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Nonlinear Spatial Integration Underlies the Diversity of
Retinal Ganglion Cell Responses to Natural Images
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How neurons encode natural stimuli is a fundamental question for sensory neuroscience. In the early visual system, standard
encoding models assume that neurons linearly filter incoming stimuli through their receptive fields, but artificial stimuli,
such as contrast-reversing gratings, often reveal nonlinear spatial processing. We investigated to what extent such nonlinear
processing is relevant for the encoding of natural images in retinal ganglion cells in mice of either sex. We found that stand-
ard linear receptive field models yielded good predictions of responses to flashed natural images for a subset of cells but
failed to capture the spiking activity for many others. Cells with poor model performance displayed pronounced sensitivity to
fine spatial contrast and local signal rectification as the dominant nonlinearity. By contrast, sensitivity to high-frequency con-
trast-reversing gratings, a classical test for nonlinear spatial integration, was not a good predictor of model performance and
thus did not capture the variability of nonlinear spatial integration under natural images. In addition, we also observed a
class of nonlinear ganglion cells with inverse tuning for spatial contrast, responding more strongly to spatially homogeneous
than to spatially structured stimuli. These findings highlight the diversity of receptive field nonlinearities as a crucial compo-
nent for understanding early sensory encoding in the context of natural stimuli.
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Experiments with artificial visual stimuli have revealed that many types of retinal ganglion cells pool spatial input signals non-
linearly. However, it is still unclear how relevant this nonlinear spatial integration is when the input signals are natural
images. Here we analyze retinal responses to natural scenes in large populations of mouse ganglion cells. We show that non-
linear spatial integration strongly influences responses to natural images for some ganglion cells, but not for others. Cells
with nonlinear spatial integration were sensitive to spatial structure inside their receptive fields, and a small group of cells dis-
played a surprising sensitivity to spatially homogeneous stimuli. Traditional analyses with contrast-reversing gratings did not
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predict this variability of nonlinear spatial integration under natural images.

J

Introduction

The natural visual world is communicated to the brain
through an array of functionally distinct parallel channels
that originate in the retina (Roska and Meister, 2014; Baden
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et al., 2016). A classical view of retinal function advocates
that the retinal output channels, represented by types of reti-
nal ganglion cells (RGCs), serve as linear filters for natural
visual inputs (Atick and Redlich, 1990; Shapley, 2009).
Recordings under artificial visual stimuli, such as contrast-
reversing gratings (Enroth-Cugell and Robson, 1966; Demb
et al., 1999; Petrusca et al., 2007; Krieger et al., 2017) or finely
structured white noise (Freeman et al., 2015; Liu et al., 2017),
however, have shown that several ganglion cell types have
spatially nonlinear receptive fields (RFs). The nonlinearities
arise in the RF center from the nonlinear integration of exci-
tatory signals, which originate from presynaptic bipolar cells
(Demb et al., 2001; Borghuis et al., 2013; Turner and Rieke,
2016). Furthermore, nonlinear RFs are proposed in circuit
models of retinal computations that are thought to occur
during natural vision (Gollisch and Meister, 2010), such as
the distinction of object from background motion (Olveczky
et al., 2003; Baccus et al., 2008; Zhang et al., 2012).
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Together, these findings raise the question to what extent
nonlinear RFs of different ganglion cell types play a role in natu-
ral vision. On the one hand, the spatial structure of natural stim-
uli is not as pronounced and rich in high spatial frequencies as in
typical artificial stimuli used to detect nonlinear RFs because the
light intensities of nearby regions in natural images are corre-
lated (Burton and Moorhead, 1987). This leads to extensive areas
of nearly homogeneous illumination, for which RF nonlinearities
may play no role. On the other hand, object boundaries can
induce pronounced changes of stimulus intensity over short dis-
tances (Turiel and Parga, 2000), and textures or illumination gra-
dients may provide further structure within individual RFs.
Despite the importance of evaluating stimulus encoding models
under natural stimuli (Carandini et al., 2005; Felsen and Dan,
2005), only few studies have focused on whether the linear RF
provides a good abstraction of RGCs for stimuli with natural spa-
tial structure, and reported findings are mixed. Some studies sup-
port that linear RFs suffice to describe natural stimulus encoding
in mouse and primate retina (Nirenberg and Pandarinath, 2012;
Bomash et al., 2013), whereas others indicate that linear RFs may
fail to predict natural scene responses in mammalian (Cao et al.,
2011; Freeman et al, 2015; Heitman et al, 2016; Turner and
Rieke, 2016; Shah et al., 2020) and salamander retinas (Liu et al,,
2017; Mclntosh et al., 2017).

In this work, we establish a connection of spatial RF nonli-
nearities to the encoding of natural images in RGCs. We do so in
the mouse retina, in which spatial integration, as measured with
artificial stimuli, appears to display a broad scope (Carcieri et al.,
2003), with spatially linear (Krieger et al.,, 2017; Johnson et al,,
2018) as well as strongly nonlinear cells (Zhang et al., 2012;
Jacoby and Schwartz, 2017; Mani and Schwartz, 2017). We first
show that linear RF models successfully predict responses to nat-
ural images for some ganglion cells and substantially fail for
others. We then connect model failure to the characteristics of
spatial nonlinearities in the RF center and analyze these under
different stimulus layouts and for specific functional cell types.

Materials and Methods

Experimental design and statistical analysis. We used 13 retina
pieces from 9 adult WT mice of either sex (6 C57BL/6] and 3 C57BL/6N;
7 male and 2 female), mostly between 8 and 12 weeks old (except for one
18- and one 26-week-old). All mice were housed in a 12 h light/dark
cycle. Experimental procedures were in accordance with national and
institutional guidelines and approved by the institutional animal care
committee of the University Medical Center Gottingen, Germany. No
statistical methods were used to predetermine sample size. Statistical
tests and associated information (e.g., p values) are noted where appro-
priate in the text. For all statistical procedures, we used default
MATLAB2019b functions.

Tissue preparation and electrophysiology. Mice were dark-adapted
for at least 1 h before eye enucleation. After the animal had been killed,
both eyes were removed and immersed in oxygenated (95% O,-5% CO,)
Ames’ medium (Sigma Millipore), supplemented with 22 mm NaHCO;
(Merck Millipore) and 6 mm D-glucose (Carl Roth). We cut the globes
along the ora serrata, removing the cornea, lens, and vitreous humor. In
some experiments, the resulting eyecups were cut in half to allow two
separate recordings. Before the start of each recording, we isolated retina
pieces from the eyecups. We placed the pieces ganglion cell-side-down
on planar multielectrode arrays (Multichannel Systems; 252 electrodes;
30 um diameter, either 100 or 200 wum minimal electrode distance) with
the help of a semipermeable membrane, stretched across a circular plas-
tic holder (removed before the recording). The arrays were coated with
poly-D-lysine (Merck Millipore). Throughout the recording, retinal
pieces were continuously superfused with the oxygenated Ames solution
flowing at ~250 ml/h. The bath solution was heated to a constant
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temperature of 34°C-35°C via an inline heater in the perfusion line and a
heating element below the array. Dissection and mounting were per-
formed under infrared light on a stereo-microscope equipped with
night-vision goggles.

Extracellular voltage signals were amplified, bandpass filtered
between 300 Hz and 5kHz, and digitized at 10 kHz sampling rate. Spikes
were detected by threshold crossings (4 SDs of the voltage trace), and
spike waveforms were sorted offline into units with a custom-made
IgorPro (WaveMetrics) routine based on Gaussian mixture models
(Pouzat et al., 2002). We curated the routine’s output and selected only
well-separated units with clear refractory periods. Duplicate units were
identified by temporal cross-correlations and removed. Finally, only
units with stable electrical images (Litke et al., 2004) throughout the re-
cording were considered for further analysis.

Visual stimulation. Visual stimuli were generated and controlled
through custom-made software, based on Visual C++ and OpenGL.
Different stimuli were presented sequentially to the retina through a
gamma-corrected monochromatic white OLED monitor (eMagin) with
800 x 600 square pixels and 60 Hz refresh rate. The monitor image was
projected through a telecentric lens (Edmund Optics) onto the photore-
ceptor layer of the retina, and each pixel’s side measured 7.5 um on the
retina. All stimuli were presented on a background of low photopic light
levels (2.5 or 3.5 mW/m?, corresponding to 1500 or 1900 R*/rod/s), and
their mean intensity was always equal to the background. We fine-tuned
the focus of stimuli on the photoreceptor layer before the start of each
experiment by visual monitoring through a light microscope and by
inspection of spiking responses to contrast-reversing gratings with a bar
width of 30 um.

