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Abstract

Purpose—Compared with their European American (EA) counterparts, African American (AA)
women are more likely to die from breast cancer in the United States. This disparity is greatest in
hormone receptor—positive subtypes. Here we uncover biological factors underlying this disparity
by comparing functional expression and prognostic significance of master transcriptional
regulators of luminal differentiation.

Experimental Design—Data and biospecimens from 262 AA and 293 EA patients diagnosed
with breast cancer from 2001 to 2010 at a major medical center were analyzed by IHC for
functional biomarkers of luminal differentiation, including estrogen receptor (ESRI) and its
pioneer factors, FOXAI and GATAS. Integrated comparison of protein levels with network-level
gene expression analysis uncovered predictive correlations with race and survival.
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Results—Univariate or multivariate HRs for overall survival, estimated from digital IHC scoring
of nuclear antigen, show distinct differences in the magnitude and significance of these biomarkers
to predict survival based on race: £SRI[EA HR = 0.47; 95% confidence interval (Cl), 0.31-0.72
and AAHR =0.77; 95% CI, 0.48-1.18]; FOXAI (EA HR =0.38; 95% ClI, 0.23-0.63 and AA HR
=0.53; 95% Cl, 0.31-0.88), and GATA3 (EA HR = 0.36; 95% ClI, 0.23-0.56; AA HR = 0.57; Cl,
0.56-1.4). In addition, we identify genes in the downstream regulons of these biomarkers highly
correlated with race and survival.

Conclusions—Even within clinically homogeneous tumor groups, regulatory networks that
drive mammary luminal differentiation reveal race-specific differences in their association with
clinical outcome. Understanding these biomarkers and their downstream regulons will elucidate
the intrinsic mechanisms that drive racial disparities in breast cancer survival.

Introduction

The incidence of invasive breast cancer in the United States will approach 260,000 this year
with over 40,000 annual deaths. Although overall breast cancer mortality has declined, the
survival gap between African American (AA) and European American (EA) women
continues to widen (1-9). Women of African heritage suffer higher frequencies of triple-
negative breast cancer (TNBC), a more aggressive form of breast cancer characterized by the
absence of the estrogen receptor (ER), the progesterone receptor (PR), and nonamplified
expression of the HER2 (10-12). Though recent studies have identified genetic components
associated with African heritage that is linked to the higher frequency of TNBC (13), other
studies have also shown significant race-based disparities in patients with hormone receptor—
positive breast cancer (2, 3, 14). These differences persist even after controlling for
socioeconomic status (2, 3, 15-17), thus implicating roles for intrinsic biological factors.

The transcriptional program driven by ER plays a major role in mammary biology.
Throughout the menstrual and reproductive cycles, its activity and levels regulate dynamic
shifts in glandular proliferation and differentiation and play definitive roles during lactation
and mammary gland involution (18, 19). Once bound to ligand, ER orchestrates major
changes in chromatin structure that facilitate entry and assembly of large multicomponent
transcriptional complexes charged with executing cell-specific gene expression programs
that influence tumor growth and initiation (18, 19). This action provides the theoretical
foundation for many endocrine-based therapeutic strategies (20, 21).

FOXA1 and GATAS are sequence-specific DNA-binding transcription factors that function
as chromatin pioneer factors essential for ER function (22—26). As pioneer transcription
factors, they interact directly with histones to facilitate nucleosome displacement, chromatin
remodeling, and the subsequent entry or binding of ER (22, 24, 27). Both factors play a
significant role in sustaining the estrogen response because they are both induced and
reciprocally activated by ER (26, 28, 29). FOXAL and GATAS3 play unique and overlapping
roles in maintaining epithelial differentiation by activating genes responsible for luminal
features while repressing genes associated with basal or mesenchymal phenotypes (26, 30—
32). Unlike FOXA1, GATA3 is frequently altered (~10%) in breast cancer often with
mutations limited to one allele suggesting a gain of function (22). However, many known
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breast cancer-associated gene variants occur at genetic loci containing FOXAL binding sites
(33). Interestingly, AA women show parity-associated reductions in FOXAL expression
because of promoter methylation (34), although, in contrast, FOXA1 promoter methylation
is reduced by BRCA1, whose transcription is controlled by ER (ESRZ; ref. 35). These
diverse interdependent modes of regulatory function and control exemplify how ESR1,
FOXAZ1, and GATA3 act as master regulators to exert profound influence on breast cancer
differentiation, prognosis, and response to therapy.

