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CRISPR technology is an established tool for the generation of

knockout plants (Zhang et al., 2019), yet limitations remain. First,

the manipulation of individual genes may fail to produce

phenotypes for groups of genes with redundant or synergistic

functions. While this has been partially addressed by multiplexing

guide RNAs (gRNAs), there is concern that as the number of

targets increases, the chances of obtaining higher-order knock-

outs diminish (Zhang et al., 2016). Second, knocking out

fundamentally important genes can cause severe pleiotropic

phenotypes or lethality. Tissue-specific knockout of genes in

somatic tissues can overcome this limitation (Decaestecker et al.,

2019; Liang et al., 2019; Wang et al., 2020). However, the

efficiency of simultaneously targeting more than three genes in a

tissue-specific context is unexplored. Here, by multiplexing gRNAs

in Arabidopsis thaliana plants expressing Cas9 either ubiquitously

(pPcUBI) or root cap specifically (pSMB), we show that six genes

can be simultaneously mutated with high efficiency, generating

higher-order mutant phenotypes already in the first transgenic

generation (T1). The mutation frequencies for all target genes

were positively correlated and unaffected by the order of the

gRNAs in the vector, showing that efficient higher-order muta-

genesis in specific plant tissues can be readily achieved.

We selected six efficient gRNAs (Decaestecker et al., 2019 and

unpublished results) to target the coding sequences of six genes

(GFP, and the Arabidopsis genes SMB, EXI1, GL1, ARF7 and

ARF19; Figure 1a) whose knockout lead to easy-to-score pheno-

types in T1 seedlings (gfp: loss of GFP signal, smb: accumulation

of root cap cells (Fendrych et al., 2014), gl1: absence of trichomes

(Herman and Marks, 1989)) and do not severely affect plant

growth or reproduction. Since position effects within gRNA arrays

had been a concern regarding mutation efficiency (Zhang et al.,

2016), we generated two vectors (hereafter, pPcUBI(I) and pPcUBI

(II)) combining Cas9-mTagBFP2 driven by the ubiquitous pPcUBI

promoter and the six gRNAs in an inverted order (Figure 1b) and

transformed these into an Arabidopsis line with ubiquitous

expression of a nuclear-localized GFP (pHTR5:NLS-GFP-GUS

(Decaestecker et al., 2019) hereafter, NLS-GFP).

Forty-nine out of 96 pPcUBI(I) and 52 out of 95 pPcUBI(II) T1

seedlings displayed both gfp and smb phenotypes in roots,

indicating simultaneous mutations (Figure 1c,d). Additionally, 44

out of 96 pPcUBI(I) and 45 out of 95 pPcUBI(II) T1 seedlings also

lacked trichomes on the first two true leaves, revealing a high

mutation frequency for GL1. Altogether, 79% of the pPcUBI(I)

and 68% of the pPcUBI(II) T1 seedlings with at least one

detectable knockout phenotype also showed triple gfp smb gl1

mutant phenotypes. When selecting plants based on the loss of

GFP, 90% of the pPcUBI(I) and 85% of the pPcUBI(II) T1 seedlings

displayed triple mutant phenotypes, indicating a strong correla-

tion of mutagenesis efficiencies.

We quantified indel frequencies in 48 pPcUBI(I), 47 pPcUBI(II)

and a control NLS-GFP plant. The targeted loci were PCR-

amplified from root tips and sequenced using Illumina sequenc-

ing. Plants showing total or partial gfp and smb phenotypes had

high indel frequencies in GFP (27%–100%) and SMB (38%–
98%), as well as in all other target genes. Hierarchical clustering

showed that transgenic T1 plants fell in two major classes that

had either high or low levels of mutagenesis for all target genes

(Figure 1e). In agreement with previous reports (Feng et al.,

2014), 1-bp indels were the predominant repair outcome (50%–
80% and 1%–15% respectively), in-frame indels were rare (2%–
8%), and 6%–26% of mutations were bigger deletions (>6-bp),
insertions (>3-bp) or complex repair outcomes (Figure 1f).

We compared indel frequencies for each target between the

two constructs to test the effect of the gRNA position (Figure 1g).

The overall indel frequencies were higher for pPcUBI(II), though

the difference was only significant for GFP. As all other gRNAs

had no substantial changes in indel frequencies, our data do not

support a position effect in gRNA arrays, thus reducing the

complexity of future experimental design.

We then tested whether six genes can be efficiently mutated in

a tissue-specific context by making two vectors expressing Cas9-

P2A-mTagBFP2 under the root cap-specific pSMB promoter with

the same arrangement of gRNAs (hereafter, pSMB(I) and pSMB

(II)). Plants were grown in the presence of 1 µM brassinazole

(BRZ) to facilitate smb phenotyping. This treatment leads to a root

covered by living root cap cells in smb mutants (Fendrych et al.,

2014) and was easily recognizable due to the presence of nuclear

mTagBFP2 signal in living root cap cells (Figure 1h).