Linear RF identification. To estimate the RF of each cell, we used a
spatiotemporal binary white-noise stimulus (100% contrast) consisting
of a checkerboard layout with flickering squares (60 um side). The
update rate was either 30 or 60 Hz in different experiments. We meas-
ured the spatiotemporal RF by calculating the spike-triggered average
(STA) over a 500 ms time window (Chichilnisky, 2001) and fitted a para-
metric model to the RF (Chichilnisky and Kalmar, 2002). The model
was spatiotemporally separable and comprised a product of a spatial
(ks(x)) and a temporal component (kr(t)).

The spatial component was modeled as a difference of Gaussians as
follows:

ks(x) = N(x; 1, X) — AN (x; p, K°X)

where N(x;pu,X) = e W'k is 3 two-dimensional Gaussian
function with mean g and covariance matrix X (describing the RF cen-
ter’s coordinates and shape), A € [0,1] captures the RF surround
strength relative to the RF center, and k > 1 is a scaling factor for the
surround’s extent.

The temporal component was modeled as a difference of two low-
pass filters as follows:

n n

with t>0 indicating the time before the spike and p; >0, p,>0, 7,>0,
7,>0, n>0 being free parameters.

We fitted the full parametric model (ks(x) - kr(t)) to the STA by
minimizing the mean squared error using constrained nonlinear optimi-
zation. To get reasonable initial conditions, we first separately fitted the
spatial component to the STA frame at which the element with the larg-
est absolute value occurred and the temporal component to the time
course of the same element. If the element was negative, the sign of the
STA frame was inverted before the spatial component fit. We then
seeded the obtained values of spatial and temporal fits as the initial pa-
rameters for the full spatiotemporal fit. The chosen initialization proce-
dure is consistent with the positive center peak of k.

The diameter of the RF center was defined as the diameter of a circle
with the same area as the 20 (elliptical) boundary of the Gaussian center
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profile (Baden et al,, 2016). We also used the 20" boundary for all RF
center visualizations.

Natural image response predictions with a linear-nonlinear (LN)
model. We selected natural images as stimuli from three sources: the van
Hateren Natural Image Dataset (van Hateren and van der Schaaf, 1998),
the McGill Calibrated Color Image Database (Olmos and Kingdom,
2004), and the Berkeley Segmentation Dataset (Arbeldez et al., 2011).
The central square region of each image was resized to 512 x 512 pixels
(400 x 400 pixels in a few experiments) by cropping (van Hateren and
McGill images) or cropping and upsampling with nearest neighbor
interpolation (Berkeley images). All color images (McGill and Berkeley
databases) were converted to grayscale by weighted averaging over the
color channels (Liu et al., 2017). We normalized the mean and SD of the
pixel values for each image by appropriately shifting and scaling the val-
ues so that the mean pixel intensity was equal to the background and the
SD was 40% of the mean intensity. Pixel values that then deviated from
the mean by >100% in either direction were clipped to ensure that the
maximal pixel values were within the physically available range of the
display. Finally, all images were encoded at 8-bit color depth to match
the range of our OLED monitor. The images were presented on top of a
uniform gray background and centered on the multielectrode array, cov-
ering a region of 3.84 x 3.84 mm® on the retina (3x3 mm?® for
400 x 400 pixels).

In every experiment, we used 300 natural images (100 from each data-
base), except for one (200 images in total). Images were presented individu-
ally for 200 ms each, with an 800 ms interstimulus interval of homogeneous
background illumination. We collected 10 trials for each image by consecu-
tively presenting 10 different pseudo-randomly permuted sequences of all
images. For each cell, we measured the response as the trial-averaged num-
ber of spikes over a 250 ms window following stimulus onset.

To compare a cell’s responses to model predictions, we constructed
an LN model (Chichilnisky, 2001), which generates average spike count
responses R,, > 0 to natural image stimuli s,,: R, = f (k" - s,,), where
the vector k is a linear spatial filter, f is a nonlinear function, and m
denotes the image index. For the analyses, all natural image stimuli were
spatially clipped to the smallest square that could fit the 40~ boundary of
the RF center, and their pixel intensity values were transformed to
Weber contrast values, which constitute the elements of s,,. For the lin-
ear filter (k), we used the parametric spatial RF component (kg) esti-
mated from white noise, sampled at the center point of each pixel of the
clipped natural image. The linear filter was normalized to a sum of unity
of the absolute values of its elements.

In initial analyses, we also tried using the pixelwise spatial profile
obtained from the reverse-correlation analysis as a spatial filter of the
model. Overall, response predictions and model performances were sim-
ilar to the ones under the parametric fit, yet often more noisy, owing to
noise in the pixelwise filter estimate. All further analyses were therefore
based on the parametric fit of the spatial filter.

Linear predictions (g) were estimated from the inner product of
stimuli and the linear filter: g,, = kT - s,,. Because the linear filter is
composed of mainly positive values, the sign of the linear prediction
reflects the net contrast in the spatial RF. For the nonlinear part of the
LN model (f), we used a bi-logistic nonlinearity of the following form:

MON - b
1 + e ToN(88on)

MOFF - b
1+ erorp(g—gon-)

fg)=b+

where b > 0, Moy > b, Mopr > b, ron, > 0, ropr > 0, and gon» gorr
were free parameters that were fitted to data. To facilitate estimation of
the parameters for both monotonic and U-shaped nonlinearities, we first
fitted a single logistic nonlinearity f(g) = b+ (M —b)/[1+e & )] to
the data, and initialized the parameters of the bi-logistic nonlinearity to
describe the dominant lobe (ON or OFF, determined by the sign of r,).
Such bi-logistic nonlinearities had been previously used to describe tun-
ing curves in sensory neuroscience under the name “difference of sig-
moids” (Fischer et al., 2009; Mel et al., 2018; Murgas et al., 2020).

To assess the prediction accuracy by the LN model, we applied a nor-
malized correlation coefficient (CCyppm) as our model performance met-
ric (Schoppe et al, 2016). This measure was used to account for
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differences in response reliability among cells, since we used a relatively
small number of trials per image. Concretely, for M images and N trials
per image, m,n denoted the cell’s response to image m for trial #, with

Z R, /N being the average response to a particular image, ¥,,

belng the prediction for the same image, and y and ¥ denoting the corre-
sponding distributions over images. CCyorm Was then defined as follows:

Cov(y,y)
Var(y) x SP

CCrorm =

We calculated the necessary quantities as the sample covariance

M
Cov(y,7) = > (¥m —y)(¥m —¥)/M and sample variance Var(y) =
m=1

ratio, and is defined as follows:

Var <E R, n)
SP =
N

with the two variances in the numerator denoting sample variances over
images.

We estimated LN model performance through 10-fold cross-valida-
tion. Briefly, the collection of average responses for all images was ran-
domly split into 10 equally sized sets. Every set was used once as a test
set for the full LN model, whose nonlinearity was fitted to the other 90%
of image responses. For each cell, LN model performance was defined as
the average CCorm over all cross-validation sets. For all nonlinearity vis-
ualizations in the plots, we used the nonlinearity corresponding to the
cross-validation set with the CCyorm value closest to the average.

Since CCporm values are ill-defined for very low data reliability, we
excluded cells whose responses for identical images were highly variable.
For each cell, we therefore calculated the coefficient of determination
(R?) between responses averaged over even (r¢,) and over odd trials (),
where m = 1,...,M enumerates the images. Concretely, we used a symme-
trized R?, defined as follows:

—7)?/M. SP denotes the signal power, a measure of signal-to-noise

(Rin)

= HMZ

M
2
R S{CE SN ol (R )
R =1--x- Z_EXM 5
> (= m) > (e — )

m=1 m=1

where u° and u° are the average odd and even trial responses over
images. We excluded cells with R* < 0.5 from further analysis. We fur-
thermore excluded cells that showed large response drift over the course
of image presentations. In most cases, drift corresponded to a global
scaling that approximately affected responses to all images proportion-
ally. This is reflected in a high Pearson correlation over images between
the average responses of the first five and last five trials; 94% of analyzed
cells had a correlation coefficient of at least 0.7. Such global scaling of
responses does not affect the analysis of differences in average responses.
Thus, we excluded cells with coefficients <0.7 from further analyses.
The two criteria (regarding reliability and drift) yielded 900 cells
included in the analysis of 1209 recorded cells.