In this study, we explore the racial differences in the relationship between the protein
expression of the ER, FOXAL, and GATA3 master regulators and overall breast cancer
survival. Moreover, we identify intrinsic differences in the downstream transcriptional
regulatory activity they govern to reveal new and novel gene classes that are predictive of
race and 3-year survival.

Materials and Methods

Study population, tissue microarray construction, and analysis

Following IRB approval from East Carolina University and the NIH intramural research
program, de-identified formalin-fixed and paraffin-embedded tissue samples and de-
identified clinical information abstracted from the medical records were requisitioned and
initially procured for 733 patients with breast cancer who underwent surgery for stage 0 to
stage IV breast cancer between 2001 and 2010 at Pitt County Memorial Hospital (now
Vidant Medical Center), Greenville, NC. All patient samples and data obtained were de-
identified and approved by the East Carolina University Institutional Review Board as a
human subject exempt project, for which no informed consent is needed. The study was
conducted in accordance with the Declaration of Helsinki. Race and/or ethnicity were self-
reported at the initial visit and captured in the medical record. Survival was recorded
retrospectively from the medical records and the cancer registry. Median follow-up is 8.5
years. A total of 588 patient blocks from this cohort were found suitable for use in the
construction of a tissue microarray. Replicate tissue microarrays were constructed using 1
mm cores in accordance with previously described methods (36, 37), with a complete
representation of 555 patients. Detailed methods for IHC, scoring, and the assignment of
clinical variables are provided in the supplemental data.

Gene expression profiling

Analysis of a portion of the breast cancer samples (Total V= 126; EA N=61; AA N=65)
was carried out by RNA-seq. Following a review of H&E-stained slides, areas for tumor
with >80% nuclei were circled, and 2.5 x 2 to 3 mm tissue cores were extracted from the
corresponding regions of FFPE tissue blocks. Cores were shipped to the Beijing Genomics
Institute (BGlI; Beijing, China), where RNA was extracted and sequenced (60M paired-end
reads per sample) as described previously (38, 39). Detailed methods for sequencing and
description of the analytical pipeline is provided in the Supplementary Data.
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Statistical analysis

Results

A linear model estimating outcomes for overall survival, 3-year survival, 5-year survival,
and race was applied to measure differences in the association of the digital score of nuclear
proteins (OR, confidence interval, and P value) while controlling for clinical factors
including age, stage, grade, subtype, and lymph node status (40). A comparison of IHC
scoring was performed by the two-sided #test and plotted as described previously (41).
Multivariate Cox proportional-hazards model was used to test the independent and combined
prognostic values of proteins of interest with/without the presence of selected clinical
variables. A Spearman rank correlation was performed to test the relationship between
protein H-score and gene expression (RPKM) values (42). The significance of individual
hazard ratios was estimated by Wald test. Unsupervised hierarchical clustering of digital
IHC protein data from all breast samples was performed using complete linkage and
distance correlations with bootstrap resampling and estimated stability of clustering using
the “pvclust” R package (43). Optimal cutoff points for AH-score were determined as
described previously (44). Prediction ability for race and 3-year survival by the regulon
genes downstream of master regulators was determined univariately by AUC ROC (45). To
define genes that optimized prediction (AUC), genes were added one by one, according to
their ranking (univariate, high to low), to the logistic model in Monte Carlo simulations.
Protein interaction networks were generated with STRING using the minimum required
interaction score of 0.15 (46). Detailed statistical methods are provided in the
Supplementary Data. R/Bioconductor version 3.5.1 was used for the entire analysis.

