopman and Nittler 2018). 

Presolar graphite constitutes ~10 ppm by weight of CM chondrite meteorites, with sizes up 

to 20 μm in diameter (Zinner et al. 1995). The relative abundance of stellar graphite is 

reflected in the Presolar Grain Database, which records 2200 analyzed grains (Hynes and 

Gyngard 2009; see https://presolar.physics.wustl.edu/ accessed 24 Jan 2019).
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The morphologies of stellar graphite grains are varied, with one distinctive population of 

grains having cores of randomly oriented graphene sheets surrounded by well-graphitized 

“onion-like” concentric layers (Fraundorf and Wackenhut 2002; Zinner 2014; Fig. 3a). Other 

“cauliflower” type grains, by contrast, form as aggregates of smaller crystallites 

(Bernatowicz et al. 1996; Hoppe et al. 1995; Fig. 3b). Most of these stellar graphite grains 

have been extracted from the widely available Murchison and Orgueil carbonaceous 

meteorites. These samples have been further divided into density fractions—aliquots that 

reveal intriguing differences in size and isotopic attributes of two populations described as 

higher density (HD) and lower density (LD). The carbon isotope ratios of stellar graphite 

vary widely: 2 < 12C/13C < 7500 (Hynes and Gyngard 2009), with most grains isotopically 

lighter than the solar average of ~90. Furthermore, the HD fraction of grains is on average 

smaller and of greater 12C/13C than the LD fraction. Identification of different stellar origins 

depends additionally on isotopic ratios of minor O, N, and Si impurities, as well as trace 

amounts of diagnostic r-process and s-process elements. We list three types of stellar 

graphite, originating in three contrasting stellar environments, as distinguished by their 

chemical and isotopic anomalies, coupled with their physical properties and morphologies 

(e.g., Davis 2011; Zinner 2014).

AGB graphite:  Approximately 30% of stellar graphite grains, the great majority of which 

are from the higher density (HD) population, have high 12C/13C relative to solar abundances 

and display enrichment in characteristic s-process elements Zr, Mo, and Ti, which form 

carbide inclusions up to 200 nm in diameter (Amari et al. 1994, 1995b, 1995c, 2006; 

Bernatowicz et al. 1996; Croat et al. 2005; Heck et al. 2009a; Meier et al. 2012). AGB 

graphite grains typically display platy or onion-like morphologies and are, on average, 

smaller than other kinds (Croat et al. 2008). They display a range of crystallinity, as revealed 

by electron microscopy (Bernatowicz et al. 2006) and Raman spectroscopy (Wopenka et al. 

2011a).

A small fraction of AGB graphite grains display extremely low 12C/13C values relative to 

solar, coupled with Ca and Ti isotopic anomalies. The most likely sources are enigmatic 

carbon-rich born-again AGB stars, or J stars (Jadhav et al. 2008, 2013; Nittler and Ciesla 

2016). We suggest that the paragenetic mode of these grains is the same as that of other 

AGB star grains, i.e., gradual condensation from the gas phase. However, cluster analysis 

may demonstrate that these grains point to the existence of multiple varieties of AGB 

graphite.

SN-II graphite:  An estimated 60% of stellar graphite grains, including the majority of LD 

population grains (Zinner et al. 2006), display compositional characteristics of Type II 

supernovae, with low 14N/15N, high 18O/16O, and remnants of 26Mg, 44Ca, 49Ti, and other 

diagnostic trace isotopes (Nittler et al. 1996; Stadermann et al. 2005; Jadhav et al. 2013; 

Zinner 2014, and references therein). These grains are typically irregularly crystallized with 

“cauliflower” morphology, often with TiC cores and sometimes numerous (up to hundreds) 

of TiC inclusions from 30 to 230 nm in diameter (Amari et al. 1995b; Soker and Harpaz 

1999; Croat et al. 2008), as well as distinctive inclusions of Fe-Ni metal and/or Os-rich 

regions (Stadermann et al. 2005; Groopman et al. 2012).
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CNova graphite:  A small population of graphite grains has very low 12C/13C (<10) and 

high 30Si/28Si, as well as neon isotope anomalies, which collectively point to a possible 

origin in classical novae (Amari et al. 2001c; Jadhav et al. 2008; Heck et al. 2009a; 

Haenecour et al. 2016). Cluster analysis of stellar graphite grains (in progress) may clarify 

the extent to which these samples represent a discrete population with a different paragenetic 

mode.

Amorphous carbon (C).—A low-density fraction of presolar carbon occurs in 

amorphous and/or structurally disordered states, possibly representing several distinct types 

of non-crystalline C. For example, Stroud et al. (2011) report disordered “glassy” carbon 

with sp2 bonding—a population of grains that displays distinctive Raman spectra (Wopenka 

et al. 2011b). However, until more definitive structural and compositional information is 

available, we catalog only one kind of amorphous carbon.

Stellar amorphous C:  Non-crystalline carbon with anomalous 12C/13C.

Refractory metal nuggets (Fe, Ni, Ru, Cr, Mo, Os, Ir).—Refractory metal alloys, 

incorporating two or more of Fe, Ni, Ru, Cr, Mo, and Os, represent intriguing minor phases 

in stardust. At least three different groups of Fe-bearing alloys have been identified as 

inclusions in SN-II graphite (Bernatowicz et al. 1996; Croat et al. 2003, 2005, 2008, 2010, 

2013; Stadermann et al. 2005; Gyngard et al. 2018). Croat et al. (2003, 2005, 2008) and 

Hynes (2010) characterized both native iron (the α-iron alloy of Fe:Ni, sometimes referred 

to as “kamacite”; space group Im3m) and taenite (the γ-iron alloy of Fe-Ni; space group 

Fm3m) by ion probe and electron microscopy. In addition, Fe combines with Ni, Ru, Os, and 

Mo in metal inclusions in graphite, presumably in space group P63/mmc (Croat et al. 2008; 

Rubin and Ma 2017).

The variable compositions of stellar iron alloys present a classification challenge. Consider 

the case of the Fe-Ni alloy taenite, which is observed to vary from Fe ≫ Ni to Ni > Fe in a 

continuous solid solution. IMA protocols would assign different mineral names to the iron- 

and nickel-rich end-members of this solid solution. However, in the evolutionary system of 

mineralogy, we lump all members of a continuous solid solution that form under similar 

conditions as a single natural kind. Thus, even though Ni may approach 60 atom % in some 

taenite inclusions (thus approximating in composition the IMA-approved mineral species 

awaruite), we lump all of these inclusions into SN-II taenite.

The case of the P63/mmc alloy of Fe-Ni-Mo-Cr-W-Ru-Os-Ir is more difficult to resolve. 

These nano-inclusions in graphite, which may represent the earliest condensates in some C-

rich stars, display extensive solid solutions, with some individual inclusions dominated by 

Fe, Ru, or Os. Croat et al. (2013) point to immiscible regions, for example, between Fe-Ni-

rich and Rurich compositions. The case of osmium, with ~50-nm inclusions with Os >70 

atom %, would seem to demand that native Os be considered a valid stellar mineral. The 

case of ruthenium is less clear-cut. Most grains have Fe ≫ Ru, but a few grains have Ru > Fe 

(up to Ru77Fe23), suggesting an extensive Fe-Ru solid solution, but with a possible 

immiscibility region (Croat et al. 2013). Given that uncertainty, we include native ruthenium 

as a stellar mineral. However, if additional data on the compositional range of metallic 
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inclusions in SN-II graphite reveal a continuous solid solution among Fe, Ni, Ru, Os, and 

other elements, then we may in the future ascribe most or all of these “refractory metal 

nuggets” to a single natural kind.