Calculation of spatial contrast (SC) sensitivity for natural images.
We measured the SC of an image in the RF center of a given ganglion
cell as the weighted SD of pixel contrast values inside the 20" contour of
the Gaussian center fit as follows:

_ Zi Wi(Pi - Mw)z
SC = 721- ”

where the sums run over all pixels i within the 20 contour, p; is the pixel
value, w; is the pixel weight as given by the value at the pixel center of
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the fitted RF center part, and u,, is the weighted mean of the pixel
values.

To obtain the SC sensitivity, we sorted the images according to their
linear predictions in the cell's LN model and then grouped neighboring
images into pairs, with each image belonging to a single pair, yielding
150 pairs per cell when 300 images had been applied. For each image
pair, we calculated the SC difference and the trial-averaged response dif-
ference. To compare across cells, we normalized the response differences
by the maximum response (over images) of the cell. We defined the SC
sensitivity as the slope of the linear regression between the SC differences
and the normalized response differences. Cells were defined as contrast-
sensitive if they had a significant regression slope at the 5% significance
level.

Assessment of spatial nonlinearity with contrast-reversing gratings.
To compare our findings to classical analyses of spatial integration, we
stimulated the retina with full-field square-wave gratings of 100% con-
trast. The contrast of the gratings was reversed every 1 s. The reversing
gratings were presented sequentially from higher to lower spatial fre-
quencies for 20-30 reversals each, and the whole sequence was repeated
2 times. Depending on the experiment, we sampled 5-8 spatial frequen-
cies, with bar widths ranging from 15 to 240 um. For each spatial fre-
quency, we applied 1-4 equidistant spatial phases, with more phases for
lower spatial frequencies (e.g., one for 15, two for 30, two for 60, four for
120, four for 240 um bar width). In some of the recordings, we also
included contrast reversals of homogeneous illumination (correspond-
ing to a bar width of >6 mm). Between presentations of the different
gratings, there was a gray screen at background intensity for 2 s. We con-
structed peristimulus time histograms (PSTHs) over one reversal period
by binning ganglion cell spikes with 10 ms bins and averaging across
reversals and repeats, leaving out the first reversal after a gray period. In
some experiments, gratings were flashed for 200 ms, and presentations
of reversed contrast were separated by an 800 ms gray screen at back-
ground intensity. For the subsequent analyses, PSTHs corresponding to
one full reversal period were constructed by extracting the cell responses
during the 200 ms grating flashes and concatenating the two PSTHs for
the two spatial phases of the grating into a single 400 ms PSTH. For all
analyses of responses to gratings, we excluded cells with unreliable
responses by calculating R* values between average response vectors of
even and odd trials, similar to the analysis of natural-image responses.
We created the response vector of a single trial by concatenating single-
trial PSTHs from all different spatial frequencies and phases. We only
considered cells with R* > 0.1 for our population analyses. The criterion
was satisfied by 890 of 1126 cells recorded for this stimulus.

To estimate the grating spatial scale for each cell, we extracted the
peak firing rate in the PSTH (across time and spatial phases) for each
bar width (Krieger et al., 2017). We then fitted a logistic function (com-
pare Natural image response predictions with a linear-nonlinear (LN)
model) to the relationship of peak firing rate versus bar width, and
extracted the function’s midpoint as an estimate of the spatial scale. The
amplitudes of harmonics of the PSTH were calculated by temporal
Fourier transforms for each combination of spatial frequency and phase
(Hochstein and Shapley, 1976). From the PSTHs of all spatial scales and
phases, we extracted the maximum amplitude F1 at the stimulus fre-
quency as well as the maximum amplitude F2 at twice the stimulus fre-
quency and defined the nonlinearity index as the ratio of F2 over F1.
This definition is slightly different from other approaches, where the F2/
F1 ratio is calculated for each spatial scale and phase separately, with the
maximum being chosen as the nonlinearity index (Hochstein and
Shapley, 1976; Carcieri et al,, 2003; Petrusca et al., 2007). Our approach
aimed at capturing the maximum mean-luminance-induced modulation
in F1 and the maximum spatial-contrast-induced modulation in F2.

Assessment of spatial input nonlinearities with checkerboard flashes.
To assess how local visual signals are transformed in nonlinear cells, we
used a stimulus that had a checkerboard layout with square tiles of either
105 or 120 um to the side. The tiles were alternatingly assigned to two
sets (A and B) so that neighboring tiles were in different sets. For each
individual stimulus presentation, each set of tiles was assigned an inten-
sity s4 or sp, respectively, expressed as the Weber contrast from back-
ground illumination. Similar to our presentation of natural images, these
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checkerboard stimuli were flashed for 200 ms with an interstimulus
interval of 800 ms, during which background illumination was pre-
sented. The contrast pairs (sa,sp) were selected from a two-dimensional
stimulus space, organized in polar coordinates, by using 24 equidistant
angles, each with 10 equidistant radial contrast values (v/sa2+sp?)
between 3% and 100%, and presented in pseudorandom order. The set
of all contrast pairs was presented to the retina 4 or 5 times, with a differ-
ent pseudorandomly permuted sequence chosen each time. We calcu-
lated cell responses by counting the number of spikes for each ganglion
cell over a 250 ms window following stimulus onset and averaging over
trials. Iso-response contour lines were constructed from the cells’
response profiles using MATLAB’s contour function. To exclude cells
with unreliable responses, we calculated R? values across the set of all
contrast combinations between spike counts averaged over even and
over odd trial numbers. We only considered cells with R* > 0.1 for our
population analyses. This criterion was satisfied by 833 of 1204 cells for
which the stimulus was recorded.

Rectification (RI) and convexity (CI) indices were calculated for a
specific contrast level ¢ (c = 0.6 for most analyses). To quantify rectifica-
tion of nonpreferred contrasts (RI), we compared the responses "/
under stimulation with only one spatial input (e.g., s4 = ¢ and sz =0,
corresponding to a stimulus on one of the four half-axes of the stimulus
space) to the responses r?P* under stimulation with this input and the
other spatial input at opposite contrast (s4 = ¢ and s = —c). In cases
with no direct response measurement for a particular required contrast
pair, we estimated the response based on the measured responses to
nearby contrast pairs, using natural neighbor interpolation, as imple-
mented in MATLAB’s scatteredInterpolant function. From all response
measurements, we subtracted the background spike count, measured as
the response to the (0, 0) pair, which was included as a regular stimulus
in the sequence of contrast pairs. To use a single definition of RI for ON,
OFF, and ON-OFF cells, we considered all four half-axes in the stimulus
space (with either s4 or sp at either positive or negative contrast) and
computed a weighted average from the four "/ values as well as from
the corresponding % values (there are only two rP* values that are
each used twice) to define RI as their ratio as follows:

4 4

al)

RI = 5 wir? ) E wirh
i=1 i=1

where the weights w; are measures of sensitivity along each half-axis i.
Concretely, we obtained w; as the slope of a regression line, fitted to the
contrast-response pairs along the corresponding half-axis.

Similarly, for quantifying integration of preferred contrasts (CI), we
compared the 7" values to responses 7, which were measured with
the same contrast for the two stimulus components, sy = sg = ¢/2, cor-
responding to the spatially homogeneous stimulus that has the same lin-
early integrated contrast as the stimulus used to measure ", Again, we
took all four half-axes into account for defining CI as follows:

Cl=1- i wir e/ i w,-rf‘“’f
i=1 i=1

We subtracted the ratio of r**" over " from unity so that CI=0
corresponds to linear integration and CI>0 to r**"<r"/, and thus a
convex, outward-bulging shape of the iso-response contour line. We
used RI and CI to formally define homogeneity-sensitive cells as cells
with RI<0 and CI<0, corresponding to iso-response contour lines
curving toward the origin.

To probe spatial integration in the RF center with minimal surround
influence, we used local checkerboard flashes. The stimulus was similar
to the one above, but with small patches of 2 x 2 tiles. Tiles here had a
side length of 105 um, and patches thus had a side length of 210 um. To
compare our results with the full-field version of the stimulus, patch tiles
were placed to align with the tiles of the full-field stimulus. The local
patches were flashed for 200 ms, with no interval between successive pre-
sentations. For each individual presentation, the applied patch locations
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were randomly chosen to maximally fill the screen (typical number of
locations = 44-61, median =53) while ensuring a minimum center-to-
center distance of three patch side lengths (630 pm) for simultaneously
presented patches (see Fig. 5C, bottom left). The rest of the screen was
kept at background illumination (see Fig. 5C, top). For each presented
patch, the contrast combination (s4,s) was selected randomly and in-
dependently from the contrast combinations at other, simultaneously
displayed locations. We applied fewer contrast combinations than for
the full-field version of the stimulus to ensure adequate numbers of trials
for each contrast combination at each location. Specifically, we used 8 or
12 equidistant angles in the stimulus space, each with 5 or 6 equidistant
radial values between either 20%-100% or 3%-100%.

