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Summary
Lodging reduces grain yield in cereal crops. Understanding the genetic basis of lodging resistance

(LR) benefits LR breeding. In the study, 524 accessions from a rice germplasm collection and 193

recombinant inbred lines were phenotyped for 17 LR-related traits. Height and culm strength

(the magnitude of applied force necessary to break the culm) were two major factors affecting

LR. We conducted genome-wide association study (GWAS) and identified 127 LR-associated loci.

Significant phenotypic correlations between culm-strength traits and yield-related traits were

observed. To reveal the genetic relationship between them, we conducted GWAS of culm-

strength traits with adding yield-related trait as a covariate and detected 63 loci linking culm

strength and yield. As a proof, a near-isogenic line for an association locus on chromosome 7

showed enhanced LR and yield. Strikingly, 58 additional loci were identified in the covariate-

added GWAS. Several LR-associated loci had undergone divergent selection. Linkage analysis

supported the GWAS results. We propose that introgression of alleles beneficial for both culm

strength and panicle weight without negative effects on panicle number or pyramiding high-

yielding alleles and lodging-resistant alleles without effects on yield can be employed for the

post-Green-Revolution breeding.

Introduction

In cereal crops, especially for high-yielding cultivars, lodging

largely impairs grain yield and quality (Islam et al., 2007). In

the 1960s, a breakthrough—‘Green Revolution’ in rice—
enhanced lodging resistance (LR) by using gibberellin-deficient

semi-dwarf varieties (Sasaki et al., 2002). Unfortunately,

dwarfism limits canopy photosynthesis, biomass and thus grain

yield (Islam et al., 2007). High-yielding breeding programs

promote large panicles of modern cultivars, which make culms

vulnerable to lodging, especially when the rainfall occurs or

the wind blows (Hirano et al., 2017). Regarding agronomical

management, high planting density and heavy fertilizer input

have been widely adopted to enhance grain yield, resulting in

a high risk of lodging due to reduced culm strength (Shah

et al., 2019).

One promising solution to address these problems is to

enhance culm physical strength (Yano et al., 2015). Some

breeding trials have tried to exploit strong-culm alleles, but these

efforts were not very successful due to the negative trade-offs

between culm strength and grain yield (Hirano et al., 2017). So, it

is of significance to gain comprehensive insights into the genetic

basis of culm strength and yield-related traits, to identify some

alleles that can enhance culm strength without negative effects or

with positive effects on grain yield.

Genetic analyses and gene identification can accelerate precise

and efficient breeding. Geneticists and biologists have made

great efforts to identify QTLs and clone genes associated with LR

in rice. A QTL prl5 was identified in a population of backcross

inbred lines (BILs), which affects LR by changing the culm

characteristics (Kashiwagi and Ishimaru, 2004). A total of 12 QTLs

controlling LR-related traits were identified in another BIL

population (Yadav et al., 2017). Chromosome segment substitu-

tion lines (CSSLs) were constructed to identify QTLs associated

with LR (Mulsanti et al., 2018; Ookawa et al., 2010). A population

of recombinant inbred lines (RILs) was developed to identify

favourable alleles of LR and yield in rice (Nomura et al., 2019).

Besides the synthetic populations, a natural population for

association mapping was used to mine loci and favourable alleles

for five LR-related traits using 262 SSR markers (Sowadan et al.,

2018).

Regarding gene identification, several genes are associated

with LR by affecting plant height, plant architecture, culm

morphology, cell wall construction and culm silicon accumulation.

The ’Green Revolution’ gene, SD1, encodes a GA synthesis

enzyme, and the sd-1 allele is a loss-of-function mutation, which

reduces plant height and thus enhances LR (Sasaki et al., 2002).

TAC1 is a major gene controlling tiller angle (Yu et al., 2007),

which is related to LR (Li et al., 1999; Sasaki and Ashikari, 2018).

Its expression polymorphism caused by variants in the 3’UTR
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underlies the tiller angle variation. The SCM2 gene controlling

culm diameter, was identified using chromosome segment

substitution lines (Ookawa et al., 2010). This gene is identical to

APO1, which was previously reported to control panicle structure.

The SCM2 allele from a donor parent can enhance both culm

strength and spikelet number. SCM3, which controls culm

morphology, was identified using 93 BILs (Yano et al., 2015).

This gene is identical to OsTB1, a gene previously reported to

control strigolactone (SL) signalling. The SCM3 allele from

Chugoku117 can enhance both culm strength and spikelet

number, with a negative effect on panicle number. Several genes

encoding extensins (Fan et al., 2018) and sucrose synthases (Fan

et al., 2017) have impacts on cell wall construction and thus culm

physical strength. Silicon increases resistance to lodging in rice, so

genes responsible for silicon accumulation can contribute to LR,

such as silicon transporter gene Lsi1, Lsi2 and Lsi6 (Ma et al.,

2006; Ma et al., 2007; Yamaji and Ma, 2009).

To our knowledge, few studies have exploited LR natural

variations in a large rice germplasm collection to provide

comprehensive insights into the genetic architecture of LR and

the genetic relationship between culm strength and yield in rice

(Hirano et al., 2017; Shah et al., 2019). In this study, we

conducted GWAS based on millions of genotypic markers,

linkage analysis using RILs and genome-wide FST analysis, to

dissect the genetic architecture of LR. To reveal the genetic

relationship between culm strength and yield, we extended the

covariate-added GWAS of culm-strength traits using yield-related

trait as a covariate. The results from this study provide useful clues

for post-Green-Revolution breeding.