SN-II iron:  The α-iron alloy [(Fe,Ni); space group Im3m], sometimes called “kamacite,” 

occurs both as isolated inclusions and epitaxially attached to TiC inclusions in SN-II 

graphite (Croat et al. 2003). These Fe-rich grains, extracted from the Murchison meteorite, 

contain 0 to 24 atom % Ni.

SN-II taenite:  Taenite [(Fe,Ni), space group Fm3m] occurs as nano-inclusions attached 

through epitaxial growth to TiC inclusions in SN-II graphite from the Murchison meteorite 

(Croat et al. 2003). The majority of grains have Fe > Ni, though a few grains have up to 60 

atom % Ni.

SN-II ruthenium:  Croat et al. (2005) describe nano-inclusions (>20 nm diameter) of Fe-Ru 

alloys in SN-II graphite, mostly with Fe > Ru, but some of which have Ru ≫ Fe (ranging to 

as high as Ru77Fe23). In addition, Croat et al. (2013) report a 21-nanometer-diameter Ru-

dominant refractory metal inclusion of composition (Ru29Mo24Fe17Os13Ir13 Ni2W1Cr1)—a 

composition that underscores the difficulty of ascribing many such nuggets to a single 

element end-member. Note that the hexagonal unit-cell dimensions of this grain (a = 2.80 Å; 

c = 4.44 Å) are consistent with the P63/mmc space group of native ruthenium.

SN-II osmium:  Croat et al. (2005) report a single 50-nm-diameter Os-rich inclusion 

(Os79Mo10Ru9Fe2) in a SN-II graphite grain. Croat et al. (2013) describe a grain of similar 

composition (Os74Ru9W6Mo4Fe3Ir2), with hexagonal symmetry (a = 2.77 Å; c = 4.48 Å), 

consistent with the P63/mmc space group of elemental osmium. These unusual grains do not 

fall close to the Fe-Ni-Ru composition space of many other stellar alloy inclusions; 

therefore, we recognize osmium as a distinct stellar mineral. The sequence of Os condensing 

prior to its inclusion in graphite points to the formation in a supernova environment.

Carbides

Grains of stellar carbides, primarily moissanite (SiC) but also khamrabaevite (TiC) in some 

cases significantly enriched in V, Mo, Zr, and/or Ru, are among the most abundant and well-

studied presolar grains (Davidson et al. 2014; Zinner 2014). Almost all carbide grains found 

in meteorites are thought to arise from condensation in stellar atmospheres, in contrast, for 

example, to oxides and silicates, most of which bear the solar system’s isotopic ratios and 

are thus thought to be condensates from the solar nebula. The majority of these isotopically 

anomalous carbide phases form in the chemically reduced atmospheres of carbon-rich AGB 

stars.

Moissanite (SiC).—Interstellar silicon carbide was first recognized as a component of 

stars from distinctive IR emission spectra of the dust-rich atmosphere of carbon stars 

(Treffers and Cohen 1974; Forrest et al. 1975). Subsequent discovery of isotopically 

anomalous moissanite grains in the insoluble residues of CM meteorites (Zinner et al. 1987; 

Lewis et al. 1990, 1994) established SiC as the second known stardust mineral. Moissanite, 
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though less abundant than presumed presolar diamonds, averages ~30 ppm in CM chondrites 

(Davis 2011; Davidson et al. 2014), with reported concentrations as high as 160 ppm in 

some meteorites (Leitner et al. 2012b; see Zinner 2014).

Moissanite forms the largest known stellar mineral grains, with some crystals greater than 20 

μm in diameter (Gyngard et al. 2018), though most grains are less than a micrometer in 

diameter (Zinner et al. 2007; Gyngard et al. 2009; Heck et al. 2009b; Hoppe et al. 2010; 

Davis 2011; Fig. 3c). Consequently, SiC has received the most detailed study of any stellar 

mineral, with more than 17 300 measured grains recorded in the Presolar Grain Database 

(Hynes and Gyngard 2009; see https://presolar.physics.wustl.edu/ accessed 24 Jan 2019).

The isotopic ratios of carbon, silicon, and nitrogen (the latter a ubiquitous impurity in stellar 

SiC), as well as varied concentrations of trace elements and isotopes of characteristic s-

process elements (e.g., Ti, Zr, and Mo) and extinct radionuclides (notably short-lived 26Al, 
44Ti, and 49V recognized by their decay products 26Mg, 44Ca, and 49Ti), have been used to 

differentiate moissanite into as many as seven varieties (Davis 2011), representing both AGB 

stars and explosive environments of novae and supernovae (Table 1; Fig. 4). In addition, rare 

anomalous individual grains point to additional possible origins or evolutionary pathways 

for moissanite grains in stellar atmospheres that are not yet fully understood (Leitner et al. 

2012b; Nguyen et al. 2016). This diversity reflects not only the stability of SiC in various 

carbon-rich stellar environments, but also the benefits (and complexities) arising from broad 

surveys of large numbers of presolar grains.

It should be noted that an evolving nomenclature for types of stellar moissanite has already 

gained some traction in the astromineralogy community. Approximately 9 in 10 stellar SiC 

grains bear the distinctive isotopic signatures of AGB stars—characteristics of so-called 

“mainstream” stellar SiC (e.g., Zinner 2014). The first SiC grain to be discovered with a 

markedly different isotopic composition, presumably formed in a Type II supernova, was 

called “Type X” (Amari et al. 1992; Nittler et al. 1996; Hoppe et al. 2000). Subsequent 

distinctive finds of presolar SiC were called types Y and Z (Alexander 1993; Hoppe et al. 

1994, 1997; Amari et al. 2001a; Nittler and Alexander 2003), followed by A, B, and C. 

Types A and B were later merged into “Type AB,” though Liu et al. (2017c) subsequently 

proposed a split into AB1 and AB2 based on nitrogen isotopes. In addition, Liu et al. (2016) 

suggested splitting C into C1 and C2 based on carbon isotopes, while Type X is sometimes 

subdivided into X0, X1, and X2 (Lin et al. 2010). It is not yet possible to unambiguously 

assign every stellar SiC grain to one category, much less to one stellar paragenesis.

In this study, we recognize three major paragenetic processes that produce the great majority 

of stellar moissanite—AGB stars, Type II supernovae, and classical novae. In addition, 

cluster analysis studies of presolar SiC grains are now in progress to provide a quantitative 

basis for distinct subdivisions of stellar moissanite.

An important characteristic of moissanite is its diverse array of stacking polytypes, of which 

more than 200 have been documented in synthetic samples (Kelly et al. 2005; Cheung 

2006). Presolar moissanite grains are found in two principal structural polytypes, most 

commonly in the lowest-temperature cubic (3C) form, with a smaller fraction of the 
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hexagonal (2H) polytype (Daulton et al. 2002, 2003; Bernatowicz et al. 1987, 2003; 

Alexander et al. 1990; Amari et al. 1990, 1994, 2001a, 2001b, 2001c; Liu et al. 2017b), 

though a few grains with higher-order polytypes have been reported (Liu et al. 2017b; 

Gyngard et al. 2018).

Hints regarding the pressure of formation of stellar moissanite are provided by the absence 

of SiC inclusions in graphite, indicating that graphite precipitates first. Such a condensation 

sequence requires that pressures in the stellar atmosphere are less than 3 × 10−5 

(Bernatowicz et al. 1996), at which pressure the condensation temperature of SiC falls 

significantly below 2000 K.

As with presolar graphite, some moissanite grains incorporate inclusions of other refractory 

phases, including rare examples of graphite, Ti(N,C), (Mg,Al)N, and Fe-Ni metal (Zinner 

2014; Gyngard et al. 2018).