Racial differences in survival outcome of ER-positive versus ER-negative breast cancer

The breast cancer cohort profiled in this study is racially diverse (53% European, V= 293;
47% African, N=262; Fig. 1A). Correlation between race, clinical, and pathologic
characteristics are provided in Table 1. As reported /n7 prior studies, Luminal A subtype
frequency is lower in AA compared with EA women, whereas the frequency of TNBC is
higher in women of African heritage (Fig. 1A; Table 1). This trend is consistent with those
reported by other larger studies in the United States (10, 47, 48) and is representative of the
subtype distribution in the parent population in the East Carolina cancer registry
(Supplementary Fig. S1). Kaplan—Meier analysis of overall survival associated with ER
status confirm the know survival advantage for ER positive (ER+) compared with ER
negative (ER-) patients with breast cancer (Fig. 1B). However, this receptor positive
survival advantage differs significantly by race, that is, ER+ EA women show much more
favorable survival than their AA counterparts (Fig. 1C and D).

Coexpression analysis of ER and other biomarkers that distinguish luminal versus
mesenchymal differentiation (FOXA1, GATA3, E-cadherin, HER2, vs. EGFR) reveals
significant biphasic correlations between ER expression and its pioneer factors (FOXAL and
GATAZ3; Fig. 1E).The biphasic nature of the distribution of ER, FOXAL, and, to a lesser
extent GATAZS, is consistent with the clustering by receptor status abstracted from the
medical records, older age, menopausal status, and intrinsic subtype (also see, Table 2).
Within the multivariate setting, overall survival is independently associated with age and
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subtype (Table 2). As has been described for the ER+ classification, LumA subtype when
compared with TNBC is associated with a favorable survival (Table 2; Supplementary Fig.
S2). However, consistent with the differential racial association of ER status with overall
survival, the relative hazard of LumA subtype decreases for EA women whereas it increases
for AA women (Supplementary Fig. S2). Comparison of relative Luminal A breast cancer
survival between AA and EA women shows a nonsignificant trend toward lower survival in
women of African heritage with negligible difference in survival for TNBC (Supplementary
Fig. S3).

The association between master regulators of luminal differentiation and overall survival
in patients with breast cancer differs by race

To evaluate the independent predictive value of ER, and the pioneer proteins FOXAL and
GATAZ3, IHC scores and overall survival outcomes were compared across the cohort before
and after stratification by race (Supplementary Fig. S2). Optimum cutoffs for ESR1,
FOXAZ1, and GATAS histologic scores were defined by exact distribution of maximally
selected rank statistic. Using the population cutoff score for each antigen, Kaplan—Meier
analysis of the total cohort before and after stratification by race is shown in Fig. 2A-C. For
all biomarkers, including ESR1, FOXA1, and GATA3, application of the optimized cutoff is
predictive of favorable survival in the total cohort population. However, these predictive
values show significantly less favorable or nonsignificant HRs in AA compared with EA
women (Fig. 2A-C). Notably, this difference in survival exists despite the absence of any
significant racial difference in the levels of either ESR1, FOXA1, GATA3, or the other
biomarkers associated with luminal differentiation (CDH1, EGF, HER2; Supplementary Fig.
S4). Such observations strongly implicate influences downstream of ESR1, FOXAL, and
GATAZ3 as possible contributors to the racial difference in survival outcome.

To examine whether or not race-specific cutoff for these biomarkers might influence their
predictive value, the optimal cutoff for ESR1, FOXA1, and GATA3 were again defined by
determining the exact distribution of the maximally selected rank statistic for these antigens
separately for EA and AA patients (Fig. 2D). For both ESR1 and FOXA1, the maximally
selected cutoff for AA patients is higher than either those of EA or the total population (Fig.
2D, top). In contrast, GATA3, one of the most highly mutated genes in breast cancer with
higher frequencies in American women (49), showed an optimal cutoff, in AA patients that
is significantly lower than EA women or the total population (Fig. 2D, bottom).