Results

Variation of LR-related traits in a rice germplasm
collection

In our study, we phenotyped 17 lodging-related traits across 524

diverse rice accessions at 25 days after the full heading stage in

2014 and 2015 (Figure 1a-d; Table 1). Broad-sense heritability of

these traits ranged from 0.63 to 0.95, suggesting that these traits

are mainly genetically controlled, and their genetic bases merited

dissection (Table 1). To reduce the effect of environment on

phenotypic data, the best linear unbiased prediction (BLUP) value

of each trait was calculated for the following analyses. Great

variations of these traits were observed and the coefficient of

variation ranged from 0.14 to 0.51 (Figure 1e; Table 1). For

example, lodging index (LI) was used to quantitatively evaluate LR

(Hirano et al., 2017; Islam et al., 2007), and it varied in the

population ranging from 0.38 to 3.88 in 2014 and from 0.36 to

3.79 in 2015, respectively. The traits were mainly classified into

two groups: 6 traits associated with gravity-centre height (termed

as ‘height traits’) and 7 traits associated with culm strength

(termed as ‘culm-strength traits’) (Figure 1f). In the study, path

analysis was conducted to explore direct influences of variables

on LI (Table S1) and to draw the path diagram (Figure S1). Based

on the correlation analysis and path analysis (Figure 1f; Table S1),

LI was significantly correlated with gravity-centre height (GH,

Pearson correlation coefficient R = 0.55, P = 4.82 9 10-43; path

coefficient from GH to LI R0 = �0.10) and the breaking strength

of the basal internode (BS, Pearson correlation coefficient

R = �0.24, P = 2.12 9 10�8; path coefficient from BS to LI

R0 = �0.96). GH and BS collectively explained 65.8% of variance

of LI, suggesting that GH and BS play important roles in LR. GH

was affected by many factors, such as plant height (PH, R = 0.97,

P < 1.00 9 10�100), panicle weight (PW, R = 0.38,

P = 7.50 9 10�20); BS was largely affected by culm diameter

(CD1, R = 0.87, P < 1.00 9 10-100) and thickness (CT1,

R = 0.85, P < 1.00 9 10�100). We also found all the culm-

strength traits were significantly positively correlated with fresh

panicle weight (PW) (R = 0.69, P = 9.66 9 10�75 between BS

and PW) and were significantly negatively correlated with panicle

number (PN) (R = �0.54, P = 3.71 9 10�40 between BS and PN;

Figure 1f), indicating that trade-offs existed between culm

strength and panicle number, and there was a synergistic effect

between culm strength and panicle weight.

We conducted in-depth analysis for the three LR-related

traits: LI, GH (from the height traits) and BS (from the culm-

strength traits). The bimodal distribution of GH suggested that

there may be a major locus controlling GH; the nearly normal

distribution of LI and BS suggested they may be controlled by

multiple minor loci (Figure 2a). We observed accessions of four

types at the maturity stage, including accessions which had

large height and lodged (type I in Figure 2b), accessions which

had large height but were still upright (type II), accessions

which had small height and were upright (type III), and

accessions which had small height but lodged (type IV). Based

on the phenotypic data, we found that large BS could protect

the accessions with large GH from lodging (such as the

accession named ‘Jinzhinuo’ of type II in Figure 2b) and that

accessions with small GH still lodged because of small BS (such

as the accession named ‘IR 2071-625-1-252’ of type IV in

Figure 2b), suggesting the important role of BS in LR. The

scatter plot of GH and BS suggested a polynomial regression

relationship between them (Figure 2b and Figure S2).

Further, we found phenotypic differentiation of the three traits

among different subpopulations (P = 9.67 9 10�22 for LI,

P = 9.01 9 10�22 for GH, P = 4.31 9 10�13 for BS, Kruskal–
Wallis one-way ANOVA). Similar to Aus accessions in BS, indica-II

(IndII) accessions showed significantly lower LI levels (low risk of

lodging) due to lower GH levels; similar to Aus accessions in GH,

tropical japonica (TrJ) accessions showed significantly lower LI

levels (low risk of lodging) due to greater BS levels; and there also

exists differentiation in GH and BS between indica-I (IndI) and IndII

for indica accessions, and between temperate japonica (TeJ) and

TrJ for japonica accessions (Figure 2c). These results indicate that

LR-related genetic loci may have undergone selection.

Genome-wide association study of LR traits

Linear mixed model (LMM) was adopted to perform GWAS of the

17 lodging-related traits. After Bonferroni correction based on an

effective SNP number, genome-wide thresholds were set to

1.21 9 10�6, 1.66 9 10�6 and 3.81 9 10�6 for the whole

population, indica subpopulation and japonica subpopulation,

respectively (Guo et al., 2018). Considering the linkage disequi-

librium (LD) decay distance in rice (see Methods), adjacent SNPs

spanning less than 300 kb were defined as a single locus to

reduce the redundancy of association signals of different traits

(Chen et al., 2014; Guo et al., 2018; Wang et al., 2015). In total,

263 associations between 212 lead SNPs (corresponding to 127

loci) and 17 traits were identified in the whole population or at

least one of the two subpopulations (Table S2). Some known LR-

related genes were identified. The rice Green Revolution gene,

SD1, was identified by GH GWAS in the indica subpopulation

(PLMM = 9.05 9 10�9 for the lead SNP sf0138431058) (Fig-

ure 3a). Another LR-related gene controlling tiller angle, TAC1,

was identified by tiller angle (TA) GWAS in the whole population
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(PLMM = 2.96 9 10�11 for the lead SNP sf0920735688) (Fig-

ure 3b). Besides, we identified many unreported loci with strong

and clear association signals for LR traits (Figure 3c-f; Table S2).

For example, a lead SNP sf0722312558 was significantly associ-

ated with BS (PLMM = 4.17 9 10�7), culm outer diameter of the

1st internode cross-section (CD1, PLMM = 7.03 9 10�9), the 2nd

internode (CD2, PLMM = 3.26 9 10-8), and the 5-cm distance

from the plant base (CD5, PLMM = 1.48 9 10�8), and shoot dry

weight of culms (SW, PLMM = 4.60 9 10�7) in the indica

subpopulation. Moreover, we explored the SD1 and TAC1

haplotypes. Four haplotypes of SD1 were discovered (Figure 3g).

Compared with H1 (haplotype of large GH), H4 (haplotype of

small height) corresponds to the null sd1 allele with a 383-bp

deletion, resulting in a frame shift and a premature stop codon

(Monna et al., 2002; Sasaki et al., 2002); H3 (haplotype of

moderate height) corresponds to the weak sd1 allele with two

known functional non-synonymous SNPs, resulting in amino acid

changes (glycine ? glutamic acid at residue 100,

arginine ? glutamine at residue 340) (Asano et al., 2011); no

known functional variants were discovered in H2, which showed

similar height with H1. Extremely low GA levels decrease not only

plant height (thus enhancing LR), but also grain yield (Hirano

et al., 2017), so it is necessary to balance the trade-off by utilizing

the SD1 haplotype with moderate effect size, such as H3 in our

study. For TAC1, a reported functional SNP has been discovered

in 30-splicing site of the fourth intron, of which A ? G results in

decreased mRNA level (Yu et al., 2007). H1 and H2 correspond to

allele A and G, respectively. H1 with greater TA comprised most

of the indica accessions and all the Aus associations; H2 with less

TA comprised almost all the japonica accessions (Figure 3h). So

(a)

(e)
(f)

(b) (c) (d)