AGB moissanite:  Representing ~90% of all stellar SiC grains, mainstream AGB moissanite 

is characterized by the distinctive combination of low 12C/13C, high 14N/15N, and abundant 

s-process trace elements, including Ti, Zr, and Mo (Nittler et al. 1996). Unlike 

polycrystalline SiC from Type II supernovae, AGB moissanite grains are typically single 

crystals (Stroud et al. 2004a; Hynes et al. 2010). Several authors suggest that the distinctive 

isotopic signatures of these abundant SiC stellar grains point to mixing of several galactic 

sources (Clayton 1997, 2003; Alexander and Nittler 1999; Lugaro et al. 1999).

Several moissanite grains (a few percent of presolar SiC), dubbed “Y” type, are presumed to 

come from AGB stars with ~50% solar metallicity (Hoppe et al. 1994). These grains have 

the unusual combination of high 12C/13C and high 14N/15N (Amari et al. 2001a; Nguyen et 

al. 2018), possibly with excesses of s-process Ti and Mo isotopes (Larry Nittler, personal 

communications). In addition, a few percent of stellar SiC grains, called “Z” grains, are 

ascribed to AGB stars with ~25% solar metallicity and have low 12C/13C, high 14N/15N, low 
29Si/28Si, and high 30Si/28Si, in combination with excess s-process 50Ti and 96Mo. These 

attributes are thought to indicate low-mass stars with low metallicity (Hoppe et al. 1997; 

Nguyen et al. 2018). Note that a continuum may exist from Z- to Y- to mainstream-type 

AGB moissanite; further investigation by cluster analysis is thus warranted.

Additional subtypes of moissanite can be confidently ascribed to origins through 

condensation in the atmosphere of a late-stage AGB star. So-called “AB-type” moissanite is 

characterized by the distinctive combination of very low 12C/13C (<10) and a wide range of 
14N/15N (from significantly greater to significantly less than solar), without significant 

enrichment in s-process trace elements—attributes that point to a carbon-rich J star or born-

again AGB star (Hoppe et al. 1995; Huss et al. 1997; Amari et al. 2001b; Nittler and 

Alexander 2003; Liu et al. 2017a, 2017c; Nguyen et al. 2018). Indeed, cluster analysis of 

these grains may reveal two distinct sources (Amari et al. 2001b), with born-again AGB 

grains characterized by anomalous 32S, a byproduct of 32Si decay (Fujiya et al. 2013). Note 

that Liu et al. (2017c) suggest that AB moissanite should be divided into two subgroups—

those with 14N/15N < solar (proposed to derive from Type II supernovae) and those with 
14N/15N > solar (probably from J stars).
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SN-II moissanite:  Two distinct populations of stellar SiC, most of which are aggregates of 

nanocrystals (a consequence of relatively rapid crystallization), have been ascribed to 

different Type II supernova processes. C-type moissanite, representing only about one in a 

thousand stellar SiC grains, is characterized by low 14N/15N, as well as significant excesses 

of 29Si and 30Si relative to 28Si (Amari et al. 1999; Croat et al. 2010). Significant 26Mg and 
44Ca reveal the production of short-lived radioactive 26Al and 44Ti (Gyngard et al. 2010b). 

Note that Liu et al. (2016) further divided C moissanite into C1 and C2 types, based on 

differences in 12C/13C.

Fewer than 2% of stellar moissanite grains have been identified as “X”-type, with diagnostic 

isotopic signatures of Type II supernovae. All X-type silicon carbide grains display low 14N/
15N, 29Si/28Si, and 30Si/28Si, and significant 26Mg, 44Ca, and 49Ti (Liu et al. 2018). Grains 

of X moissanite are also distinguished by their polycrystalline habit, with crystallites 

typically from 10 to 200 nm diameter.

Note that Lin et al. (2010) subdivide these grains into three distinct groups; the division of 

X0, X1, and X2 moissanite is based primarily on 29Si/30Si, with high, average, and low 

values relative to solar average, respectively. However, Zinner (2014) lumps all X-type 

moissanite grains into a single group, and it seems plausible that cluster analysis of “X”-type 

SiC grains will reveal a continuum among these grains rather than three distinct natural 

kinds. Consequently, we group all X-type moissanite grains together and suggest that cluster 

analysis of X-type stellar SiC is warranted.

CNova moissanite:  Approximately one in a thousand moissanite grains have very low 12C/
13C and 14N/15N, very high 30Si/28Si, and neon isotope anomalies that point to possible 

origins in classical novae (Amari et al. 2001c; José and Hernandez 2007; Liu et al. 2016)—

characteristics that match those of nova graphite. Note that these grains have also been 

designated “putative nova grains” or “PNG” moissanite. Further studies employing cluster 

analysis will help to resolve whether these grains represent a population characterized by a 

distinct paragenetic mode.

Khamrabaevite (TiC).—Nanograins of titanium carbide up to 200 nm in diameter have 

been found in the cores and as inclusions in many presolar graphite grains (Fig. 3a; Soker 

and Harpaz 1999; Croat et al. 2005, 2011; Stadermann et al. 2005; Bernatowicz et al. 2006; 

Groopman et al. 2012). Most of these grains appear to predate graphite formation, having 

been swept up during graphite crystallization and, in some instances serving as nucleation 

sites for graphite.

AGB khamrabaevite:  TiC subgrains in AGB graphite are typically enriched in s-process 

elements, including V, Zr, Mo, and Ru. Presolar graphite grains with internal TiC seeds 

constrain both 1.0 < C/O < 1.2 and formation conditions (P < 7 × 10−4 atm) (Soker and 

Harpaz 1999).

SN-II khamrabaevite:  Titanium carbide nano-crystals are common in the cores of SN-II 

graphite grains. These TiC grains often display significant V for Ti substitution, but not 
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substitution by Zr, Ru, or Mo, which arise from the s-process in AGB stars (Croat et al. 

2003, 2011; Groopman et al. 2012).

AGB (Mo,Zr)C:  Bernatowicz et al. (1996) report various carbide inclusions in AGB 

graphite, most commonly TiC but also Ti-Mo-Zr carbides, some of which are nearly pure 

(Mo,Zr)C. Bernatowicz et al. (1996) suggest a crystallization sequence upon cooling of ZrC 

first (at T ~ 1800 K), followed by MoC and TiC. Note that neither molybdenum nor 

zirconium carbides are yet IMA-approved mineral species.

Cohenite (Fe3C).—Bernatowicz et al. (1999) reported grains of the iron carbide cohenite 

(with orthorhombic symmetry) as inclusions in a SN-II graphite.

SN-II cohenite:  Nanograins as inclusions in SN-II graphite.

SN iron carbide [(Fe,Cr)7C3]:  Croat et al. (2005) report a single grain of hexagonal iron 

carbide [metal composition (Fe73Cr21Ti6)] as an inclusion in an “onion” AGB graphite. The 

hexagonal unit-cell parameters, a = 6.95 Å and c = 4.5 Å, match a known synthetic phase 

(Fe7C3; space group P63/mc). Note that this iron carbide is not yet an IMA-approved 

mineral species.

Other possible stellar carbides.—Some stellar TiC grains display local concentrations 

of Mo, Zr, and Ru-rich carbides (Bernatowicz et al. 1996; Croat et al. 2008), though these 

regions are not obviously separate inclusions of distinct phases. Similarly, Croat et al. (2011) 

describe Al-rich regions in TiC subgrains in SN-II graphite; they suggest that cubic (a = 4.2 

Å) Ti3AlC might be present.

Silicides [Unconfirmed].—A wide variety of nanoscale inclusions, subgrains, and/or 

local element concentrations have been reported in stellar moissanite and graphite. While it 

is not yet proven that these compositional regions are discrete mineral phases, potential 

stellar minerals include two iron-nickel silicides, possibly (Fe,Ni)2Si, and/or (Fe,Ni)3Si, as 

inclusions in SN-II (X-type) moissanite (Hynes 2010; Hynes et al. 2010). Neither the 

composition nor structure type was determined; therefore, stellar silicide is listed here as an 

unconfirmed astromineral.