We also used the weights w; to calculate an index of relative sensitiv-
ity for the two types of tiles (A and B). For each cell, we selected the pair
of half-axes (of either positive or negative s4 and sg values) with the
highest average weight. The relative sensitivity index was calculated as
follows:

W — Wy
[wp|+[wal

with wy and wp being the weights of the half-axes in the selected
pair. An index of zero indicates a balanced sensitivity to both types
of tiles.

For analysis, we selected for each ganglion cell the patch closest to its
RF center and extracted the responses to flashes when this particular
patch was used. We counted the number of spikes over a 250 ms window
following presentation onset and again subtracted the background activ-
ity, which was here obtained by interpolation to the (0, 0) contrast pair.
Response contour lines in stimulus space as well as rectification and con-
vexity indices were calculated in the same way as for the full-field version
of the checkerboard flashes. Similarly to the full-field stimulus, we calcu-
lated R* values between the average spike counts of even and odd trials
with respect to all contrast combinations, and only considered cells with
R* > 0.1 for our population analyses. Additionally, we required that cells
had a relative sensitivity index for the Tiles A and B with an absolute
value <0.5. Both criteria were satisfied by 289 of 564 cells.

Spatial scale estimation from blurred natural images. For recordings
with blurred natural images, we selected either 30 or 40 images from our
set of natural images. The images were blurred by convolution with a
two-dimensional, spherically symmetric Gaussian function. We used dif-
ferent o values of the Gaussian to implement different spatial scales of
blurring, defined as the diameter of the 20~ Gaussian contour (Schwartz
et al., 2012), to also match our RF center definition. Blurred and original
images were presented in a pseudorandom sequence, similar to the pre-
sentation of the large set of natural images described above, collecting 10
trials for each image and blurring scale. Responses were again measured
for each ganglion cell by counting the number of spikes over a 250 ms
window following stimulus onset.

We calculated R* values (see Natural image response predictions
with a linear-nonlinear (LN) model) between blurred and original spike
counts for each scale. We also calculated an R value for the original
image responses by considering odd- and even-trial averages and
assigned this value to a blurring scale of 0 um. We then fitted logistic
functions to the R values with respect to the blurring scales. We defined
the natural spatial scale for each ganglion cell as the midpoint of the fit-
ted logistic function. Again, by requiring R> > 0.1 for odd- versus even-
trial averages of the original images, we included 747 cells of 850 for
which we had recorded the stimulus.

Detection of image-recurrence-sensitive (IRS) cells. We detected IRS
cells as described previously (Krishnamoorthy et al., 2017). Briefly, we
presented a square-wave grating of either 240 or 270 pm spatial period
and 60% contrast in a sequence of 800-ms-long fixations, separated by
100 ms transitions. During a transition, the grating was shifted by
approximately two spatial periods to land in one of four equidistant fixa-
tion positions (corresponding to four specific spatial phases of the gra-
ting). The sequence of the four fixation positions was randomly chosen
so that all 16 possible transitions (between starting and target positions)
appeared several times in the stimulus sequence.
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IRS cells are described as cells that show a strong response peak after
onset of the new fixation when the grating position is the same as before the
transition, but not when it has reversed contrast across the transition. To
detect this, as done previously (Khani and Gollisch, 2017; Krishnamoorthy
et al,, 2017), we measured the response after each of the 16 possible transi-
tions by creating PSTHs with bins of 10 ms and extracting the maximal dif-
ference for successive time bins in the PSTH as a measure of response
increase (maximal derivative of the PSTH) in the window from 50 to
200 ms after fixation onset. We compared for each target grating i the maxi-

mal derivative D} under image recurrence (when the starting grating was

also i) to the maximal derivative thange when the starting grating was con-

trast-reversed compared with grating i. We calculated a recurrence sensitiv-
4

ity index (RSI) as RSI = iz (D,T“ - D;'h“”ge> /<D§“+th”"ge). Cells
i1

with RSI > 0.7 and an average peak firing rate of at least 50 Hz in the post-

transition PSTHs of the four image recurrences were considered as IRS

cells.

Detection of direction-selective (DS) and orientation-selective (OS)
cells. To identify DS ganglion cells, we used drifting sinusoidal gratings
of 100% contrast, 240 um spatial period, and a temporal frequency of
0.6 Hz (Sabbah et al., 2017). The gratings were shown in a sequence of
eight equidistant directions with four temporal periods per direction,
separated by 5 s of background illumination. The sequence was repeated
4 or 5 times. For each angle (), we collected the average spike responses
(rg) during the presentation of the grating (excluding the first period).
We calculated a direction selectivity index (DSI) as the magnitude of the

normalized complex sum Z roe’? / Z rg (Mazurek et al., 2014). The
0 0

preferred direction was obtained as the argument of the same sum.

We also used drifting square-wave gratings of 100% contrast, 225 jim
spatial period, and a temporal frequency of 4 Hz to identify OS ganglion
cells (Nath and Schwartz, 2016, 2017). The gratings were shown in a
sequence of eight equidistant directions with 12 periods per direction,
separated by 2 s of background illumination. The sequence was repeated
4 or 5 times. We calculated an orientation selectivity index (OSI) as the

magnitude of the complex sum Z ree?) Z rg. The preferred orien-
0 0

tation was obtained as the line perpendicular to half the argument of the
same sum.

To calculate the statistical significance for both indices, we used a
Monte Carlo permutation approach (Liu et al., 2017). For a given cell,
we repeatedly shuffled the responses over all angles and trials 2000 times
to obtain a distribution of DSI (or OSI) values under the null hypothesis
that the firing rates are independent of the motion direction (or orienta-
tion). All cells with DSI > 0.25 (significant at 1% level) were considered
as DS cells. Similarly, OS cells were identified as cells with OSI > 0.25
(significant at 1% level) that were not DS or IRS. We only included cells
with a total mean firing rate >1 Hz during the presentation of the drift-
ing gratings (Kiithn and Gollisch, 2016).

OS cells were classified as either ON- or OFF-type based on the sign
of the first peak (i.e., closest to zero) in the fitted temporal component
kr(t). Here we disregarded a peak if its amplitude (unsigned) was <25%
of the largest deflection.

Data and code availability. The spike-time data used in this study
and sample code for stimulus reconstruction are available at https://gin.g-
node.org/gollischlab/Karamanlis_Gollisch 2021 _RGC_spiketrains_natural
image_encoding.

Results

Performance of LN models for predicting responses to
natural images varies strongly among RGCs

Since our goal was to assess the role of spatial nonlinearities in
the RF, we focused on stimuli that have natural spatial structure,
but simplified temporal dynamics. We therefore stimulated the
retina with briefly flashed achromatic natural images while re-
cording the spiking activity of several hundred mouse RGCs
with multielectrode arrays, to survey whether linear RF models
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could capture the cells’ responses. The images
had been collected from three different data-
bases (van Hateren and van der Schaaf, 1998;
Olmos and Kingdom, 2004; Arbeldez et al,
2011) and were presented for 200 ms each, sep-
arated by 800 ms of background illumination
(Fig. 1A). Flash duration was close to the typical
fixation duration in “saccade-and-fixate” gaze
patterns observed in freely moving mice (Meyer
et al, 2020; Michaiel et al,, 2020). To analyze
ganglion cell responses in relation to the signal
inside the RF, we determined the RFs (includ-
ing center and surround) from responses to
spatiotemporal white noise (Fig. 1B). Different
cells sampled different parts of the images and
displayed a variety of response patterns (Fig.
1C), with apparent sensitivity to positive or neg-
ative Weber contrast. Some ganglion cells
responded to both stimulus onset and offset for
some images (Fig. 1D), which may indicate
ON-OFF-type RFs (Jacoby and Schwartz, 2017)
or spatially nonlinear RFs (Mani and Schwartz,
2017). Furthermore, we observed both transient
and sustained responses as well as response sup-
pression (Fig. 1C, bottom left).