Figure 1 Phenotyping of lodging resistance (LR) related traits in the association mapping population. (a) Plant height measurement (the longest distance

from the plant base to the tip of the highest leaf or panicle (whichever is longer)). (b) Culm gravity-centre height measurement (GH, the distance from culm

base to culm gravity-centre). (c) Measurement of the 1st lowermost internode length from the plant base (IL1), the 2nd internode length (IL2), the panicle

length (PL) and the basal culm breaking strength (BS). (d) Measurement of the culm outer diameter (CD) and culm thickness (CT). (e) Heatmap showing the

values of 17 LR-related traits across 524 accessions. The range of values for each trait was transformed to 0-1 by linear normalization. (f) Correlation matrix

diagram showing the correlation coefficients among the 17 traits. The circle with greater diameter and greater colour intensity represents a greater

absolute correlation coefficient value. These traits are mainly classified into two groups–height traits and culm-strength traits.
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TAC1 may contribute to the divergence between the japonica

subpopulation and the indica and Aus subpopulations. Based on

the GWAS results, we constructed a comprehensive association

network. Of the 127 genetic loci, each locus was associated with

1-7 traits (Figure 3i). For example, the hub locus 84 was

associated with BS, CD1, CD2, CD5, CT1, CT5 and SW

(Figure 3j). In total, 73 loci and 34 loci were associated with

height and culm traits, respectively, and nine loci were detected

for both the height and culm traits. For the culm traits, of the ten

loci associated with BS, six loci were also identified by culm

diameter and thickness, suggesting that morphological culm traits

are highly related to culm physical strength (Table S2). Further,

we re-run GWAS in each environment separately (Table S2;

Figure S3). By comparing the GWAS results of two environments,

we revealed 180 stable associations between 94 loci and 17 traits

(P values < 1.00 9 10�4 in both years), suggesting stable effects

of these loci in different environments. For example, the SNP

sf0717021526 was associated with TA in both years with the P

value 4.27 9 10�8 in 2014 and 5.10 9 10�9 in 2015. Besides,

we also revealed 66 loci showing interactions with environment.

For example, the SNP sf0431592816 was associated with CT2

with the P value 9.49 9 10�3 in 2014 and 2.70 9 10�8 in 2015.

Genetic relationship between culm and yield-related
traits

We observed that the culm-strength traits and yield-related traits

were significantly correlated (Figure 4a). To further investigate

the genetic relationship between them, we conducted a GWAS

of culm traits using panicle weight (PW) or panicle number (PN) as

a covariate. We identified a total of 92 loci which were

significantly associated with culm-strength traits, including 34

loci which were detected in GWAS without a covariate and 58

newly identified loci which were detected in GWAS with PW or

PN as a covariate (Tables S3 and S4). Of the 92 loci, when adding

PW/PN as a covariate, 63 loci showed changed significance with |
Δ(�log10PLMM)| ≧ 2 (Figure 4b). Of the 63 loci, when adding PW

as a covariate, 32 loci and 28 loci showed decreased and

increased significance, respectively; when adding PN as a

Table 1 Detailed information of 17 lodging resistance (LR) related traits

Trait Full names of traits Year Minimum Maximum Mean SD CV N Corr H2

LI Lodging index 2014 0.38 3.88 1.20 0.53 0.44 522 0.66 0.79

2015 0.36 3.79 1.15 0.45 0.39 522

PH Plant height(cm) 2014 63.13 215.11 120.96 31.90 0.26 522 0.92 0.95

2015 69.93 210.03 128.32 29.48 0.23 522

GH Gravity-centre height(cm) 2014 30.21 94.48 52.69 12.06 0.23 522 0.87 0.93

2015 30.63 84.75 55.36 11.23 0.20 522

IL1 Length of the 1st internode from plant base (cm) 2014 2.54 14.18 6.13 1.87 0.30 522 0.46 0.63

2015 2.47 13.55 5.84 2.00 0.34 522

IL2 Length of the 2nd internode from plant base (cm) 2014 6.05 32.00 14.46 5.20 0.36 522 0.79 0.88

2015 4.48 26.75 13.00 4.58 0.35 522

PL Panicle length(cm) 2014 14.31 35.71 24.32 3.53 0.15 522 0.79 0.88

2015 14.53 37.40 26.60 3.72 0.14 521

PW Panicle weight(g) 2014 1.79 11.01 4.91 1.62 0.33 522 0.69 0.82

2015 1.20 12.87 5.34 1.74 0.33 522

BS Breaking strength of 10-cm basal culm (g) 2014 70.83 2758.33 875.35 447.42 0.51 522 0.74 0.85

2015 87.50 3400.00 1171.49 522.59 0.45 522

CD5 Culm outer diameter of cross-section of 5-cm distance from plant base

(mm)

2014 3.45 9.07 6.13 1.10 0.18 522 0.85 0.92

2015 3.17 9.87 6.54 1.03 0.16 522

CT5 Culm thickness of the cross-section of 5-cm distance from the plant base

(mm)

2014 0.50 1.27 0.84 0.14 0.17 522 0.75 0.86

2015 0.53 1.48 0.91 0.16 0.17 522

CD1 Culm outer diameter of cross-section of the 1st internode from plant base

(mm)

2014 3.58 9.45 6.43 1.15 0.18 522 0.83 0.90

2015 3.31 9.97 6.75 1.06 0.16 522

CT1 Culm thickness of cross-section of the 1st internode from plant base (mm) 2014 0.54 1.36 0.91 0.15 0.17 522 0.71 0.83

2015 0.52 1.58 0.98 0.17 0.17 522

CD2 Culm outer diameter of cross-section of the 2nd internode from plant

base (mm)

2014 3.03 9.21 5.72 1.06 0.19 522 0.84 0.91

2015 2.92 9.42 6.24 1.01 0.16 522

CT2 Culm thickness of cross-section of the 2nd internode from plant base

(mm)

2014 0.41 1.12 0.68 0.12 0.17 522 0.71 0.83

2015 0.42 1.25 0.76 0.13 0.17 522

PN Panicle number 2014 7.50 45.25 17.13 4.79 0.28 522 0.74 0.85

2015 7.00 49.00 17.64 4.78 0.27 522

SW Shoot dry weight of three culms harvested from one plant (g) 2014 6.30 56.94 23.77 8.46 0.36 477 0.82 0.90

2015 5.98 75.33 27.92 9.09 0.33 522

TA Tiller angle(°) 2014 13.00 45.00 28.07 4.72 0.17 506 0.56 0.72

2015 15.84 47.50 29.65 5.41 0.18 424

Minimum, Maximum, Mean, SD and CV indicate the minimum value, maximum value, mean value, standard deviation and coefficient of variation of a trait,

respectively.

N, Corr and H2 indicate the number of accessions, correlation coefficient of two-year phenotypic data and broad-sense heritability, respectively.
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Figure 2 Three representative LR-related traits-lodging index (LI), culm gravity-centre height (GH) and breaking strength of the basal culm (BS). (a)

Histograms showing phenotypic distribution of LI, GH and BS across 524 rice accessions. (b) Images of four representative accessions at the maturity stages

(left panel) and a scatter plot showing GH and BS values for all the accessions (right panel), of which the red arrows point to the four accessions shown in

the left panel. Accessions of type I, II, III and IV represent accessions which had large height and lodged, accessions which had large height but were still

upright, accessions which had small height and were upright, and accessions which had small height but lodged, respectively. The names of representative

accessions are shown at the bottom of the corresponding images. (c) Violin plots showing phenotypic distributions of different subpopulations for LI, GH

and BS, respectively. P values are calculated using Kruskal–Wallis one-way ANOVA. The different letters indicate significant difference at the P < 0.05 level.