Phosphides [Unconfirmed].—Lodders and Amari (2005) list schreibersite (Fe3P) as a 

stellar condensate in their table of “expected and observed major element condensates.” 

They suggest conditions of formation as ~1250 K at 10−4 atm; however, to our knowledge 

schreibersite has not yet been observed as a stellar mineral.

Nitrides

Nitrogen, among the most abundant “metal” elements in stars, is a ubiquitous minor element 

in presolar moissanite, though the only confirmed stellar grains of refractory nitrogen 

minerals are the silicon nitride, nierite (Si3N4).

Nierite (Si3N4).—Nierite is formed in the ejecta of core-collapse supernovae (Nittler et al. 

1995; Hoppe et al. 1996; Lin et al. 2010). The few documented grains of stellar nierite, 
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representing ~2 ppb of the Murchison CM chondrite, display uniform excesses of 15N and 
28Si relative to solar values, as well as Ti isotopic anomalies that point to likely origins in 

Type II supernovae. The Presolar Grain Database, which records 41 analyzed nierite grains 

(Hynes and Gyngard 2009; see https://presolar.physics.wustl.edu/ accessed 24 Jan 2019), 

documents distinctive ranges of nitrogen isotopes (18 < 14N/15N < 190, compared to 249 for 

the solar average) and low 30Si/28Si.

SN-II nierite:  Characterized by low 14N/15N and 30Si/28Si relative to solar averages.

Other possible stellar nitrides.—Reports of nanoscale concentrations, inclusions, or 

subgrains in stellar X-type moissanite include Ti(N,C) and (Mg,Al)N (Groopman and Nittler 

2018; Gyngard et al. 2018), as well as an aluminum nitride, possibly AlN (Stroud and 

Bernatowicz 2005; Hynes et al. 2010). Further chemical and structural characterization will 

be required before assigning mineral names to these minute features.

Sulfides

Rare stellar sulfide grains of oldhamite (CaS) and iron sulfide, most likely troilite (FeS), 

have been reported as nanoscale inclusions in graphite and moissanite grains (Hynes 2010; 

Hynes et al. 2011; Haenecour et al. 2016). These unambiguously stellar inclusions are 

characterized by anomalous S isotopes, in host grains with anomalous C isotopes.

Oldhamite (CaS).—Oldhamite is calculated to be the highest temperature sulfide to 

condense in the atmosphere of a carbon-rich star (~1300 K at 10−4 atm; Lodders and Amari 

2005, their Fig. 1). The rarity of oldhamite presolar grains is likely a consequence of two 

factors: (1) the relatively low abundances of sulfur and calcium in stellar atmospheres of 

carbon stars, and (2) the solubility of oldhamite in water, which is often used in the 

preparation of meteorite mineral separates and polished sections.

AGB oldhamite:  Hynes (2010) and Hynes et al. (2011) describe 7 anhedral inclusions of 

oldhamite with diameters from 16 to 40 nm. These subgrains occur as epitaxially aligned 

inclusions in AGB moissanite (ascribed to “AB”-type, possibly from a J star) grains.

Troilite [?] (FeS).—Of special note is a report by Haenecour et al. (2016), who describe a 

presolar iron sulfide inclusion (80 nm diameter) in a 300-nm-diameter graphite of suspected 

Type II supernova origins, though an AGB source cannot be ruled out. This observation is 

surprising, as the highest-temperature iron sulfide, troilite, condenses at a relatively low 

temperature (~700 K at 10−4 atm; Lodders 2003), compared to other confirmed presolar 

phases. However, the anomalously low 33S/32S and 34S/32S relative to solar abundances, 

coupled with the carbon isotope ratio of the graphite (characterized by 12C/13C > 200), point 

unambiguously to a stellar origin. Haenecour et al. (2016) suggest that the graphite grain and 

troilite inclusion originated in a Type II supernova, with the graphite and troilite condensing 

in different shells of the ejecta—a scenario consistent with models of supernova 

heterogeneities (Sarangi and Cherchneff 2015). However, they do not rule out the possibility 

of an origin in a ~3 solar mass, low-metallicity AGB star.
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Given the low condensation temperature of troilite, Lodders (personal communication) 

suggests “sulfurization” of a stellar iron grain as a plausible alternative explanation. If so, 

then the troilite grain formed by secondary gas/solid reactions that occurred in reduced AGB 

winds—a process discussed by Lauretta et al. (1998).

SN-II (?) troilite:  Nano-inclusion in graphite, characterized by anomalously negative δ33S 

and d34S (Haenecour et al. 2016). Note that an AGB origin cannot be ruled out.

Other possible sulfides.—Lodders and Amari (2005) list niningerite (MgS) as a stellar 

condensate in their table of “expected and observed major element condensates.” They 

suggest conditions of formation as ~1050 K at 10−4 atm; however, to our knowledge 

niningerite has not yet been observed as a stellar mineral.

Oxides

Suites of refractory oxide and silicate minerals have long been recognized as constituents of 

the dusty atmospheres of aging oxygen-rich stars and supernovae, based on astronomical 

observations of characteristic mid-infrared absorption features (Gillett et al. 1968; Stein et 

al. 1969; Woolf and Ney 1969; Onaka et al. 1989; Little-Marenin and Little 1990; Sloan and 

Price 1998; Speck et al. 2000; DePew et al. 2006), with notable advances in resolution and 

sensitivity following the successful launch of orbiting infrared telescopes (Neugebauer et al. 

1984; Waters et al. 1996; Messenger et al. 2003; Nguyen and Zinner 2004; Rieke 2009; 

Jiang et al. 2013). Nevertheless, the isolation and characterization of oxides and silicates 

from primitive meteorites has proven challenging. Unlike the acid-insoluble carbon 

allotropes and carbides, which form a distinctive population of unambiguously stellar 

minerals, the rare, diminutive grains of stellar oxides and silicates are difficult to distinguish 

from the ubiquitous background of similar nebular condensates.

Following the fortuitous discovery of a stellar corundum grain with extreme enrichments in 
17O coupled with enhanced 26Mg—an unambiguous signature of the decay of short-lived 
26Al and a likely consequence of its AGB origins (Hutcheon et al. 1994)—rapid progress 

was made by the application of automated methods to detect individual oxide and silicate 

grains with anomalous isotopic values (Huss et al. 1994; Nittler et al. 1994, 1997, 2008; 

Choi et al. 1998; Nguyen et al. 2007; Takigawa et al. 2014, 2018; Fig. 5). Corundum and 

amorphous Al2O3 dominate the inventory of stellar oxides, with modest numbers of oxide 

spinel and hibonite grains, as well as minor titanium oxide. The stellar oxide content of 

meteorites varies widely, with primitive carbonaceous chondrites holding the highest 

amounts—up to 55 ppm reported by Nguyen et al. (2007).

While efforts to characterize the diversity of stellar oxide and silicate phases are still in 

progress, several broad groups of these astrominerals have been classified based primarily 

on oxygen isotope ratios relative to solar averages. Approximately 70% of grains, labeled 

“Group 1” by Nittler et al. (1997), carry high 17O/16O and average or slightly low 18O/16O

—values that point to nucleosynthesis in typical oxygen-rich red giant and AGB stars during 

and after the first dredge up phase. Variations in stellar mass and initial metallicity play a 

significant role in the values of 17O/16O and 18O/16O (e.g., Timmes et al. 1995).
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A smaller population of “Group 2” grains, ~15% of all oxides and silicates, display the high 
17O/16O characteristic of AGB stars, but very low 18O/16O—a feature initially thought to 

arise from cool-bottom processing (CBP) from relatively small (<2 solar mass) AGB stars. 