To test whether these diverse ganglion cell
responses could originate from a spatially lin-
ear RF, we measured how well a simple linear
RF model could reproduce such responses.
To do so, we quantified a cell’s response for
each image by the average spike count over
250 ms following image onset. We then aimed
at predicting this spike count with an LN
model (Fig. 1E). The model’s first stage is a
linear spatial filter, which was estimated from
the STA under white-noise stimulation by a
parametric fit that contained a difference-of-
Gaussians as the spatial component. The filter
captured the location, size, shape, and relative
surround contribution of the spatial RF.
Applying the filter to the pixelwise Weber
contrast values of a given image yielded a lin-
ear prediction: a single number that corre-
sponded to the image’s net Weber contrast as
seen through the cell’s RF. It quantifies how
much the mean light level over the RF changed
between background illumination and image
presentation. The model then predicted the av-
erage spike count to the image by transforming
this linear prediction with a parameterized non-
linear function, the model’s nonlinearity. The
nonlinearity was obtained by selecting a num-
ber of images (training set) and fitting a generic
function to the relation between the linear pre-
dictions and the measured responses. The
obtained nonlinearity was then used to compare
predictions with actual responses for the
remaining images (test set), using cross-valida-
tion to quantify prediction accuracy.

For cells that linearly integrate over space,
the linear prediction of the LN model should
be tightly coupled to the response strength,
and the relationship between the two is
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Figure 1. A spatially linear RF model often fails to predict natural image responses of RGCs. A, Natural images were pre-

sented to the retina in a pseudorandom sequence for 200 ms with an interstimulus interval of 800 ms. B, Sample natural
image (11). Overlaid ellipses (light orange) represent the outlines of RF centers (center parts of difference-of-Gaussians fits)
of 130 RGCs from a single recording. The midline is RF-free because it contained the optic disk region. C, Top, Raster plots
with responses of three different ganglion cells to 10 presentations of image I1. Different RF outline colors correspond to dif-
ferent cells, also highlighted in B. Bottom, Same as in top, but for presentations of another image (12). Yellow-shaded areas
correspond to the 200 ms image presentations. D, PSTHs for 300 natural images, aligned to the raster plots of (C) and
sorted by the average spike count during stimulus presentation. Rows corresponding to images |1 and 12 are marked. E, The
structure of an LN model that we used to predict average spike counts for natural images. The linear prediction is the inner
product of the contrast values in the image patch and the filter. F, Spiking nonlinearities fitted to observed spike counts for
the three sample cells of C. Data points for images 11 and 12 are highlighted. Top, The obtained normalized correlation coef-
ficients (CCoom)- G, LN model performance distribution for ganglion cells in a single retina preparation (light orange, same
as in B), and for all recorded cells (gray) from 13 preparations (9 animals).
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on the right).

effectively a contrast-response function. We found cells, for
example, for which the linear predictions displayed a clear, mon-
otonic relationship to the responses, such as in Figure 1E (right,
rank correlation between measured spike counts and corre-
sponding model predictions: Spearman’s p = —0.88, n=300
images) or in Figure 1F (left, Spearman’s p = 0.97, n=300
images). As the spatial filter is defined to always have a positive
central peak, an increasing monotonic relationship indicates a
contrast-response function of an ON-type ganglion cell (Fig. 1F,
left), whereas a decreasing one indicates a contrast-response
function of an OFF-type ganglion cell (Fig. 1E). For such mono-
tonic relationships, simple logistic nonlinearities provided good
fits. Yet, we also found cells with a U-shaped relationship
between linear predictions and responses (Fig. 1F, middle). To
also capture such a nonmonotonic contrast-response function
shape, we applied a bi-logistic nonlinearity, fitted to the contrast-
response function of each cell. The bi-logistic functions captured
nonmonotonic nonlinearities by combining an increasing and a
decreasing logistic function, but also worked well for monotonic
contrast-response relations, as the weight of one logistic compo-
nent then naturally assumed a value near zero in the fit.
Nonmonotonic contrast-response functions are expected to
occur in the retina for ON-OFF (Burkhardt et al., 1998) or sup-
pressed-by-contrast ganglion cells (Levick, 1967; Jacoby et al.,
2015; Tien et al., 2015), and we indeed observed both cases as
indicated by U- and bell-shaped functions, respectively (Fig. 2).
The flexible parameterization of the nonlinearity allowed us to
assess LN model performance and thus spatial nonlinearities for
these cells in the same way as for pure ON and OFF cells. Finally,
we found cells with no apparent relationship between linear pre-
dictions and responses (Fig. 1F, right, and Fig. 3A). For such cells,
fits were poor because of the spread of data points, indicating that
the LN model failed to predict responses to natural images.

How well the LN model captures the responses can be visually
assessed by how tightly the data points cluster around the fitted
nonlinearities and quantified by how strongly prediction and
response are correlated. However, part of the deviation from the
fit could result from noise in the response measure, as only 10
trials per image were available, rather than from an actual failure
of the model. Thus, to quantify performance of the LN model,
we computed a normalized correlation between response predic-
tion and measured response, CC,om (Schoppe et al, 2016),
which takes the variability of responses across trials into account
by assessing the model prediction relative to the reliability of the
trial-averaged responses. Furthermore, we used cross-validation
by averaging CCom over 10 different sets of held-out images
not used to fit the nonlinearity.

Model performance varied considerably between cells. A size-
able proportion showed good model performance, indicated by a

Examples of U- and bell-shaped nonlinearities. Four sample cells, with either ON-OFF-type nonlinearities (the two leftmost) or suppressed-by-contrast-type nonlinearities (the two

peak close to unity in the distribution of CC,,o,py, values (Fig. 1G).
On the other hand, we observed a broad tail of cells with low
CChorm values, indicating different degrees of model failure, both
for individual retina pieces as well as for the entire population of
recorded cells. Given the variability-adjusted measure of model
performance and the flexibility of the applied nonlinearity, we
hypothesized that the nonlinear part of the LN model was not
the source of the observed diversity in natural image encoding.
We therefore focused on investigating the relation between
model performance and spatial signal integration.

Linear RF model performance correlates with SC sensitivity
in the RF center

Figure 3A displays measured spike counts versus model predic-
tions for a sample cell with low model performance. The model
failure is apparent from the fact that the cell elicited widely dif-
ferent spike counts for images that yielded similar linear predic-
tions of the model, corresponding to similar net contrast over
the RF, and thus similar spike count predictions. The two images
shown in Figure 3B, for example, had nearly identical linear pre-
dictions for the sample cell, but the cell clearly responded differ-
ently to the two images. These two images strikingly differed in
their spatial structures inside the cell's RF center (Fig. 3B). We
therefore quantified the spatial structure of each image within
the center of a cell’s RF by computing the spatial contrast (SC,
see Materials and Methods), which measures the variability of
image pixels inside the RF center.

To evaluate the impact of SC on the spike output for a given
cell, we grouped the images into pairs of similar linear predic-
tions by the cell’s LN model. This allowed us to relate differences
in spike count within a pair to differences in SC while minimiz-
ing confounding effects of mean light-level changes inside the
RF. The analysis revealed that SC was systematically related to
spike count for many cells, with more spikes elicited when SC
was larger (Fig. 3C). Indeed, for the majority of cells (72%,
n =651 of 898 recorded cells), differences in SC and spike count
were positively correlated, indicating that SC had a response-
boosting effect beyond mean light level and that spatial integra-
tion was nonlinear.

Other cells (22%, 202 of 898) appeared insensitive to SC, as
indicated by an approximately flat relationship between differen-
ces in SC and spike count and no significant correlation (Fig.
3D). This was expected as the LN model, which is based solely
on mean light level in the RF, did provide an accurate description
of spike counts for some RGCs.

Unexpectedly, however, we also found a small subset of cells
(5%, 45 of 898) that responded vigorously to stimuli with spa-
tially homogeneous illumination of preferred contrast, but dis-
played smaller spike counts for images with similar mean
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Figure 3.  Sensitivity to natural SC is correlated with LN model performance. 4, Output nonlinearity fit for a cell

with low LN model performance. Marked data points correspond to the responses shown in B. B, Different responses
of the cell in A to natural images with approximately same linear predictions (L.p.), but different SC in the RF center.
C, Top, Output nonlinearity fit for another sample cell. Middle, Raster plots of the cell's responses to natural images
with approximately same I.p., but with high (top) or low (bottom) SC in the RF center. Bottom, Relation of SC differen-
ces to average spike count differences for 150 pairs of natural images with similar L.p. in the RF center. Count differen-
ces are normalized to the maximum observed average spike count. Filled black data point represents the difference
obtained from the pair of sample images above. Line and slope value correspond to least-squares estimate. Shaded
area represents 95% confidence interval. D, E, Same as in C, but for two other sample cells. B—E, Shaded yellow areas
represent the 200 ms image presentations. F, Relation of LN model performance to SC sensitivity, defined as the slope
of the relation between spike-count differences and SC differences, as in C~E, for ganglion cells in a single preparation

Karamanlis and Gollisch @ Retinal Spatial Integration of Natural Images

illumination and higher SC (Fig. 3E). Such
inverse sensitivity to SC represents a different
form of nonlinear spatial integration than the
response-boosting effect of SC in the majority of
cells and may be described as sensitivity to spa-
tially homogeneous stimulation. However, de-
spite the inverse sensitivity to SC, the response
characteristics of these cells differ from those of
suppressed-by-contrast cells because the prefer-
ence for homogeneous stimuli does not extend to
the temporal domain. Unlike for suppressed-by-
contrast cells, temporal contrast at image onset
can strongly activate the cells described here (Fig.
3E).