A comparison of race-based biomarker cutoffs

Comparative analysis of the predictive value of race-based cutoffs for ESR1, FOXAL, or
GATA3 expression, across the total breast cancer cohort, reveals that the cutoff for AA
patients is considerably less predictive or nonsignificant in determining favorable overall
survival (Fig. 3A). In each instance, either the total population optimized cutoff, or the cutoff
optimized in the European population has the highest predictive discrimination within the
entire breast cancer cohort. This relationship persists even when the race-optimized cutoffs
are applied across races [e.g., EA-Cutoff (AA), Fig. 3A]. Although the influence of other
nonbiological factors that operate differently by race cannot be excluded (e.g., access to
care, time of treatment, and type of treatment); such findings suggest that these master
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regulators of luminal differentiation, may either be functionally less efficient or have
reduced transcriptional activity in the downstream regulatory pathways in AA patients.

To determine the relative contribution of the pioneer proteins FOXA1 and GATAS3 as
established modulators of ER function in predicting overall survival, we compared how
expression of FOXAL or GATAS stratified the relative hazard of low-risk patients defined by
high ER expression. Patients with high ESR1 expression, based on the population optimized
cutoff (Fig. 2A), were analyzed for overall survival using each of the optimized cutoff
expression values derived from the total cohort, the EA, or the AA patients, respectively
(Fig. 3B and C). Within both the total patient cohort and EA patients, expression of either
FOXA1 or GATAS stratifies poor from favorable survival in patients with high ER levels
(Fig. 3B and C; left and middle). In contrast, neither FOXAL nor GATA3 expression
provides significant prediction of survival in AA patients (Fig. 3B and C; right).

Univariate modeling demonstrates that FOXA1 measurements significantly outperform both
ER and GATAZ3 as predictors of favorable overall breast cancer survival (Fig. 3D, top left).
This relationship persists even after adjusting for age, race, and stage in multivariate analysis
(Fig. 3D, top right). Notably, multivariate models adjusting for expression of the other two
master regulators, reveal that only FOXAZ1 is an independent predictor of overall breast
cancer survival controlling for either age, race, stage, or the expression of either GATA3 or
ESR1 (Fig. 3D, bottom right).

The racial disparity in the association of luminal master regulator expression with breast
cancer survival implicates altered activity of downstream transcriptional networks as a
source of differences in tumor biology. Recent advances in systems level understanding of
transcriptional regulation have developed powerful approaches to define and measure the
total transcriptional function and/or “activity” of specific transcription factors by collectively
assessing expression of the network of their downstream regulatory targets or “regulons”
(50). Computational recognition and construction of these gene networks are available from
the collective analysis of publicly available gene expression data sets (50, 51). Using the
Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE; ref. 52) and
publicly available human breast cancer gene expression data sets provided through TCGA,
Walsh and colleagues defined the regulons controlled by ESR1, FOXAL, and GATA3 (see
additional data, ref. 50). The RNA-seq gene expression data for 22% of this cohort
(deceased patients, /= 126) was used to uncover genes, controlled by ESR1, FOXAL, or
GATAZ3, which either distinguish race or predict 3-year survival (Fig. 4A and B). Using
logistic probability distribution modeling through Monte Carlo simulations, each gene in the
regulons of ESR1 (985 genes), FOXAL (1478 genes), and GATA3 (871 genes; see
supplementary material) were combinatorially profiled for their ability to contribute to the
prediction of either race or 3-year survival. Optimum predictive value was assessed through
AUC determinations based on ROC analysis (Fig. 4A and B). This method identified eleven
(11) genes in the ESR1 regulon that contributed to distinguishing race, and eight (8) genes
that predicted 3-year survival. Sixteen (16) genes were identified in the FOXAL regulon that
distinguished race and 11 (11) genes that predicted 3-year survival. Finally, in the GATA3
regulon, 12 (12) genes were identified as discriminators of race whereas 12 (12) genes were
found to predict 3-year survival (Fig. 4A and B; Supplementary Table S1). Notably, many of
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these genes are significantly associated with relapse-free survival (RFS) in independent gene
expression data sets (Fig. 4C and D; Supplementary Table S2). On the basis of an analysis of
known/predicted, direct or functional gene—gene interactions defined within the String
database, the linkages of ESR1, FOXAL, and GATAS, the regulon gene groups (race and 3-
year survival, respectively) could be assembled into two distinct networks anchored by the
ESR1, FOXA1, and GATA3 regulatory triad (Fig 4E and F). The functional cellular
processes significantly enriched by inclusion of first-degree interactions of these networks
includes multiple metabolic processes involving amino acid, vitamin, and one carbon
metabolism (race predictive network; Fig. 5A; Supplementary Table S3); and multiple
pathways linked to tissue and cellular differentiation, Wnt signaling, and chromatin
modifications (3-year survival predictive network; Fig. 5B; Supplementary Table S3). The
gene expression correlation matrix (spearman) of the racial and survival predictors shows
strong similarities (discordance in only 2 genes) in clustering of the master regulatory triad
expression data in both the ECU patient cohort and the TCGA data set (Fig. 5C). Finally, in
validation studies, the ROC analysis of ECU racial predictor genes shows strong agreement
with the TCGA data (Fig. 5D and E).