Note, however, that Lugaro et al. (2017) suggest a similar isotopic signature might arise 

from a >4 solar mass AGB star, based on a revised experimental determination of the 

protoncapture rate of 17O (Bruno et al. 2016). By contrast, AGB stars of low mass and low 

metallicity produce “Group 3” grains (5% of all oxide and silicate samples) that display light 

oxygen isotopes, with both low 17O/16O and low 18O/16O relative to solar averages.

The origins of “Group 4” grains (perhaps 10% of all stellar oxides and silicates), with 

significant excesses of 18O relative to 16O and a range of 17O/16O, as well as elevated 26Mg 

coupled with 28Mg depletions, remain a matter of debate. Both AGB stars with high 

metallicity and low mass and Type II supernovae with a complex mixing history have been 

invoked (Nittler et al. 1997; Choi et al. 1998; Nguyen and Messenger 2014; Zinner 2014). 

Finally, rare (less than 1%) “N-type” oxide and silicate grains are thought to arise from 

classical novae and are characterized by significantly elevated 17O/16O, while 18O/16O is 

low (Nittler et al. 2008, 2011; Gyngard et al. 2010a, 2011; Nguyen and Messenger 2014).

In conformity with our proposed evolutionary classification system of minerals, we 

recognize three distinct paragenetic modes for stellar oxide and silicate grains: AGB stars 

(including Group 1, 2, 3, and perhaps some Group 4 grains), Type II supernovae (including 

some Group 4 grains), and classic novae (N-type grains).

Corundum (Al2O3).—The occurrence of stellar corundum was suspected on the basis of a 

sharp infrared absorption feature at ~13 μm in the spectra of oxygen-rich AGB stars (Onaka 

et al. 1989; Speck et al. 2000; Takigawa et al. 2015). Corundum condenses at temperatures 

as high as 1700 K, and is thought to be the first phase to crystallize in the atmospheres of 

these stars (Grossman 1972; Salpeter 1977). Grains of stellar corundum were first identified 

in acid residues of meteorites by measurements of oxygen isotope anomalies (Hutcheon et 

al. 1994; Nittler et al. 1997; Choi et al. 1998; Zinner et al. 2011; Takigawa et al. 2014, 

2018). Corundum (α-Al2O3) and amorphous aluminum oxide are now known to be common 

constituents of presolar grains.

A matter of debate has been whether corundum can precipitate directly in its crystalline 

form in stellar atmospheres, or whether the crystalline form arises later from annealing of 

amorphous Al2O3. This issue was resolved by Takigawa et al. (2018), who describe a single 

1.4 μm subhedral grain that represents a primary stellar condensate, formed in the 

atmosphere of a low- or intermediatemass AGB star based on its characteristic isotopic 

signature: elevated 17O (in this case enriched by a factor of ~3) and lower 18O (depleted by a 

factor of ~25) relative to solar abundances (Fig. 3d). The principal impurity in this grain was 

magnesium, enriched in 26Mg as a consequence of the rapid decay of short-lived 26Al from 

s-process nucleosynthesis. The relatively large size of this corundum grain, furthermore, 

suggests that it grew for several years in the extended atmosphere of its parent star. Such 

“large” grains are particularly subject to radiation pressure and have been invoked in 

triggering of dust-driven winds from AGB stars (Höfner 2008).
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The more than 250 corundum grains tabulated in the Presolar Grain Database (Hynes and 

Gyngard 2009; see https://presolar.physics.wustl.edu/ accessed 24 Jan 2019) span the several 

groups of stellar oxides and silicates proposed by Nittler et al. (1997). Therefore, we 

recognize three different natural kinds of corundum from stars. It should be noted, however, 

that relatively few Al2O3 grains have been examined by electron diffraction; therefore, the 

crystallinity of many grains remains uncertain. For example, of two grains studied by Stroud 

et al. (2004b), one was found to be corundum and the other amorphous Al2O3.

AGB corundum:  The majority of presolar corundum grains carry the Group 1 isotopic 

signatures of AGB stars from 1 to <3 solar masses, including elevated 17O/16O and normal 

or slightly low 18O/16O (Hutcheon et al. 1994; Nittler et al. 1997; Choi et al. 1998; Takigawa 

et al. 2014). In addition, approximately one in six stellar corundum grains display elevated 
17O/16O and very low 18O/16O characteristic of Group 2 late-stage cool-bottom processing 

in AGB stars (Davis 2011; Takigawa et al. 2014). Some grains also incorporate significant 
26Mg, a consequence of short-lived 26Al. Takigawa et al. (2018) describe a euhedral Group 2 

AGB corundum grain, 1.4 μm in diameter, that suggests extended growth of a pristine crystal 

in the stellar atmosphere. Finally, a small population of Group 3 stellar corundum grains has 

both low 17O/16O and low 18O/16O—features ascribed to AGB stars of relatively low mass 

and low metallicity (Nittler et al. 2008).

SN-II corundum:  Approximately one in 10 stellar corundum grains have low 17O/16O and 

low 18O/16O, similar to Group 3 AGB corundum, but they also incorporate significant 26Mg, 
44Ca, and 49Ti, which point to origins in a Type II supernova (Choi et al. 1998; Nittler et al. 

2008).

CNova corundum:  Fewer than 1% of stellar corundum grains have oxygen isotope 

signatures associated with origins in classical novae: very high 17O/16O combined with low 
18O/16O (Nittler et al. 2008).

Amorphous Al2O3.—Amorphous Al2O3, which was verified on the basis of electron 

diffraction by Stroud et al. (2004b), arises from rapid cooling of Al-O rich zones in an AGB 

stellar atmosphere. Takigawa et al. (2018) suggest that the amorphous form could 

subsequently anneal to corundum.

AGB amorphous Al2O3:  Origins of amorphous Al2O3 in an Orich AGB star was inferred 

from anomalously elevated 17O/16O, as well as 26Mg/24Mg.

Eskolaite (Cr2O3).—Croat et al. (2008) describe two SN-II graphite grains with 50-nm-

diameter inclusions of chromium oxide and trigonal unit-cell parameters matching those of 

eskolaite. Additional nano-inclusions rich in Cr-oxide display cubic unit-cell parameters, 

perhaps corresponding to CrO.

SN-II eskolaite:  Occurs as nanoscale inclusions in SN-II graphite (Croat et al. 2008).

Titanium oxide (TiO2).—Nittler et al. (2008) identified four grains of TiO2 with elevated 
17O, thus pointing to origins in an AGB star, with subsequent work by Bose et al. (2010a) 
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and Zega et al. (2011). Thus far, no electron diffraction data are available on the polymorph 

of AGB TiO2 (L. Nittler, personal communications). Croat et al. (2011) performed electron 

diffraction experiments on 52 TiO2 inclusions in SN-II graphite and employed electron 

diffraction to confirm that specimens possessed the tetragonal rutile structure. Groopman 

and Nittler (2018) subsequently employed Ti-XANES to identify a presolar rutile inclusion 

in a graphite grain of presumed supernova origins, based on its high 12C/13C and high 18O/
16O relative to solar abundances.

AGB TiO2:  Characterized by high 17O/16O (Nittler et al. 2008; Bose et al. 2010a; Zega et 

al. 2011); the polymorph is not yet resolved.

SN-II rutile:  Inclusions in SN-II graphite with elevated 12C/13C and 18O/16O (Groopman 

and Nittler 2018). TEM analyses reveal tetragonal grains with rutile unit-cell parameters 

(Croat et al. 2011).

Magnetite (Fe3O4).—Croat et al. (2008) reported magnetite inclusions in stellar graphite. 