[Correction added on 06 January 2021, after first online publication: an incorrect scale value was used in x-axis of BS of Figure 2(a), and this has been

corrected.]
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covariate, 15 loci and 7 loci showed decreased and increased

significance, respectively (Figure 4b-c).

On one hand, the decreased significance by adding PW/PN as a

covariate in the GWAS was attributed to the pleiotropic

relationship between culm strength and PW/PN. The effects of

these loci were synergistic between culm traits and PW, but were

the opposite between culm traits and PN (Table S4). For example,

when adding PW/PN as a covariate in GWAS of CD1, the

association signal on chromosome 7 was attenuated due to the

locus’s pleiotropic effect on CD1 and PW/PN (Figure 4d). And the

high-CD1 allele of the locus could enhance culm strength and PW

but reduce PN. Further, we identified 19 loci which had

synergistic effects on culm strength and PW without negative

effect on PN. These loci may be very valuable for LR and high-yield

breeding.

On the other hand, when adding PW/PN as a covariate in the

GWAS, the increased significance can indicate the improvement

of statistical power due to reduced residual variance by adjusting

for heritable covariate (Mefford and Witte, 2012). While only 34

loci were detected in the GWAS of culm-strength traits without a

covariate, 58 additional loci were identified when using PW or PN

as a covariate (Table S4). For CD1 in the indica subpopulation

(Figure 4d), for example, there is no significant association signal

on chromosome 3, but when adding PW as a covariate, a new

strong association signal appeared (P value of the lead SNP

sf0317021899 was 8.83 9 10�9 when using PW as a covariate)

(Figure 4d). These results indicate that adding heritable covariate

in GWAS can provide a more complete landscape of genetic

basis. To validate the GWAS results of culm-strength traits with

adding PW/PN as a covariate, we conducted GWAS of PW and PN

by adding culm-strength trait as a covariate. The P value changes

of loci, which were caused by adding a covariate in the GWAS,

were highly correlated between the bi-directional covariate-

added GWAS (Pearson correlation coefficient R = 0.99,

P < 0.001; Table S5). To reduce false-negative associations

brought by the LMM due to overcompensation for relatedness,

we also adopted a linear regression model (LRM), which took

population structure into consideration, to conduct GWAS of

culm-strength traits with and without PW/PN as a covariate

(Table S6). As a result, we identified a total of 400 loci linking

culm-strength traits with PW/PN, which could cover true loci that

were masked by LMM.

It is of significance for LR breeding to explore beneficial alleles

for dual-purposes: enhanced culm strength and high yield. We

found SNP sf0729627489 was significantly associated with BS

when using PW as a covariate (PLRM = 1.70 9 10�11), but was

not associated without a covariate (PLRM = 8.78 9 10�4). The

lead SNP was located in a gene and caused amino acid change

(TAC ? CAC, Lyr ? His) (Figure 5a; Table S7). The major and

minor allele of the SNP was T and C, respectively, and the minor

allele frequency (MAF) was 0.06. Further, we found that this gene

was allelic to OsPRR37 (LOC_Os07g49460), which encodes

pseudo-response regulator 7-like protein and enhances yield via

increasing PW (Yan et al., 2013; Zhang et al., 2019). To verify the

effect of allelic variation at this locus on culm strength, a near-

isogenic line NILTQ harbouring high-yielding allele was obtained.

We observed the culm cross-section of NILTQ and its recurrent

parent Zhenshan 97 (Oryza sativa L. ssp. indica) at the whole

plant level at a high spatial resolution using computed tomog-

raphy (Figure 5b). Significant differences in BS (P = 3.20 9 10�3,

t-test), CT1 (P = 7.10 9 10�3), CT2 (P = 2.28 9 10�2), CT5

(P = 2.01 9 10�3), CD2 (P = 2.54 9 10�2) and CD5

(P = 1.63 9 10�3) between the NILTQ and Zhenshan 97 were

found (Figure 5c), demonstrating that the allele from the donor

parent (Teqing) enhances both culm strength and yield, which is

valuable for post-Green-Revolution breeding. To explore possible

causal variants, we compared the OsPRR37 sequences from the

two parents. Compared to high-culm-strength allele (reference

allele) harboured by the donor parent (Teqing), an 8-bp deletion

(GAACGTTG) in the seventh exon of OsPRR37 was found for the

low-culm-strength allele harboured by the recurrent parent

(Zhenshan 97), which causes frame shift and thus premature

stop codon, producing a truncated protein without CCT domain.

Moreover, the genotypes of the 8-bp INDEL were obtained by

variant calling from whole-genome re-sequencing data

(Table S8). The INDEL was significantly associated with BS

(PLRM = 5.63 9 10�7), and when adding heading date as a

covariate, the association signal was largely attenuated

(PLRM = 6.26 9 10�2; Table S9). Considering that the 8-bp INDEL

is the causal variant of OsPRR37 in controlling heading date (Yan

et al., 2013), we proposed that the 8-bp INDEL of OsPRR37 may

have a pleiotropic effect on culm strength and heading date.

Genetic basis underlying LR subpopulation
differentiation

Subpopulation differentiation in LR was obviously observed

(Figure 2c). To reveal its genetic basis, we firstly performed the

genome-wide population differentiation analysis (FST) between

the IndI and IndII subpopulations (IndI-IndII), between TeJ and TrJ

(TeJ-TrJ), between Aus and IndII (Aus-IndII), and between Aus and

Figure 3 Genome-wide association study of LR-related traits. (a) Manhattan plot (left) and quantile–quantile plot (right) for GH in the indica

subpopulation. (b) Manhattan plot (left) and quantile–quantile plot (right) for tiller angle (TA) in the whole population. (c) Manhattan plot (left) and

quantile–quantile plot (right) for BS in the indica subpopulation. (d) Manhattan plot (left) and quantile–quantile plot (right) for culm outer diameter at the

cross-section at 5-cm distance from the plant base (CD5) in the indica subpopulation. (e) Manhattan plot (left) and quantile–quantile plot (right) for the

lodging index (LI) in the whole population. (f) Manhattan plot (left) and quantile–quantile plot (right) for the culm outer diameter of the 2nd internode

(CD2) in the whole population. (g) For each SD1 haplotype, box plot (left) showing the GH phenotypic distribution and histogram (right) showing the

number of accessions from different subpopulations. (h) For each TAC1 haplotype, box plot (left) showing the TA phenotypic distribution and histogram