Discussion

In this report, we provide an advanced analytical characterization of a retrospective cohort of
racially diverse patients with breast cancer collected from a single catchment area in rural
East North Carolina. Using this unique cohort, we show that functional predictors of
favorable outcome, defined by expression of transcriptional master regulators of mammary
luminal differentiation, reveal significant racial differences in their predictive association
with favorable outcome. This finding is consistent with other reports, indicating that AA
women experience significantly less favorable outcome even when stratified, by biomarker
profiling, into forms of breast cancer that typically show favorable outcome in EA women
(3, 10, 15, 16). Limitations of this study includes a lack of precise determination of the
socioeconomic status of the patients in this cohort, thus the contribution of racial differences
in access to care, quality, and adherence to treatment cannot be ruled out (53). Nonetheless,
an analysis of the median incomes of the counties in which each patient was diagnosed
reveals significant differences for outcome in EA women (HR = 0.6; £=0.012) compared
with a smaller, nonsignificant trend (HR = 0.73; £=0.13) in AA women (Supplementary
Fig S5). In addition, ESR1-positive tumors are less common in AA women, and therefore
the sample size for patients with higher expression of FOXA1 and GATA3 is lower (26%
and 16%, respectively). Thus, given the samples size, the cutoff determinations may not be
totally stable. Other, evidence supporting race-based differences in the intrinsic biology of
luminal tumors is provided by two recent reports by Holowatyi and colleagues (54) and
Troester and colleagues (55). These studies showed that AA women are more likely to have
higher risk assessments in the 21 gene recurrence score (RS) breast cancer assay, and PAM
50 risk of recurrence scoring, even after adjusting for age, clinical stage, tumor grade, and
histology (54, 55).

An overarching hypothesis to explain the racial differences in the association of these
functional biomarkers with survival outcome, despite similar levels of favorable biomarker
expression, is disparate function of the downstream networks governed by these
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transcriptional master regulators. This could occur through a variety of transcriptionally-
linked mechanisms including: (i) polymorphisms in promoter or enhancer transcription
factor binding sites; and/or (ii) differences in the coding sequence of the individual
constituents of multicomponent transcriptional complexes that disrupt assembly of the
complex without influencing the stability of the individual components. Several breast
cancer-associated risk loci contain FOXAL binding sites (33, 56) and current exome
sequencing studies have identified multiple variations in the coding sequence of genes in
racially diverse populations (57). Many of these variants do not predict protein instability or
are of unknown prevalence and consequence in populations of defined genetic ancestry (57).
It is conceivable that such “variants of unknown significance” could have substantial roles in
determining the downstream transcriptional activity in pathways that play important roles in
mammary growth, differentiation and breast cancer outcome. The level, activity and
mutational spectrum of the predictive regulon genes, described in this study, provide a
cogent starting point for their future investigation as predictive breast cancer biomarkers and
functional targets for therapy. Given the role of ESR1, FOXA1, and GATAS3 in enhancer
function, the role of long-range chromatin interactions, chromosomal domains, and
chromatin looping in breast cancer incidence, progression, diagnosis, and treatment, will
require extensive future investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Quantitative profiling of protein abundance in tumors from a racially diverse breast
cancer cohort by digital analysis of IHC-stained tissue reveals gene regulators and gene
regulatory networks that are differentially predictive of breast cancer survival based on
race. These findings provide a deeper understanding of the association between predictive
breast cancer biomarkers and their intrinsic downstream mechanisms and how such
associations may differ by race. Such observations offer new insights that will enable the
identification of more accurate breast cancer biomarkers with greater population-specific
predictive precision.
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Figure 1.
Racial differences in the association of ER expression and survival in a diverse breast cancer