A single crystal of stellar magnetite (maximum dimension ~750 nm) was subsequently 

described by Zega et al. (2015), who measured elevated 17O/16O relative to solar 

abundances. They postulate that the grain formed by oxidation of an iron grain in the O-rich 

atmosphere of a solar metallicity AGB star (~2 stellar mass) during the first dredge up phase 

over time scales of 104 to 106 years. If so, then AGB magnetite would represent one of only 

three plausible secondary stellar minerals (in contrast to a primary condensate), the others 

being troilite (FeS; Haenecour et al. 2016) and shock-produced MgSiO3 silicate perovskite 

(Vollmer et al. 2007).

AGB magnetite:  Magnetite with elevated 17O/16O relative to solar abundances; likely 

formed by secondary gas/solid oxidation reactions of stellar iron.

Spinel (MgAl2O4).—Stellar oxide spinel grains were initially recognized as presolar grains 

because of their anomalous oxygen isotope values—notably enrichment in 17O and 

depletion in 18O relative to solar averages (Nittler et al. 1994; Choi et al. 1998). Gyngard et 

al. (2010a) subsequently analyzed 38 spinel grains from the Murray CM2 meteorite. The 

majority have isotope anomalies consistent with AGB origins, but one grain with extreme 

enrichments in 17O, 25Mg, and 26Mg is thought to have formed in a supernova environment.

Zega et al. (2014a) described automated analyses of the acid-resistant fraction of several 

chondrite meteorites, in which they identified 37 oxide spinel grains. The majority of these 

grains were close to Mg-Al-spinel, but five grains displayed compositions in the Fe-Cr-

chromite field (see below). From this suite of samples, they selected four grains, each up to 

0.5 μm in maximum diameter, for detailed study. All of the 37 spinel grains identified 

display isotopic anomalies consistent with a presolar origin, notably 17O enrichment 

consistent with origins in an AGB star somewhat more massive than the Sun and with 

approximately solar metallicity. Zega et al. (2014a) estimated the host star’s mass to be 1.2 

to 1.4 times than the Sun; note, however, that revised experimental measurements of nuclear 

reaction rates, for example the 17O’s proton-capture rate (Bruno et al. 2016), may affect 

estimates of AGB stellar masses (Lugaro et al. 2017). Three of these grains are Mg-Al spinel 
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with minor Fe and Cr; one with minor Ca as well; for example, (Mg0.98,Fe0.01)

(Al1.94Cr0.06)O4. Pure Mg-Al spinel condenses at 1161 K at 10−6 atm and 1221 K at 10−3 

atm, respectively. Note that stacking disorder observed in TEM studies could point to grain-

to-grain impact-induced strain in the stellar atmosphere. Thus, while high pressures do not 

appear to play any significant role in presolar grain formation, transient events may 

influence their microstructures.

AGB spinel:  The majority of stellar spinel samples are typical of Group 1 grains, 

displaying the high 17O/16O characteristic of AGB stars (Choi et al. 1998; Gyngard et al. 

2010a; Zega et al. 2014a).

SN-II spinel:  Nittler et al. (2008) and Gyngard et al. (2010a) describe Group 4 oxide spinel 

grains with high 18O/16O, low 25Mg, and high 26Mg—characteristics that are ascribed to a 

Type II supernova origin.

CNova spinel:  A single grain reported by Gyngard et al. (2010a) has extreme enrichments 

in 17O, 25Mg, and 26Mg, likely condensed from classic nova ejecta.

Chromite (Fe2+Cr2O4).—Five grains studied by Nittler et al. (2005) and Zega et al. 

(2014a) are Fe-Cr-rich chromite. One of the grains is a composite with an average 

composition [(Fe0.67Mg0.31Ni0.02)(Cr1.58Al0.21Mg0.06Ti0.13)O4], close to chromite 

composition.

AGB chromite:  Zega et al. (2014a) describe 5 chromite grains with high 17O/16O and low 
18O/16O relative to solar averages.

Hibonite (CaAl12O16).—Prior to 1999, the refractory calcium aluminate hibonite [ideally 

CaAl12O19, but given misleadingly by IMA as (Ca,Ce)(Al,Ti,Mg)12O19] was assumed by 

most researchers to be exclusively a primary condensate in the solar nebula. Hibonite is a 

significant component of calcium aluminum inclusions (CAIs) from chondrite meteorites 

and specimens from several carbonaceous chondrite meteorites have been studied 

intensively (Zinner et al. 1986; Fahey et al. 1987; Hinton et al. 1988; Ireland 1988, 1990; 

Choi et al. 1999; Nittler et al. 2008; Zega et al. 2011; Han et al. 2015). Experimental 

evidence suggests that corundum and hibonite are among the earliest oxide condensates in a 

solar nebula, with reported condensation temperatures ranging from 1730 to 1780 K (Wood 

and Hashimoto 1993; Yoneda and Grossman 1995; Ebel and Grossman 2000; see Ebel 2006 

for an overview)—relationships that will be examined in Part II of this series. However, the 

report by Choi et al. (1999) of two meteoritic hibonite grains with high 17O/16O and high 
26Mg confirmed the AGB origins of a small fraction of the smallest hibonite grains in 

chondrites. Subsequent analyses by Nittler et al. (2008) and Zega et al. (2011), including 

hibonite grains with compositions in the Ca(Mg,Ti,Al)12O19 field, point to origins in both 

AGB stars and Type II supernovae. In addition, Nittler et al. (2011) described a Group 3 

hibonite grain with significant depletions in both 17O and 18O relative to solar averages, as 

well as low 25Mg/24Mg—an unusual combination not easily ascribed to any single stellar 

origin.
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AGB hibonite:  The majority of stellar hibonite specimens are typical Group 1 grains, 

characterized by high 17O/16O, average to low 18O/16O, and high 26Mg and 41K—the latter 

from 41Ca decay (Choi et al. 1999; Nittler et al. 2008; Zega et al. 2011). In addition, one 

unusual Group 3 hibonite grain displays significant depletions in both 17O and 18O relative 

to solar averages, as well as low 25Mg/24Mg (Nittler et al. 2011).

SN-II hibonite:  A few Group 4 stellar hibonite grains display high 18O/16O, as well as 

elevated 26Mg and 41K (Nittler et al. 2008; Zega et al. 2011), characteristic of core-collapse 

supernovae.

Other possible oxide phases.—Additional potential stellar oxide phases include 

unidentified iron oxides (Floss et al. 2008; Bose et al. 2010b); a cubic chromium oxide, 

possibly CrO (Croat et al. 2008); as well as possible Ca-Al oxide and Mg-Cr oxide grains 

(Nittler et al. 2008), though no definitive identifications of these phases are yet forthcoming. 

In addition, Stroud et al. (2004b) report evidence for a non-corundum hexagonal polymorph 

of Al2O3.

Silicates

Amorphous silicate phases have been recognized as an important, if not dominant, 

component of the atmospheric dust produced by oxygen-rich evolved AGB stars, based on 

detection of distinctive infrared features (Woolf and Ney 1969; Treffers and Cohen 1974; 

T.W. Jones and Merrill 1976; Speck et al. 2000; McAdam et al. 2018). Higher resolution 

studies by Waters et al. (1996) using the Infrared Space Observatory confirmed the presence 

of crystalline silicates, as well—work that has been amplified by measurements with 

subsequent orbiting infrared observatories (e.g., Jiang et al. 2013).