(right) showing the number of accessions from different subpopulations. (i) Number of associated traits for each locus in the association network. (j) Venn

plot showing the number of co-localized loci among three traits—BS, culm thickness of the cross-section of the 1st internode from the plant base (CT1),

and culm thickness of the cross-section at 5-cm distance from the plant base (CT5). In the Manhattan plot, -log10P values from the genome-wide

association study using linear mixed model are plotted against the position of SNPs, and the horizontal grey dashed line indicates the genome-wide

threshold; the name of a priori gene or lead SNP is shown above the corresponding association signal. In quantile–quantile plot, -log10-transformed

observed P values are plotted against -log10-transformed expected P values. In the box plot, P values are calculated based on Kruskal–Wallis one-way

ANOVA for SD1 (g) and t-test for TAC1 (h); different letters indicate a significant difference of the phenotypic values between haplotypes (P < 0.05).
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TrJ (Aus-TrJ). The greatly divergent regions (top 5% FST)

(FST ≥ 0.2254, 0.5019, 0.4724, 0.6718, for IndI-IndII, TeJ-TrJ,

Aus-IndII and Aus-TrJ, respectively) were identified (Table S10). In

this study, 11 GWAS loci were co-localized with the greatly

divergent regions, and the allele frequency difference at the lead

SNP site between the corresponding subpopulations was more

than 0.40 (Table S11). For example, significant differences of LI

and CD5 were observed for IndI-IndII (P = 1.97 9 10�6, t-test)

and TeJ-TrJ (P = 1.13 9 10�16), respectively. The lead SNP

sf0142424010 was significantly associated with LI and localized

in an IndI-IndII greatly divergent region (the SNP major alleles in

IndI and IndII were T and C respectively), and the SNP allele

frequency difference between the two subpopulations was 0.54

(Figure 6a). The lead SNP sf0129912226 was significantly asso-

ciated with CD5, was located in a TeJ-TrJ greatly divergent region

(the major allele in TeJ and TrJ was A and C, respectively), and the

allele frequency difference between the two subpopulations was

0.43 (Figure 6b). IndI and IndII are two putative heterotic groups

and have undergone independent breeding efforts (Xie et al.,

2015), and TeJ and TrJ accessions diverge due to geo-environ-

mental adaptation (Civan et al., 2015). We speculate that the LR-

related loci may have undergone divergent selection during local

breeding or geographic adaptation.

Linkage analysis in bi-parental mapping population

To further verify the GWAS results, we phenotyped LR in a bi-

parental mapping population grown in the field. The population

was derived from a cross between the japonica variety IRAT109

and the indica variety Zhenshan 97, and was comprised of 193

recombinant inbred lines. We found that nine QTLs identified by

linkage analysis were overlapped with GWAS loci, which were

distributed on chromosomes 1, 4, 7, 8 and 11 (Table S12). For

example, a strong QTL on chromosome 1 (peak at 45.21 cM,

logarithm of odds [LOD] = 8.68) controlling GH, was co-localized

with the GWAS locus 20 associated with GH (lead SNP

sf0138431058, PLMM = 9.05 9 10-9) (Figure 6c). The QTL also

controlled plant height (PH) in both linkage analysis and the

GWAS. Another strong QTL on chromosome 4 (peak at

26.41 cM, LOD = 6.80) controlling BS, was co-localized with

the GWAS locus 54 associated with BS (lead SNP sf04315237458,

PLMM = 2.65 9 10�7) (Figure 6d). The QTL also controlled CD1,

CD2 and CD5, which was confirmed by both linkage analyses and

GWAS. For co-localized QTLs, the lengths of candidate regions of

GWAS were smaller than those of linkage analysis (Figure 6c-d;

Table S12), suggesting that the mapping resolution of GWAS is

greater than that of linkage analysis in the study.

Discussion

In this study, we phenotyped a large rice natural population for

17 LR-related traits across two years, which were comprised of

height-, culm-strength- and yield-related traits. Great heritability

and great phenotypic variations in LR ensure the dissection of

genetic basis and exploration of natural genetic variations.

Regarding the relevance of LR-related traits under pot and field

growing conditions, we performed a field trial of LR-related traits

for 96 accessions from the natural population, of which

agronomic practices were the same as the RIL population in the

field mentioned above. High correlation coefficients of LR-related

traits, such as for BS (R = 0.75, P < 0.001) under pot and field

growing conditions were observed (Figure S4), suggesting the

genetic loci under pot-growing condition may be useful for LR

breeding in the field. A number of genetic loci associated with LR

were identified by GWAS. For each locus, multiple alleles of

varying effect sizes can be identified from germplasm collections.

For example, the ‘Green Revolution’ gene SD1 was significantly

associated with height traits, and four major haplotypes with

different effect sizes were identified. Lodging is a well-known

problem of tall varieties harbouring a dominant SD1 allele, and

dwarf varieties harbouring an sd1 allele which largely disrupts GA

synthesis would have higher LR level but lower grain yield due to

smaller biomass. Therefore, exploration of other sd1 alleles which

only weaken GA synthesis may be an effective strategy to balance

the negative trade-off. To validate our GWAS results, linkage

analysis was carried out using a RIL population phenotyped in the

field. Although the RIL population was phenotyped in one season,

a large proportion of the identified QTLs overlapped with GWAS

loci, which further supported the reliability of the genetic loci of

LR identified by GWAS. Significant differences in LR across

subpopulations were observed. Through GWAS and genome-

wide FST analysis, we revealed genetic loci which could underlie

the subpopulation differentiation in LR (Huang et al., 2012; Xie

et al., 2015).

Most genetic studies on LR only focused on genetic loci

associated with LR itself and neglected the relationship between

LR and yield in rice. In crop breeding, the relationship between

traits should be considered to enhance desirable correlated traits

and simultaneously to reduce undesirable trade-offs (Chen and

Lubberstedt, 2010). A published study on panicle traits in rice

found that some association signals of panicle traits were

attenuated when adding flowering time as a covariate in GWAS,

which was attributed to the relationship between flowering time

and panicle traits (Crowell et al., 2016). In our study, considering

positive correlation between culm strength and PW and negative

trade-off between culm strength and PN based on the phenotypic

data, we aimed to identify genetic loci with pleiotropic effects on

culm strength and yield by adding PW/PN as a covariate in GWAS

of culm-strength traits, which is of significance to breed for

lodging-resistant and high-yielding rice cultivars. Association

signals of 32 loci associated with culm traits were attenuated

when adding PW as a covariate and these loci had synergistic

effects on culm strength and PW, suggesting that favourable

alleles for these loci could be used to enhance both culm strength

and PW. Of the 32 loci, however, 13 loci had negative effects on

Figure 4 Genetic relationships between culm strength and yield-related traits. (a) Phenotypic distribution and correlation of BS, PW and PN. The Pearson

correlation coefficients and P values are shown. (b) Venn diagrams showing the number of genetic loci linking culm strength and yield-related traits. The

pink circle represents all the loci significantly associated with culm-strength traits. The purple and green circles represent loci of changed significance (|Δ