To assess whether sensitivity to SC was sys-
tematically related to LN model performance,
we quantified the “SC sensitivity” of a given
cell by the slope of the regression line between
SC and response differences, normalized by the
cell's maximum response. We found that SC
sensitivity was indeed negatively correlated with
LN model performance in individual experi-
ments (e.g., Fig. 3F, left; median Spearman’s p =
—0.60, 10 of 13 had p < 0.05) as well as in the
pooled data (Fig. 3F, right; Spearman’s p =
—0.64, p<107>, n=898 cells). Cells for which
SC boosted activity (corresponding to large pos-
itive values of SC sensitivity) were generally not
as well described by the LN model. This suggests
that model performance is indeed limited by a
systematic influence of SC on spike count in
many cells. For cells with no detectable sen-
sitivity to SC, on the other hand, model
performance was generally good (CCporm
median =0.91, n=202). Also, the few cells
with a suppressive effect of SC (negative SC
sensitivity) showed fairly good LN model
performance, despite the observed devia-
tion from linear spatial integration.

Sensitivity to fine spatial gratings alone does
not predict LN model performance

Sensitivity to spatial structure on a sub-RF scale
is characteristic for nonlinear RFs. A classical
test for nonlinear spatial integration is to stim-
ulate the retina with full-field contrast-revers-
ing gratings at different spatial scales and
phases (Hochstein and Shapley, 1976; Demb et
al,, 1999). Applying such stimuli in our record-
ings, we found RGCs that clearly responded to
the reversals of fine (30 um bar width) gratings
(e.g., Fig. 4A,B), revealing nonlinear spatial
integration under reversing gratings, similar to
previous measurements in the mouse retina
with single-cell recordings (Schwartz et al,
2012; Tien et al, 2015; Krieger et al, 2017).
These cells also responded to coarser gratings

«—

(left; Spearman’s p = —0.73, p < 10~3) and for all recorded cells
(right; 13 retinas, 9 animals). (~E, Data points for the sample cells
are highlighted in the corresponding colors.
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Nonlinearity index

Reversing Nonlinearity index

Relation of responses under reversing gratings to LN model performance. A—C, PSTHs of three ganglion cells to full-field contrast-reversing gratings of six different bar widths,

which are indicated to the left of the plots. For wider bars, the gratings were presented for multiple spatial phases, and the displayed PSTHs represent the phase with the smallest net bright-
ness changes averaged over the RF. Dashed gray lines indicate the time of contrast reversal. B, Arrows indicate the sustained component of the responses. D—F, Relationship between linear
prediction and average spike count of the same three cells for 300 natural images. Solid lines indicate fitted nonlinearities. G, Relation of bar width to normalized peak firing rates (across time
and spatial phases) for the cells in A-C. Colors correspond to the RF colors of A-C. Solid lines indicate logistic fits. H, Relation of LN model performance to the spatial scale of each cell for a sin-
gle retinal preparation (left, Spearman’s p = 0.01, p=0.95) and the total population (right) from 12 retinas (9 animals). Cells from A—C are highlighted. I, Left, Comparison of spatial scales
obtained from reversing or flashed gratings (n = 126). Right, Relationship between LN model performance for natural images and spatial scales from flashed gratings (n = 126). Data are from
3 experiments (2 animals). J, Normalized F1 and F2 amplitudes (maximum over spatial phases) for the cells of A and B. K, Relation of LN model performance to the nonlinearity index of each
cell for a single retinal preparation (left, Spearman’s p = —0.7, p < 10~3) and the total population (right) from 12 retinas (9 animals). The nonlinearity index is defined as the maximum F2
(across spatial frequencies) over the maximum F1 (across spatial frequencies) amplitude. Cells from A-C are highlighted. L, Same as in /, but for nonlinearity indices.

that split their RF centers in two halves. Other cells, however,
barely responded to reversals of gratings for phases with zero net
contrast across the RF, such as the sample cell of Figure 4C.

Interestingly, sensitivity to contrast reversals of gratings often
seemed unrelated to LN model performance for natural images.
One of the sample cells with clear responses to fine-scale gratings
(Fig. 4A) had poor LN model performance for natural images
(Fig. 4D), whereas the other (Fig. 4B) showed good model per-
formance (Fig. 4E). For the third sample cell (Fig. 4C), model
performance was good (Fig. 4F), consistent with the observed
insensitivity to grating reversals, which suggests linear spatial
integration.

In order to systematically compare the sensitivity to reversals
of fine gratings with the LN model performance across multiple

ganglion cells, we extracted two measures from a cell’s responses
to the reversing gratings. First, to assess the spatial scale at which
a cell becomes sensitive to the grating as revealed by a sizeable
response peak (Krieger et al., 2017), we examined the cell’s peak
firing rates for different grating bar widths, fitted this relation-
ship with a logistic curve, and used the curve’s midpoint as a
measure of spatial scale (Fig. 4G,H). Second, to assess how non-
linear spatial integration contributes to the overall strength of the
response at different spatial frequencies, we compared the
response Fourier components for the stimulus frequency (F1)
and for twice that frequency (F2, frequency-doubled component,
corresponding to responses for both reversal directions). Large
F2 amplitudes, compared with F1, are indicative of nonlinear
spatial-integration effects (Hochstein and Shapley, 1976) at the
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level of spike counts. We then computed a nonlinearity index as
the ratio of the maximal F2 amplitude (over grating widths and
phases) and the maximal F1 amplitude (see Materials and
Methods).

This analysis showed that the spatial scale was rarely cor-
related to the LN model performance in individual experi-
ments (median Spearman’s p = 0.15, 2 of 12 experiments had
p <0.05; example in Fig. 4H, left); and for the entire dataset,
this correlation was weak, albeit significant (Spearman’s p =
0.11, p=0.002, n=697; Fig. 4H, right). Thus, sensitivity to
reversals of high spatial frequency gratings, typically taken as
a sign for nonlinear spatial integration, does not generally
imply failure of the LN model. Indeed, many cells that start
responding already for fairly fine spatial gratings (small spa-
tial scale) showed remarkably good model performance as
illustrated by the example in Figure 4E.

By contrast, the relative amplitudes of the F1 and F2 response
components predicted model performance much better. The
nonlinearity index that was computed from their ratio was nega-
tively correlated to LN model performance under natural images
both in single experiments (median Spearman’s p = —0.37, 8 of
12 experiments had p < 0.05; example in Fig. 4K, left) as well as
in the whole population (Spearman’s p = —0.34, p<107,
n=697; Fig. 4K, right). Thus, the relative degree of nonlinear
spatial integration as measured by the F2 response component is
a better indicator of the importance of nonlinear spatial integra-
tion under natural images than the mere sensitivity to spatial
gratings.

The responses of the sample cells in Figure 4 illustrate this dif-
ference between the sensitivity to fine spatial gratings and relative
size of nonlinear response components. The cells of Figure 4A, B
were both sensitive already to reversing gratings of bar widths of
30 pm (Fig. 4G), indicative of nonlinear RFs. Yet, although initial
response peaks might be similar, leading to similar F2 response
components for the two cells (Fig. 4], bottom), responses for the
second cell were more sustained with higher spike count when
net-coverage of the RF with preferred contrast was larger (see
Fig. 4B, arrows). Thus, the responses of this cell contain also a
considerable linear component even for fairly fine spatial gra-
tings, as reflected by a higher F1 response component (Fig. 4],
top). The resulting lower nonlinearity index matches the better
performance of the LN model for this cell. Although the linear
response component may not stand out in the response patterns
under reversing gratings, it may dominate the spike count
responses under natural images, which contain relatively larger
mean luminance signals because of the abundance of power in
low spatial frequencies. Thus, even cells with clear sensitivity to
fine spatial gratings and a large F2 response component under
reversals may display relatively good LN model performance.