cohort. A, Subtype distribution of EA (V= 292) and AA (N = 260) patients with breast
cancer. B, Kaplan—Meier analysis of overall survival comparing ER+ to ER- patients with
breast cancer. C, Survival profiling of ER+ versus ER- breast cancers in EA patients. D,
Survival profiling of ER+ versus ER— AA patients with breast cancer. E, Hierarchical
clustering of quantitative IHC expression (H-score) of EGFR, E-cadherin (Ecad), HER2,
ER, GATAS3, and FOXA1 with data distribution (right, yellow) and histogram (right, red).
The scale bar represents the color distribution of a range of protein values. (underneath)
Patient demographics and tumor characteristics. Color coding is indicated.
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Figure2.
Racial differences in the association of expression of master regulators of luminal

differentiation with survival. Kaplan—Meier analysis of the association of ER expression (A),
FOXAZ1 expression (B) confirms GATA3 expression (C) with survival in the total population
(left), EA patients (center) and AA patients (right). D, Determination of maximally selected
rank statistic to define optimal AH-score cutoff (black dashed line) for ESR1, FOXAL, and
GATAZ, analyzed for the total and race-stratified cohort. Blue points represent protein
expression values below optimum cutoff, and red points represent protein values above the
optimum cutoff.
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Figure 3.
ER, FOXAL, and GATAS have different predictive values for overall survival based on race.

A, Forest plot of HR of overall breast cancer survival using median and population
optimized cutoff H-scores (ALL, EA, and AA) for ESR1, FOXA1, and GATA3 expression.
B, Association between FOXAL expression and survival in low-risk, high-ER-expressing
patient with breast cancer, comparing the total population (left) with EA patients (center)
and AA patients (right). C, Association between GATA3 expression and survival in low-risk,
high-ER-expressing patients with breast cancer, comparing the total population (left) with
EA patients (center) and AA patients (right). D, Univariate and multivariate logistic
regression models of overall breast cancer survival based on FOXA1, ESR1, and GATA3
expression adjusted for age, race, and stage. 95% Cls are shown in parentheses.
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ROC analysis with a set of optimized genes from ESR1, FOXAL, and GATAS3 regulons that,
combined, have the highest prediction (AUC) of race (A) or 3-year survival (B) determined
by logistic regression. C and D, Volcano plots profiling the association of regulon genes that
predict race (C) and 3-year survival (D) with RFS in publicly available breast cancer gene
expression data sets (see Supplementary Data). Y-axis, —log P value; X-axis, coefficient of
log-scale hazard; green, genes enriched in EA, red, gene enriched in AA. E and F, Regulon
genes and gene networks downstream of master regulators of luminal differentiation (ESR1,
FOXA1, and GATA3) that optimally predict race and 3-year survival. Lines indicate direct
or regulatory interactions. The thickness of the lines indicates the relative strength of the

interactions.
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Figureb.

Functional cellular processes that are significantly enriched in first-degree interaction
networks assembled from gene predictors of race (A) and 3-year survival (B). Correlation
matrix of racial and 3-year survival gene predictors from the ECU (left) and TCGA (right;
C). Concordant gene clusters and clustered genes are shown in red and blue. The most
highly correlated genes are shown in bold. Discordant genes are shown in black. ROC curve
validation of ECU cohort-derived racial predictors using the TCGA expression data set (D)
show that many the predictive genes shown (Fig. 4A) have significant activity as a
discriminator of race in the TCGA data (E).
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