(�log10P)| ≧ 2, linear mixed model) when adding PN and PW as a covariate, respectively. The left and right panel corresponds to loci with decreased

significance (Δ(�log10P) ≦ �2) and increased significance (Δ(�log10P) ≧ 2) in GWAS of culm-strength traits when adding a covariate, respectively. (c)

Chromosome distribution of SNPs of |Δ(�log10P)| ≧ 2 with adding PW (left panel) and PN (right panel) as a covariate. The colour of the vertical line indicates

SNP density in a 1 Mb window. (d) GWAS of CD1 using linear mixed model in the indica subpopulation without a covariate (top panel), with adding PW as

a covariate (middle panel), and with adding PN as a covariate (bottom panel).
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PN. So the remaining 19 loci had synergistic effects on culm

strength and PW but without negative effects on PN, which are

very useful for the dual-purpose breeding of enhanced LR and

high yield. As a proof, it was demonstrated that an allele from the

rice variety Teqing could enhance both culm strength and yield

using a NIL, though the candidate gene OsPRR37 remains to be

further confirmed for its function in LR. Regarding the loci

associated with culm strength but without effects on yield, the

favourable alleles of the loci can be introgressed to high-yielding

rice cultivars or pyramiding of the favourable alleles and high-

yielding alleles can be employed.

On the other hand, new association signals could be detected

when adding PW/PN as a covariate, which resulted in 58

additional loci controlling culm-strength traits. Adjusting for

heritable covariates in GWAS can reduce residual variance of a

trait of interest and thus improve statistical power (Mefford and

Witte, 2012), which provides a more complete genetic landscape.

Though it was not the theme of our study, we performed GWAS

of 17 LR-related traits by adding heading date as a covariate to

understand the relationship between LR-related traits and phe-

nology. As a result, we found 42 loci with changed significance of

|Δ(-log10PLMM)| ≧2. Of the 42 loci, while 33 loci linked height traits

with heading date, only nine loci linked culm-strength traits with

heading date (Table S13). Considering the most recently pub-

lished GWAS studies in plants were performed without adjusting

for heritable covariate, our study provides insights into the

important role of heritable covariate in GWAS.

Fast and accurate quantification of LR is critical for genetic and

breeding studies. To visualize the culm cross-section structure of

the NIL and its recurrent parent in-situ at the whole plant level,

we used high-resolution computed tomography instead of a

traditional destructive approach (tissue sampling, staining and

observation by digital microscope). In the study, it takes 0.6 s to

acquire one CT image, and 380 X-ray projected images of

different orientations for a plant can be obtained within 4 min. In

the future, with an automatic conveyer for transport, the images

of 300 plants will be acquired in one day (20 running hours per

day), which is estimated based on the current efficiency of image

acquisition and the required number of images for a plant. After

reconstructing and segmenting all the images by a series of

algorithm, we shall extract a number of culm traits of interest for

a rice mapping population. New phenotyping technologies based

on optoelectronics and imaging, with non-destructive and high-

throughput characteristics, will facilitate crop genetic and

genomic research and breeding.

Experimental procedures

Plant material and genotype data

The rice natural population used in the study was comprised of

524 accessions (Table S14), which has been described in previous

reports (Chen et al., 2014; Xie et al., 2015) and is available at

National Key Laboratory of Crop Genetic Improvement,

Huazhong Agricultural University, Wuhan, China. A total of

188 637 evenly distributed SNPs were selected and the popula-

tion structure was inferred using ADMIXTURE based on these

SNPs. For the SNPs’ selection, the genome was divided into

100 000 regions (~3.8 kb in length for each region), and then,

SNPs with minor allele frequencies (MAF) ≥0.01 were randomly

selected in each region. The number of ancient cluster K was set

from two to seven to infer population structure. The possible

suitable K value was estimated using ADMIXTURE (Alexander and

Lange, 2011) (Figure S5) and STRUCTURE coupled with Struc-

tureHarvester (http://taylor0.biology.ucla.edu/struct_harvest/ or

https://github.com/dentearl/structure-Harvester) (Evanno et al.,

2005) (Figure S6), respectively. When K = 2, accessions were

divided into indica and japonica groups; when K = 3, the aus

cluster appeared within the indica group; when K = 4, the indica

were further divided into two sub groups (IndI and IndII), which

were two putative heterotic groups (Xie et al., 2015); when

K = 5, japonica were divided into two sub groups, corresponding

to tropical japonica and temperate japonica; when K = 6, an

independent group (VI) emerged, which is an intermediate group

between indica and japonica; only 14 accessions belonged to VI

and nine of them harboured mutated fragrance gene fgr,

suggesting that VI corresponds to Aromatic group (Garris et al.,

2005; Glaszmann, 1987); when K = 7, a new group appeared

within the japonica group but the group was not a known rice

subpopulation and there was no a priori knowledge about it.

K = 6 was the minimum value to cover all previously known

groups (tropical japonica, temperate japonica, IndI, IndII, Aus and

Aromatic). Considering the clear biological interpretation of K

value (Wang et al., 2018), the number of ancient cluster K was set

to six in the study. Each accession was classified based on the

maximum subpopulation component value. Accessions with the

difference between maximum and secondary subpopulation

component value less than 0.4, were classified as intermediate.

As a result, the population was mainly classified into five major

subpopulations: Aus (46 accessions), IndI (indica-I, 98 accessions),

IndII (indica-II, 104 accessions), TeJ (temperate japonica, 89

accessions) and TrJ (tropical japonica, 44 accessions). IndI and

IndII are two putative heterotic groups caused by independent

breeding efforts, and have South China and International Rice

Research Institute (IRRI) origins, respectively (Xie et al., 2015). TeJ

and TrJ are two divergent japonica versions due to adaptation to

distinct climate conditions; Aus was domesticated independently

of indica and japonica, and has its distinct geographic origins

(Civan et al., 2015).

The whole genomes of all the accessions have been re-

sequenced using an Illumina Hiseq 2000 platform. Approximately

1 Gb high-quality sequences were obtained for each accession,

with depth >2.5 9 per genome. Paired-end 90-bp reads were

aligned to the rice reference genome Nipponbare (Oryza sativa L.

ssp. japonica) MSU version 6.1 using software BWA (Li and

Durbin, 2009). SNP calling was conducted using SAMtools and

BCFtools, with parameters of -C50 -Q10 -q40 for the mpileup

Figure 5 Associations between culm strength and the candidate gene OsPRR37. (a) Local Manhattan plot showing the associations between BS and SNPs

across the gene body and the 2-kb upstream region for the candidate gene OsPRR37 (LOC_Os07g49460) without a covariate (black dots), and with adding