The first unambiguously stellar silicate grains were discovered in interplanetary dust 

particles (Messenger et al. 2003), with subsequent identification in both polished sections of 

meteorites (Mostefouai and Hoppe 2004; Nagashima et al. 2004; Nguyen and Zinner 2004) 

and Antarctic micrometeorites (Yada et al. 2008). Numerous subsequent publications 

(Zinner 2014 and references therein) record more than 250 meteoritic silicate grains with 

extreme isotopic anomalies that formed in the atmospheres of stars. These investigations 

suggest that stellar silicate grains, though typically less than 1 μm in diameter and with 

many grains smaller than 100 nm diameter, represent the most abundant group of stellar 

minerals—up to a few hundred parts per million in primitive chondrite meteorites, compared 

to ~30 ppm for stellar moissanite (Zinner 2014, his Fig. 17; Nittler et al. 2018b). Most stellar 

silicate grains appear to have AGB origins, though at least one supernova olivine grain with 

excess 18O and depleted 17O has been identified (Messenger et al. 2005).

A significant challenge in the systematic classification of stellar silicates is their diminutive 

scale, which makes chemical and structural analysis difficult. Major element analysis of Mg, 

Fe, and Si reveal several grains with pyroxene or olivine stoichiometry, with significant iron 

content in all measurements (possibly a consequence of subsequent alteration). However, 

more than half of analyzed grains appear to be nonstoichiometric and may represent 

amorphous silicates (Floss and Stadermann 2009, 2012; Vollmer et al. 2009; Bose et al. 

2010a; Nguyen et al. 2010; Kemper et al. 2011; see Zinner 2014, his Fig. 18). The 
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complexity of some stellar oxide and silicate grains is represented by a zoned AGB (Group 

1) grain with an Al-Ca-Ti oxide core and Mg-Ca-silicate mantle (Leitner et al. 2018), as well 

as other composite oxidesilicate grains (Vollmer et al. 2013; Nguyen et al. 2016; Nittler et al. 

2018b). As the identification and characterization of stellar silicates is still in its infancy, we 

recognize olivine and enstatite as the only two confirmed IMA-approved species.

Forsterite (Mg2SiO4).—Based on astronomical observations, Mg-rich olivine is the most 

common stellar crystalline silicate, estimated to exceed the quantity of pyroxene by a factor 

between 2 and 3 (Kemper et al. 2004; O.C. Jones et al. 2012). Most confirmed presolar 

olivine grains display characteristics of AGB stars, though distinctive SN-II grains have also 

been observed (Zinner 2014). Note that a significant fraction of stellar forsterite may be 

subsequently lost through amorphization by shock and/ or irradiation (Brucato et al. 2004).

AGB forsterite:  Mostefouai and Hoppe (2004) described three forsterite grains with 

elevated 17O, typical of AGB stars. Additional reports of stellar AGB olivine include 

Busemann et al. (2009), Vollmer et al. (2009), Zega et al. (2014b; notably Ca-bearing), 

Nguyen and Messenger (2016), and Nittler et al. (2018b).

SN-II forsterite:  Messenger et al. (2005) describe a single grain of olivine with high 18O/
16O and low 17O/16O, characteristic of supernova origins.

Enstatite (MgSiO3).—Magnesium silicate pyroxene is the second important crystalline 

stellar silicate phase, based on both astronomical observations and analyses of isotopically 

anomalous presolar silicate grains (Mostefouai and Hoppe 2004; Zinner 2014). Note that 

while enstatite may condense directly, Carrez et al. (2002b) suggested that enstatite could 

also crystallize from amorphous silicate under the influence of electron radiation in a 

circumstellar environment.

AGB enstatite:  Mostefouai and Hoppe (2004) described four pyroxene grains with the 

characteristic elevated 17O/16O of AGB origins. Subsequent studies have documented 

dozens of additional examples, a few of which have been confirmed by TEM analyses to 

have the pyroxene structure, though most identifications of “enstatite” are based on bulk 

compositions with (Mg + Fe) ~ Si (Floss and Stadermann 2009, 2012; Bose et al. 2010a; 

Vollmer et al. 2013; Nguyen et al. 2016; see also Zinner 2014, his Fig. 18).

SN-II enstatite:  One pyroxene grain examined by Mostefouai and Hoppe (2004) displayed 

normal 17O/16O and extremely elevated 18O/16O, thought to result from Type II supernovae.

Bridgmanite (MgSiO3).—Of special interest is a grain of bridgmanite, the high-pressure, 

perovskite-structured polymorph of MgSiO3, which possibly formed as the result of a high-

velocity impact of a stellar shock wave on enstatite (Vollmer et al. 2007). If so, then stellar 

bridgmanite represents a secondary alteration phase. The grain possesses high 17O/16O and 

low 18O/16O, perhaps reflecting an origin in a low-mass, solar metallicity AGB star during 

and after the first dredge up phase.
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AGB bridgmanite:  High-pressure MgSiO3 polymorph, perhaps the consequence of shock 

alteration of AGB enstatite.

Amorphous silicate.—More than half of studied presolar silicate grains are amorphous 

(Kemper et al. 2004; Messenger et al. 2003; Zinner 2014), and most of those are non-

stoichiometric phases with compositions intermediate to those of forsterite and enstatite 

(e.g., Zinner 2014, his Fig. 18). The great majority of these grains display the elevated 17O/
16O associated with AGB stars. Note, however, that Kemper et al. (2004) suggest that Type 

II supernovae may be a significant additional source of amorphous silicates. Amorphous 

silicates may condense directly in the stellar atmosphere, or they may occur as a result of 

subsequent irradiation and/or shocks in the circumstellar/interstellar medium (A.P. Jones et 

al. 1994; Demyk et al. 2000; Carrez et al. 2002a; Brucato et al. 2004; A.P. Jones 2007).

AGB amorphous Mg-Fe silicate:  Amorphous Mg-Fe silicate compositions with elevated 
17O/16O.

Network graph of stellar minerals

Network graphs provide a useful method to visualize relationships among varied minerals 

and their attributes (Morrison et al. 2017). Figure 6 displays a bipartite force-directed 

network graph of stellar minerals, in which 27 phases—22 IMA approved mineral species, 

two additional crystalline phases not yet recognized by IMA (MoC and Fe7C3), plus three 

amorphous condensed phases (C, Al2O3, and silicate)—are represented by diamond-shaped 

nodes. These mineral nodes are linked to three types of stars (AGB, SN-II, and CNova) 

represented by star-shaped nodes. Compositional information is conveyed by mineral node 

colors: black (C-bearing), green (not C or O), blue (contains O, but not Si), and red (contains 

Si+O).

This visual representation of all confirmed stellar minerals underscores several important 

trends. First, all of these stellar phases (and the great majority of confirmed stellar mineral 

grains) are formed in the atmospheres of AGB stars (17 phases) and/or Type II supernovae 

(19 phases). Furthermore, 23 types of condensed stellar phases are only known from these 

sources. By contrast, only four minerals are confidently ascribed to classical novae: graphite, 

moissanite, corundum, and spinel. Both AGB stars and Type II supernovae produce a wide 

compositional range of grains, including native elements, carbides, oxides, and silicates.

Graphite, moissanite, corundum, and spinel are the only phases thus far identified from all 

three of these stellar hosts. This uneven distribution of stellar minerals among types of stars 

in part reflects the prodigious production of stardust in AGB planetary nebulas and Type II 

supernovae.

Trace and minor elements in stellar minerals

The 27 phases represented by the known inventory of stellar minerals incorporate only 11 

different abundant chemical elements and 6 minor elements as essential constituents (Fig. 1). 

An important unanswered question relates to the scores of other chemical elements that are 

not represented as significant constituents during the pre-solar phase of mineral evolution. 
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All of these elements must be present in stardust particles, but where do they reside? One 

possible answer lies in the proposal of Lodders and Amari (2005; their Table 9), who 

suggested that several refractory minerals may await discovery as stellar minerals. Among 

their proposed condensates are gehlenite (Ca2Al2SiO7), grossite (CaAl4O7), anorthite 

(CaAl2Si2O8), perovskite (CaTiO3), iron silicide (FeSi), and aluminum nitride (AlN), as 

well as phases of S [niningerite (MgS), daubréelite (FeCr2S4), alabandite (Mn,Fe)S], P 

[schreibersite (Fe,Ni)3P], Na [albite (NaAlSi3O4)], K [orthoclase (KAlSi3O4)], and Cl 

{sodalite [Na4(AlSiO4)3Cl]}.