While reversing gratings are a typical stimulus used to test for
spatial nonlinearities, they differ from the flashed natural images
not only in their spatial structure, but also in their temporal dy-
namics. This might contribute to the differences observed
between responses to gratings and to images. To test this, we
therefore also applied flash-like presentations of gratings in some
of our recordings to provide a comparable stimulation time
course as for the natural images. We found that results were
quite similar to those obtained with contrast-reversing gratings
and led to the same conclusions. In particular, spatial scales and
nonlinearity indices were correlated between the two grating ver-
sions (Spearman’s p = 0.50, p < 10>, for spatial scales, Fig. 41,
left; and p = 0.74, p < 10> for nonlinearity indices, Fig. 4L, left).
Furthermore, similar to reversing gratings, spatial scales from
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flashed gratings were not informative about LN model perform-
ance, displaying no significant correlation (Spearman’s p = 0.15,
p=0.11, Fig. 41, right), whereas nonlinearity indices were nega-
tively correlated to LN model performance (Spearman’s p =
—0.55, p <10, Fig. 4L, right). This suggests that it was indeed
the different spatial structure between natural images and gra-
tings and not their temporal profiles that led to different nonlin-
ear characteristics of some cells under these two stimulus types.

Although we found that LN model performance under natu-
ral images and the nonlinearity index from gratings are corre-
lated, there is considerable remaining variability across cells
around this relation, potentially stemming from drawbacks of
the classical analysis with contrast-reversing gratings. First, for
ON-OFF cells, the analysis cannot distinguish between nonlinear
integration over space or over ON-type versus OFF-type inputs,
as both phenomena can lead to large F2 components. Second,
the analysis primarily detects that some rectification of nonpre-
ferred contrasts exists (as effects of preferred and nonpreferred
contrast do not cancel out), but is not fully determined by the
degree of rectification and does not provide information about
how contrast signals at different locations inside the RF are
combined.

Responses to contrast combinations inside the RF reveal the
components of natural SC sensitivity

To overcome the shortcomings of classical contrast-reversing
grating stimulation and explore the relationship between SC sen-
sitivity and LN model performance more systematically, we
designed a stimulus that tests a range of contrast combinations
by flashing checkerboards on the retina with different light inten-
sities for the two sets of alternating checkerboard tiles. The idea is to
independently stimulate two separate sets of spatial subunits within
a cell's RF with different inputs (Bolinger and Gollisch, 2012;
Takeshita and Gollisch, 2014). This allows comparing responses at
different contrast levels of spatially homogeneous stimulation, stim-
ulation of only one spatial stimulus component, or stimulation with
opposite contrast of the two spatial components.

Concretely, we applied a batch of varied checkerboards (Fig.
5A, top), whose Contrasts A and B for the two sets of tiles, or
spatial inputs, systematically covered the stimulus space of pairs
of contrast values (Fig. 54, bottom right) to explore a wide range
of contrast combinations. To directly compare responses
between artificial and natural stimuli, we flashed the contrast
pairs for 200 ms each (the same duration as for the natural
images) in a pseudorandom sequence, collecting 4 or 5 trials per
pair. The subfields of the checkerboard spanned 105 or 120 um
to the side, approximately half of the average mouse RF center,
to provide a strong, yet spatially structured stimulus inside the
RF.

To visualize the responses for different contrast combina-
tions, we extracted the average spike counts over 250 ms after
stimulus onset, equivalent to the response measure under natural
images, and displayed them as color maps over the stimulus
space of contrast pairs (Fig. 5B, middle row). We then calculated
iso-response contour lines (Fig. 5B, bottom row), which trace
out those contrast pairs that led to the same response (here num-
ber of spikes). The shape of the iso-response contours can reveal
whether stimulus integration is linear or nonlinear and is indica-
tive of the type of subunit nonlinearity (Bolinger and Gollisch,
2012; Maheswaranathan et al., 2018). Notably, the contours are
independent of any output nonlinearities that transform
responses after stimulus integration has taken place, such as
thresholding and saturation in the spike generation process
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Stimulation with contrast combinations reveals nonlinearities in spatial input integration. A, Depiction of the applied stimulus space, comprising flashed checkerboards with con-

trast combinations (A, B) sampled along different directions in stimulus space. Bottom right, Dots in the stimulus space represent all contrast combinations applied in the experiment. The con-
trast combination identified by the red circle corresponds to the example on the left, which shows a 2 x 2 cutout from the stimulus frame shown on top (marked by the red square). B, Top,
RF center outlines of seven sample ganglion cells, relative to the stimulus layout, with tiles for Contrast A and B shown in white and black, respectively. Middle, Color-coded average spike
counts for all tested contrast pairs in the stimulus space. Bottom, Iso-response contours in the stimulus space for three selected spike counts (at 30%, 50%, and 70% of the maximum spike
count), indicated by the number on the contour and the contour’s color. Contour shapes are largely invariant to the selected response level. C, Top, Example frames of the locally sparse stimu-
lus. Bottom, Display of the region (dashed red line) that was excluded from further selection of stimulus locations around an already selected location (left). Distribution of distances from the
RF midpoint to the center point of the closest grid square (n = 404), normalized by the RF radius. D, Same as in B, but for the locally sparse stimulus. Contour lines are shown for the same

spike counts as in B.

(Gollisch and Herz, 2012). Linear integration of the two inputs,
for example, leads to straight contour lines, independent of any
subsequent nonlinear transformation of the summed inputs.
Curved iso-response contours, on the other hand, reflect nonlin-
ear stimulus integration, and their shape can provide informa-
tion about the type of nonlinearity, as discussed below.

The iso-response analysis under flashed checkerboards
revealed a variety of spatial integration profiles among different
RGCs. We found both ON and OFF varieties of nonlinear cells
with contour lines curving convexly around the origin (Fig. 5B,
Cells 1 and 2). This nonlinear signature may result from an ex-
pansive transformation of local signals, such as by a threshold-
quadratic function (Bolinger and Gollisch, 2012) or by a sigmoid
with high threshold (Maheswaranathan et al., 2018). Quadratic
integration of inputs A and B, for example, leads to circular (or
elliptic) parts of the contour lines, as A* + B> = const is the circle
equation. Furthermore, contours that run parallel to the axes in
the quadrants where the stimulus components have opposite
sign indicate a rectifying threshold, as one of the two input com-
ponents can apparently vary without changing the response
level.

We also found linear ON and OFF ganglion cells, as identified
by their straight contour lines (Fig. 5B, Cells 4 and 5).
Furthermore, our approach allowed us to visualize the spatial

integration profiles of ON-OFF cells, and distinguish between
spatially nonlinear and linear ON-OFF cells (Fig. 5B, Cells 3 and
6). Linear ON-OFF cells responded mostly to net-increases or
decreases of light intensity, but not when the two contrast signals
cancelled each other, leading to straight, parallel contour lines
(Cell 6). On the other hand, nonlinear ON-OFF cells often had
closed or nearly closed contour lines, corresponding to strong
responses also for contrast combinations with opposing signs
(Cell 3). Finally, we identified a unique nonlinear spatial integra-
tion profile in some cells, characterized by contour lines curving
concavely away from the origin, coming closest to the origin on
the diagonal of equal contrast for A and B (Fig. 5B, Cell 7). Such
a profile indicates a particular preference to a spatially homoge-
neous change in light level, as a given response level can be
reached with comparatively little contrast when both spatial
components are stimulated in unison. We mainly found such
profiles for OFF-type ganglion cells, but occasionally in ON-type
cells as well (6 of 27 cells were ON-type). Cells with similar pref-
erence for homogeneous illumination of the RF have previously
been observed in the salamander retina (Bolinger and Gollisch,
2012).

For comparison, we also devised a local version of checker-
board flashes to assess potential contributions of the RF sur-
round to nonlinear spatial integration. Here, the display of each
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contrast combination was spatially restricted to
a patch of 2x 2 tiles of the checkerboard,
which roughly corresponds to typical RF center
sizes. To nonetheless cover the entire recording
area and obtain sufficient sampling of contrast
combinations, multiple randomly chosen
patches, obeying local sparsity (Hawrylycz et
al,, 2016; de Vries et al., 2020), were displayed
simultaneously (Fig. 5C), and fewer contrast
combinations were sampled compared with
the full-field version of the stimulus. For
further analysis, we selected for each cell the
patch location closest to the RF center. This
generally lay not further away than one RF
radius (Fig. 5C, bottom right), indicating
good overlap of the analyzed patch location
with the RF center. Furthermore, the stimu-
lus patch did not need to fill the RF center to
trigger robust responses. Also, precise cen-
tering on the RF was not required to make
the two stimulus components similarly
effective. If, say, a tile of Component A was
closer to the RF midpoint than the other
three tiles and thus more effective in influ-
encing the response, this was approximately
balanced by the second tile of Component A
being further away from the midpoint than
the two tiles of Component B.