PW as a covariate (red triangles) using a linear regression model taking the population structure into account. For gene structure, dotted line, solid lines,

white rectangles, black rectangles and black arrow indicate a 2-kb promoter region, introns, UTRs, exons and transcription direction, respectively. (b) Culm

cross-sections of NILTQ (near-isogenic line constructed by consecutive backcrossing with Zhenshan 97 as a recurrent parent and TQ as a donor) and its

recurrent parent Zhenshan 97, observed by high-resolution computed tomography. Scale bars, 10 mm. (c) Comparison of phenotypic values of BS, CT1,

CT2, CT5, CD2 and CD5 between the NILTQ and Zhenshan 97. P values from the t-test are shown.
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Figure 6 GWAS loci co-localized with greatly divergent regions identified by FST and QTLs identified by linkage analyses. (a) A greatly divergent region

between the IndI and IndII subpopulations identified by FST (first row) covers a GWAS locus associated with LI (second row). (b) A greatly divergent region

between the TeJ and TrJ subpopulations identified by FST (first row) covers a GWAS locus associated with CD5 (second row). (c) A QTL on chromosome 1

controlling GH is identified by both linkage analysis (first row) and association analysis (second row). (d) A QTL on chromosome 4 controlling BS is identified

by both linkage analysis (first row) and association analysis (second row).
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subcommand of SAMtools (Li et al., 2009). Genotype imputation

was performed based on k nearest neighbour algorithm (Roberts

et al., 2007). SNPs were annotated using SnpEff (Cingolani et al.,

2012). All the sequencing data could be downloaded from NCBI

Sequence Read Archive under accession number PRJNA171289.

The detailed genotype data (BCF format) can be downloaded

from the RiceVarMap database (http://ricevarmap.ncpgr.cn/v1)

(Zhao et al., 2015).

Phenotyping

For LR phenotyping of the 524 rice accessions, clean seeds were

soaked in water for 1 d and then incubated for 1 d. The pre-

germinated seeds were sown in the nurseries, and four healthy

and uniform 20-day-old seedlings for each accession were

transplanted to pots at 2 cm depth. Each pot was filled with

5 kg soil, which was air-dried, pulverized and well-mixed with

organic fertilizer in advance. Irrigation was applied to each pot to

keep soil saturated with water for one week before seedlings

transplanting and 150 mL nutrient resolution (5.4 g urea: 3.2 g

potassium dihydrogen phosphate: 2.2 g potassium chlorate/L)

was applied to each pot one day before transplanting. After

transplanting, irrigation was applied to keep standing water of

3–5 cm depth in pots, and the irrigation frequency depended on

weather, environmental temperature and transpiration of plants.

Topdressing 150 mL nutrient resolution (2.7 g urea: 1.6 g

potassium dihydrogen phosphate: 1.1 g potassium chlorate/L)

to each pot when most accessions entered active tillering stage

and panicle initiation stage, respectively. Weeding was per-

formed manually, and pests were controlled by spraying pesti-

cides, and diseases were intensively controlled by spraying

chemicals. The pot experiments were conducted outdoors and

plants were grown in the natural rice-growing season at the

experimental station in Huazhong Agricultural University,

Wuhan, Hubei Province, China (30°280N 114°200E). The exper-

iment followed a randomized complete block design with four

replications and each replication contained one plant for each

accession. For each accession, the heading process was traced

and recorded from the start of heading to the date on which

panicle emergence was completed. The date on which 80% of

the total panicles were emerged from the flag leaf sheath, was

defined as the full heading date (Table S14). The phenotyping

was started at 25 days after the full heading date for each

accession.

Plant height (the longest length from the plant base to the top

of the highest leaf or panicle, whichever is longer), panicle

number and tiller angle were measured. A protractor was used to

measure the angle between the most distant tillers bearing

panicles on the two sides of the culm base, and half of the angle

was treated as the tiller angle of an individual plant (Dong et al.,

2016). For each accession, a total of 12 culms with leaf, leaf

sheath and panicle (three largest culms were harvested from

each plant and four plants were harvested) were collected in

2014; a total of six culms with leaf, leaf sheath and panicle (three

largest culms were harvested from each plant and two plants

were harvested) were collected in 2015. For each culm, the

gravity-centre height (the distance from culm base to gravity-

centre) was measured using a ruler, and the balance fulcrum of a

horizontally put culm with panicle, leaf and leaf sheath was

marked as the gravity-centre. The internodes were counted from

culm base upward (Pan et al., 2019; Zhong et al., 2020). The first

internode length (IL1), the second internode length (IL2) and the

panicle length (PL) were measured using a ruler (Figure 1a-c).

Then each culm was cut to measure the panicle fresh weight

(PW), breaking strength (BS) of a 10-cm basal culm with leaf

sheath using DIK-7401 (Japan) (Figure 1c). Culm outer diameter

(CD) and culm thickness (CT) of a cross-section of the middle

point of the 1st internode, 2nd internode, and 10-cm basal culm

were measured using a caliper (Digital Caliper 0–150 mm,

Guanglu111-101B, China) after removing leaf sheath (Fig-

ure 1d). Because the culm cross-section is not a standard circle,

the outer diameter was calculated as the mean of the major axis

length and minor axis length. Referring to a previous study

(Ookawa & Ishihara, 1992), the lodging index (LI) was calculated

as LI = bending moment/ (BS 9 the distance between fulcra

(9 cm in this study) 9 1/4), of which the bending moment was

length 9 fresh weight from the basal culm breaking point

(where BS was measured) to the panicle top. Then the culm

was dried in an oven at 105 °C for 30 min and at 80 °C for 72 h

to measure the shoot dry weight for three culms harvested from

one plant (SW). The trait mean values of culms for each accession

(12 culms in 2014 and six culms in 2015 for each accession) were

calculated. To reduce the effect of environment on phenotypic

data, best linear unbiased prediction (BLUP) value for each trait

was calculated based on the phenotypic data across two years

using R package ‘lme4’ (Fang et al., 2017; Liu et al., 2020; Wang

et al., 2019).

To visualize the culm cross-section structure in-situ at the

whole plant level for NILTQ and its recurrent parent Zhenshan

97, high-resolution computed tomography was used to hori-

zontally scan the culm structure (Wu et al., 2019). The micro-CT

imaging facility used in the study includes an X-ray source

(Nova600, Oxford Instruments, UK), an X-ray source chiller

(Nova600, Oxford Instruments, UK), an X-ray flat panel detector

(PaxScan 2520DX, Varian Medical Systems, Inc). The image

acquisition and processing pipeline was developed using Lab-

VIEW 8.6 (National Instruments, Inc.). A total of 380 X-ray

projected images of different orientations for a plant were

obtained within 4 min (0.6 s per image). Based on the images, a

filtered back-projection (FBP) algorithm was adopted to acquire

reconstructed transverse section images of rice culms. After

image segmentation, the culm cross-section structure of a plant

was shown.