However, for a variety of less abundant elements at least three additional structural roles 

have likely occurred. A few elements are close proxies for common constituents of the ur-

minerals, and thus were easily incorporated into the adaptable lattices of these earliest 

minerals (Table 1). For example, gallium substitutes for aluminum, cobalt for iron, and 

manganese for calcium and/or iron. This propensity for some rarer elements to follow their 

chemically similar but more abundant neighbors may result in a relative paucity of mineral 

species for many of these elements (e.g., Christy 2015; Hazen et al. 2015).

A second possibility is that rarer elements are “swept up” during crystallization and thus are 

incorporated as defect sites in crystals. Nitrogen and boron, for example, are common defect 

elements in diamond, while N and Ti are ubiquitous in stellar moissanite. The range of 

possible single-atom defects in crystals is at present poorly constrained but deserves further 

study.

The third likely locus for trace and minor elements in pre-solar minerals is grain boundary 

regions in complex polycrystalline and/or amorphous composite stellar grains. Structural 

and compositional details of grain boundaries are lacking. In particular, it is not known the 

extent to which these regions are amorphous vs. nano-crystalline. It is plausible that some 

moderately rare “minerals” form as local concentrations with dozens to hundreds of unit 

cells—“phases” that may be revealed as atomic-scale-resolution microscopy becomes more 

widely applied to mineral systems (e.g., Ma et al. 2013, 2017; Rubin and Ma 2017).

Implications

The fascinating discipline of stellar mineralogy holds two important lessons for the field of 

mineralogy. First, a rigorous, quantitative methodology is needed to identify discrete natural 

kinds of minerals. In the case of astrominerals, we need to adopt and modify data-driven 

methodologies that rely on the richness of idiosyncratic, diagnostic attributes of presolar 

grains: trace and minor elements, ratios of isotopes, structural defects, inclusions, external 

morphologies, and other attributes that derive from their specific paragenetic histories and 

that distinguish them from other populations. We suggest that multi-dimensional analysis 

based on natural kind clustering of large, reliable, open-access data resources will reveal 

quantitative discriminants that place our systematic classification of stellar minerals on a 

secure footing. For example, we are now expanding the Presolar Grain Database (Hynes and 

Gyngard 2009; see https://presolar.physics.wustl.edu/) to investigate more than 20 000 

stellar moissanite grain analyses based on 12C/13C, 14N/15N, 30Si/28Si, 29Si/28Si, and such 

trace isotopes as 26Mg, 44Ca, and 49Ti. Preliminary cluster analysis reveals several discrete 
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populations; however, an important caveat relates to the degree of separation or “distance” 

both within and between different presumed clusters of stellar mineral grains. We hope to 

determine whether clusters based on attributes of stardust grains are non-overlapping in 

multi-dimensional composition space, as opposed to possessing variations that arise from 

continuous ranges of attributes in complex temperature-pressure-composition space. In 

either eventuality, cluster analysis will enhance our understanding of the dynamic, evolving 

sources of stardust.

Second, these varied, ancient condensed stellar phases underscore the need for an 

evolutionary system of mineralogy, which complements the existing IMA protocols based 

on idealized end-member compositions and crystal structures. Stellar minerals represent at 

least 22 IMA-approved mineral species, but their remarkable isotopic and morphological 

idiosyncrasies point to more than 40 “natural kinds” that are quite distinct from their more 

familiar terrestrial counterparts. Minerals that condensed from the atmospheres of stars are 

fundamentally distinct in chemistry, isotopic composition, morphology, and associations 

from more recent terrestrial examples of the same IMA-approved species. Stellar mineralogy 

also embraces the most ancient of a growing inventory of condensed non-crystalline phases 

that are important in all eras of the mineral evolution of Earth and other planets but have 

received scant attention in the systematic consideration of evolving planetary systems.

For more than 13 billion years, the stardust of the earliest stage of mineral evolution has 

enriched the interstellar medium, comprising a significant fraction of the molecular clouds 

and nebulas where new generations of stars, and their diverse retinue of mineral-rich planets 

and moons, are born. In the process, new minerals, including ices and other low-temperature 

condensates, expanded the cosmic mineralogical inventory. These far-flung interstellar 

processes were the prelude to the condensation and/or low-pressure melting in the solar 

nebula of a growing inventory of minerals—phases that are preserved as chondrules, 

refractory inclusions, and the matrix of chondrite meteorites. That phase of mineral 

evolution will be the subject of the second and the third contributions in this series.

In this and subsequent contributions, the guiding principle of the evolutionary system of 

mineralogy is that each mineral sample is a rich storehouse of information. Each specimen 

possesses myriad physical and chemical attributes that point to its origin and subsequent 

alteration pathways through space and time. We thus embrace the inherent “messiness” of 

nature—the complexities that reveal the evolution of stars, planets, minerals, and life.
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Figure 1. 
Characteristic pressure-temperature-composition regimes of stellar minerals. (a) Eleven 

major mineral-forming elements and six select minor elements commonly found in stardust. 

(b) Estimated pressure-temperature formation ranges of most stellar primary condensate 

minerals, which formed via relatively low-pressure, high-temperature condensation in the 

turbulent atmospheres of highly evolved stars.
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Figure 2. 
Dust-forming stars. (Hubble Space Telescope images, courtesy of NASA). (a) Image of star 

V838 Monocerotis, a “planetary nebula” that formed from dust and gas surrounding an 

asymptotic giant branch (AGB) star. (b) Image of the Crab Nebula—the remnants of a 

supernova.
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Figure 3. 
Electron microscope images of stellar minerals. (a) Cross section of a 1 μm diameter 

“onion” AGB graphite with central khamrabaevite (TiC) inclusion (Zinner 2014); (b) 13 μm 

diameter “cauliflower” SN-II graphite grain—a composite of smaller crystallites (Zinner 

2014); (c) 4.5 μm diameter euhedral “mainstream” AGB moissanite (SiC) crystal (Zinner 

2014); (d) 1.4 μm diameter euhedral AGB corundum (Al2O3) crystal (Takigawa et al. 2018).
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Figure 4. 
Isotope ratios for carbon and nitrogen in presolar moissanite (SiC) and nierite (Si3N4) reveal 

clustering that corresponds to several distinct natural kinds of stellar minerals, formed near 

different kinds of stars. Courtesy of Zinner (2014). Future multi-dimensional cluster analysis 

and visualization of these data coupled with Si isotopic and trace element measurements 

have the potential to reveal more definitive differentiations of the natural kinds of stellar SiC.
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Figure 5. 
Oxygen isotopes in presolar oxides and silicates display extreme isotopic anomalies relative 

to solar averages. Clustering of these data points to a variety of stellar environments. 

Courtesy of Nittler et al. (2008) and Zinner (2014).
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Figure 6. 
Bipartite force-directed network graph (Morrison et al. 2017) of stellar minerals linked to 

their host stars. Diamond-shaped nodes represent condensed crystalline and amorphous 

phases [black (C-bearing), green (not C or O), blue (contains O, but not Si), and red 

(contains Si + O)], whereas star-shaped nodes represent three types of host stars—

asymptotic giant branch stars (AGB), Type II supernovae (SN-II), and classical novae 

(CNova). The sizes of the host star nodes correspond to the number of links to other nodes. 

Courtesy of Anirudh Prabhu, RPI.
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