Thirty-two out of 86 pSMB(I) and 46 out of 88 pSMB(II) T1

seedlings showed both gfp and smb phenotypes, as well as a

strong mTagBFP2 signal specifically in root cap nuclei as deter-

mined by confocal microscopy (Figure 1i). In agreement with our

previous report (Decaestecker et al., 2019), mTagBFP2 signal

intensity could be used as a proxy for the penetrance of gfp and
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Figure 1 Ubiquitous and root cap-specific knockout of 6 genes in T1 via CRISPR and CRISPR-TSKO. (a) gRNA Target sequences. (b) Diagram of the pPcUBI

(PetroselinumcrispumUBIQUITIN promoter) and pSMB vectorswith gRNAs cloned in an inverted order, (I) and (II). (c)Maximum intensity projections of root tips of a

representative NLS-GFP seedling, two pPcUBI(I) and two pPcUBI(II) T1 seedlings showing the complete (left) and chimeric (right) absence of GFP signal and smb

phenotype. GFP is in green, propidium iodide (PI) in grey. Red arrowheads indicate root cells still expressingGFP. Scale bars, 100 µm. (d) Venn diagram showing the

number of plants displaying smb, gfp and gl1mutant phenotype in 96 pPcUBI(I) and 95 pPcUBI(II) T1 seedlings. (e) Genotype analysis by amplicon sequencing.

Phenotypes are indicatedon the right panel. (f) Frequency of themainmutation types inbothpPcUBI(I)andpPcUBI(II)plants. I1–I3: 1- to3-bp insertion, D1–D6: 1- to

6-bp deletion, Others: bigger deletions (>6-bp), insertions (>3-bp) or complex repair outcomes containing both insertions and deletions. (g) Percentage of indels

observed inpPcUBI(I) and pPcUBI(II) T1 plants. (h)Maximum intensity projections of root tips of a representative NLS-GFP seedling, two pSMB(I) and two pSMB(II) T1

seedlings grown on 1 µMbrassinazole showing the complete (left) and chimeric (right) absence of GFP and presence ofmTagBFP2 signal specific to root cap cells.

GFP is in green, mTagBFP2 inmagenta.White arrowheads indicate live root cap cells with nuclearmTagBFP2 signal covering the elongation zone. Red arrowheads

indicate root cells still expressing GFP. Scale bars, 100 µm. (i) Venn diagrams showing the number of plants displaying strong mTagBFP2 signal, smb and gfp

phenotype in 86 pSMB(I) and 88 pSMB(II) T1 seedlings. (j) Genotype analysis of BFP+ sorted cells of pSMB(I) and pSMB(II) T2 seedlings by amplicon sequencing. (k)

Frequency of the main mutations types in pSMB(I) and pSMB(II) plants.
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smb knockout phenotypes. To determine mutagenesis efficiency

in all target genes specifically in Cas9-expressing root cap cells,

we collected root-tip protoplasts expressing mTagBFP2 (BFP+,

Cas9 expressing cells) using fluorescence-activated cell sorting

from T2 seedlings of ten pSMB(I) and eight pSMB(II) independent

lines. We chose four pSMB(II) lines (19, 25, 35 and 48) with weak

or chimeric gfp and smb T1 mutant phenotypes and four pSMB(I)

and (II) lines with highly penetrant smb and gfp T1 mutant

phenotypes.

The targeted loci were PCR-amplified directly from sorted

protoplast populations and sequenced by NGS. In pSMB(I) and (II),

T2 seedlings coming from a T1 parent with strong smb and gfp

phenotypes, the Cas9-expressing BFP+ populations had indel

frequencies between 51% and 92% for all six target loci

(Figure 1j). As expected, the BFP+ populations of the pSMB(II)

lines that with weak or chimeric gfp and smb phenotypes in T1

had lower indel frequencies (2%–50%). These results confirmed

that in lines with high GFP and SMB mutagenesis activity, all

genes were simultaneously mutated with high efficiency. Similarly

to the ubiquitous lines, the alleles generated were largely

consistent across events, with 1-bp indels being the predominant

repair outcome (50%–87% and 2%–10%), in-frame insertion or

deletions were rare (0%–5%), and 3%–21% of mutations were

bigger indels (>3- and >6-bp) or combination of indels (Fig-

ure 1k).

In conclusion, we show that ubiquitous CRISPR and CRISPR-

TSKO approaches allow fast and simultaneous disruption of six

genes in the first transgenic generation with high efficiency. As

mutation efficiencies over all loci are correlated, we suggest the

use of a target gene with an easy-to-score, non-detrimental loss-

of-function phenotype as a proxy for highly mutagenized lines. As

an alternative to endogenous genes (Li et al., 2020), loss of GFP in

a reporter line can also be used as a proxy. We foresee this

approach to be a powerful tool to dissect genetic networks in

model and crops species alike.
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