Phenotypic data analysis

We calculated the trait mean values of all the harvested culms for

each accession in each year and then calculated the broad-sense

heritability (H2) as: H2 = VG/(VG + Ve/N), where VG and Ve

represented genetic and residual variance, respectively; N was

the number of years (N = 2 in this study) (Liu et al., 2020). The VG

and Ve were estimated by treating genotype and environment as

random effects in the mixed linear model.

A heatmap was drawn using HemI software (Deng et al., 2014)

after linear normalization of the phenotypic data was conducted.

Linear normalization: y = (x-min)/(max–min) in which x, y, max

and min indicated raw phenotypic data, normalized data,

maximum and minimum, respectively. Pearson correlation anal-

ysis, independent-sample t-test and Kruskal–Wallis one-way

ANOVA were conducted using IBM SPSS version 19 (IBM,

Armonk). Path analysis was conducted to predict the direct and

indirect effects of traits on lodging index (LI) using R packages

‘agricolae’. Polynomial regression was conducted using the poly

function in R. The correlation coefficient matrix diagram and

violin plot of phenotypic data across subpopulations were drawn

using R packages of ‘corrplot’ and ‘ggplot2’.
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Genome-wide association study

Either SNPs with the minor allele frequency (MAF) less than 0.05

or SNPs with the minor allele count (defined as number of

accessions harbouring the minor allele) less than 6 were removed

from association analysis. A total of 4 358 600, 2 863 169 and

1 959 460 SNPs remained for GWAS in the whole, indica, and

japonica populations, respectively. With the factored spectrally

transformed linear mixed models software (FsST-LMM) (Lippert

et al., 2011), GWAS was performed using a linear mixed model

considering the kinship estimated by genetic similarities as

random effect. Based on an effective SNP number (Ne) calculated

by a GEC tool (Li et al., 2012), the genome-wide thresholds were

set to 1.21 9 10-6, 1.66 9 10-6, 3.81 9 10-6 in the whole,

indica, and japonica populations, respectively.

LD decay varies among different populations, different chro-

mosomes, and different genomic regions in the same chromo-

some, so for a certain locus, the resolution is determined by local

LD decay level. In the study, independent lead SNPs were

determined by removing redundant SNPs using ‘—clump’ func-

tion of Plink, and candidate regions of association signals were

determined based on local LD level using ‘--clump-range’

function of Plink (Purcell et al., 2007). However, for convenience

of presentation and summary of GWAS results, a locus was

usually defined as a chromosomal region at which adjacent pairs

of associated SNPs are less than a certain physical distance

without considering varying LD levels (Yang et al., 2012). The

median physical distance when r2 decay to 0.2 was approxi-

mately 150 kb (167 kb, 93 kb, 171 kb in the whole population,

indica subpopulation and japonica subpopulation, respectively),

which is in agreement with previous reports about LD in rice

(Huang et al., 2010; Xie et al., 2015). Thus association signals

could appear within 150 kb upstream or 150 kb downstream of

the causative variant/gene, so we chose 300-kb distance as the

range for identifying overlapping marker-trait association signals,

which is the same with previous reports of the same mapping

population (Chen et al., 2014; Guo et al., 2018; Wang et al.,

2015). An association network based on significant associations

between loci and LR-related traits was constructed (Guo et al.,

2018).

Haplotypes were determined based on the SNPs with a

MAF ≥ 0.05 in the genomic region covering the gene body and

1-kb upstream region. The haplotype group comprised of less

than ten accessions was removed. The comparison of phenotypic

values across multiple haplotype groups was conducted using

Kruskal–Wallis one-way ANOVA (for ≥ three haplotypes) or t-test

(for two haplotypes) using SPSS software version 19 (IBM).

To study the genetic relationships between culm traits and yield

components, GWAS of culm-strength traits using PW/PN as a

covariate was performed by adding the function ‘-covar’ in the

FaST-LMM program. To reduce the false negatives brought by the

linear mixed model due to overcompensation for relatedness

(kinship), the linear regression model considering the population

structure (Q matrix) as a fixed effect was also adopted for culm-

strength traits using the functions ‘-linreg’ and ‘-covar’ in the

FaST-LMM program. The Q matrix was calculated based on

188,165 randomly distributed SNPs on the rice genome using the

ADMIXTURE program (Alexander et al., 2009; Zhao et al., 2015).

To confirm the association between the association locus and

culm strength, the NILTQ (BC6F2) was obtained and investigated

for culm-strength traits, which was constructed by consecutive

backcrossing with Zhenshan 97 (Oryza sativa L. ssp. indica,

containing the non-functional allele for the gene) as the recurrent

parent and Teqing (Oryza sativa L. ssp. indica, containing the

high-yielding allele for the gene) as the donor (Yan et al., 2013;

Zhang et al., 2019).

Genome-wide population differentiation analysis

To identify subpopulation divergent regions, genome-wide pop-

ulation differentiation (FST) analysis was performed using

VCFtools (Danecek et al., 2011) with a 100-kb window and 10-

kb step size. The genomic regions with the top 5% FST were

defined as greatly divergent regions.

Linkage analysis

A linkage mapping population comprised of 193 F9 RILs was

developed from a cross between the indica variety Zhenshan 97

and the japonica variety IRAT109 (Zou et al., 2005). The linkage

map length is 1567 centimorgans (cM) and the number of bins is

2499, with 0.63 cM per bin on average.

The experiment followed a randomized complete block design

with two biological replications in the field. For each line of one

replication, 20 healthy and uniform 20-day-old seedlings were

transplanted in a four-row plot at 2-cm depth with 20-cm

distance between adjacent plants and 27-cm distance between

adjacent rows. Regarding fertilization, 450 kg/ha commercial

compound fertilizer (N/P2O5/K2O = 15:15:15) was applied one

day before transplanting as basal fertilizer, and 150 kg/ha and

75 kg/ha urea, as top-dressed fertilizer, were applied when most

accessions entered middle tillering stage and panicle initiation

stage, respectively. For the water management, 5–10 cm water

depth was kept in the field from transplanting to two weeks

before harvest. Weeding was performed manually, and pests

were controlled by spraying pesticides, and diseases were

intensively controlled by spraying chemicals. At 25 days after

the full heading date, the largest culm with leaf, leaf sheath and

panicles was harvested from one plant. Four plants in a plot were

investigated, and thus, four culms were collected for each line of

one replication. The phenotyping procedure of the RIL population

was the same as that of the natural population mentioned

above. For each plot, the trait mean values of culms from four

plants were calculated. The best linear unbiased prediction

(BLUP) values based on the mean values of LR-related traits

across two biological replications were calculated for QTL

mapping.

QTL mapping was performed with WinQTLcart v2.5 using the

composite interval mapping method (Model 6: Standard Model)

(Silva et al., 2012). The backward regression method and 0.5 cM

walking speed were chosen. To control the background, the

control marker number and window size were set to 5 and

10 cM, respectively. The genome-wide LOD threshold was set to

2.5, and a two-LOD drop support interval was determined as a

QTL.
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