Using this local version of the flashed
checkerboards, we found that spatial integra-
tion profiles, as captured by the shape of the
contour lines in stimulus space, were qualita-
tively similar under local stimulation compared
with full-field stimulation (Fig. 5D). This indi-
cates that it is the nonlinear stimulus integra-
tion in the RF center that determines the shape
of the contour lines. As the examples show, this
shape can deviate from straight lines in differ-
ent ways. Rectification of nonpreferred inputs,
for example, becomes visible by how the con-
tour line bends as it progresses from the quad-
rant in stimulus space that corresponds to
preferred contrast for both stimulus compo-
nents (top right quadrant for ON cells; bottom
left for OFF cells) to the two neighboring quad-
rants that combine positive and negative con-
trast. In addition, there is also nonlinear
integration of preferred contrast, which is visi-
ble in a nonlinear shape of the contour line
inside the quadrant that corresponds to pre-
ferred contrast of both stimulus components.

To quantify these nonlinear signatures,
we devised two corresponding indices as
explained in Figure 6. We calculated a rec-
tification index (RI, Fig. 6A) by comparing
responses to flashes where both components
had opposing, equal-magnitude contrast (here
60%; for comparison with different contrast levels,
see Fig. 6B,C) with responses when only a single
stimulus component was used (Molnar et al.,

2009). Full rectification leads to equal responses for both configura-
tions and an index of unity, whereas linear integration would make
the opposing-contrast configuration effectively a null stimulus,
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Schematic depiction of how rectification indices were computed from responses to different contrast combinations and
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tiles had opposing contrast (here 0.6 and —0.6) and when only one component was used (0.6 and 0). B, Comparison
of full-field rectification indices calculated for 30% and 60% contrast. C, Rectification indices for different contrast lev-
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(defined as data points >1.5 times the interquartile range away from the box). D, Same as in A, but for the Cl. The
(I was computed by comparing the responses when stimulation was homogeneous (here both contrast values at 0.3)
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the equality line. I, Same as in H, but for convexity indices.

resulting in no response and an index of zero. Similarly, we com-
puted a convexity index (CI, Fig. 6D) by comparing responses from
using just one spatial input at a specific contrast level (again 60%;
compare Fig. 6E,F) with responses from using both inputs at half
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0.59, p < 107), as obtained from full-field stim-
ulation (Fig. 7A,C, top). Similar results were
also found for the indices obtained from local
stimulation (Fig. 7B,D, top; Spearman’s p =
0.75, p<<10~" for rectification and p = 0.49,
p <107 for convexity). In line with the analysis

of SC sensitivity, LN model performance for natu-
ral images also displayed a clear dependence on the
rectification indices (Fig. 7A,B, bottom) from both
full-field (Spearman’s p = —0.71, p< 107°) and
local stimulation (Spearman’s p = —0.73, p < 1072).
This relationship was much more pronounced than
that between LN model performance and the nonli-
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Figure 7.  Spatial input nonlinearities correlate with SC sensitivity and model performance. A, Relation of the

SC sensitivity (top) and LN model performance (bottom), measured with natural images, to the full-field RI for all
recorded cells (n =700) from 13 retinas (9 animals). B, Same as in A, but using the data from the local checker-
board flash stimulus (n = 289) from 6 retinas (4 animals). ¢, D, Same as in A, B, but for the CI.

that contrast level. A CI of zero corresponds to linearity (equal
responses for a single component at full contrast and for two
components at half contrast), whereas values smaller or larger
than zero correspond to increased or decreased preference for
homogeneous stimuli, respectively. Over the population of all
recorded cells, the two indices were correlated (for the full-
field indices, see Fig. 6G; Spearman’s p = 0.68, p <107,
n=700), indicating that the two nonlinearity components of-
ten coexist and may reflect the same mechanistic origin.

To systematically compare full-field and local spatial inte-
gration profiles, we compared RI and CI across the two con-
ditions. Although both indices displayed a significant change
between local and full-field stimulation (Wilcoxon signed-
rank test, p <10 for both RI and CI, n=289), the values
were correlated between the two conditions (Spearman’s p =
0.82, p <10~ for the RI and Spearman’s p = 0.48, p <10
for the CI), indicating that cells retained their relative char-
acteristics of nonlinear spatial integration, in particular
regarding rectification (Fig. 6H). One subtle change was that,
for many cells with CI > 0 in the full-field condition, the
index became smaller for the local stimulus (Fig. 61), corre-
sponding to a less outward-bulging shape of the contour line
in the quadrant of preferred contrast (visible in the first two
examples when comparing Fig. 5B and Fig. 5D). Thus, spa-
tially homogeneous stimulation was less effective for these
cells under full-field conditions compared with local stimula-
tion because relatively larger contrast values were needed
under homogeneous full-field stimulation to reach the acti-
vation level of the contour line. This may be explained by a
linear component of spatial integration in the surround. A
linear surround component would provide relatively more
surround suppression under spatially homogeneous stimula-
tion than a corresponding stimulation of only one spatial
component and thereby decrease sensitivity to spatially ho-
mogeneous stimuli in the full-field condition.

How are the extracted components of nonlinear spatial inte-
gration related to responses under natural images? We first
investigated the relationship to the SC sensitivity, as deter-
mined from the responses to natural images (compare Fig.
3C-E), and found that it was correlated with both the RI
(Spearman’s p = 0.73, p <10°) and the CI (Spearman’s p =

nearity indices extracted from contrast-reversing
gratings (compare Fig. 4K). The convexity indices
from full-field (Spearman’s p = —0.56, p<10°)
and local stimulation (Spearman’s p = —0.50,
p<10"") were also correlated to LN model per-
formance (Fig. 7C,D, bottom), but to a smaller
extent than the rectification indices. We thus con-
cluded that the degree of rectification of spatial
inputs in the RF center is a primary factor that
shapes ganglion cell responses to natural images and
determines whether responses can be captured by the LN model.

The spatial scale of contrast sensitivity for natural images

We next asked on what spatial scale nonlinearities are relevant
for encoding natural images. To do so, we compared responses
under original natural images and blurred versions (Fig. 8), simi-
lar to previous analyses with white-noise patterns (Schwartz et
al., 2012; Jacoby and Schwartz, 2017; Mani and Schwartz, 2017;
Johnson et al., 2018). The blurring with a given spatial scale cor-
responds to low-pass filtering and removes fine spatial structure
below this scale while keeping the mean intensity over larger
regions approximately constant. At a blurring scale close to a
cell’s RF center diameter, blurring should diminish SC within the
RF while keeping the mean light intensity approximately
unchanged. Figure 8A-C compares responses to natural images
and their blurred versions for three sample cells. At a scale of
240 pm, the blurring generally reduced responses for the first cell
(Fig. 8A, middle; Wilcoxon signed-rank test, n=40 images,
p<1077), but left responses for the second largely unaffected
(Fig. 8B, middle; p=0.18), and for the third cell even led to
increased spike count (Fig. 8C, middle; p = 0.02).

To quantify the blurring effects for all cells, we calculated the
mean response difference between the blurred and the original
version of the images, normalized by the cell's maximum
response over all images. This spike count difference was corre-
lated to LN model performance for natural images (Fig. 8D) in
both individual experiments (median Spearman’s p = 0.65, 9 of
9 experiments had p<0.01), and in the pooled population
(Spearman’s p = 0.68, p<<10>). Thus, cells that were more
strongly affected by the blurring generally displayed worse LN
model performance and had a stronger dependence of spike
count on SC. This confirms the effect of spatial structure inside
the RF for determining responses to natural images in particular
ganglion cells.

When analyzing responses across different blurring scales, we
observed that cells sensitive to SC reduced their spike counts al-
ready at scales smaller than their RF center (Fig. 84, bottom). To
quantify the spatial scale of blurring sensitivity for each cell, we
measured the similarity between responses to original and
blurred images by calculating the corresponding coefficient of
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mals. Cells from A—C are highlighted.

determination (R®), which is unity when responses with and
without blurring are identical, and falls off toward zero as
responses to blurred images deviate more and more from the
original responses. Analogous to the analysis of contrast-revers-
ing gratings, we fitted logistic functions to the decay of R* with
blurring scale and defined the spatial scale as the midpoint of the
logistic function. The obtained spatial scales ranged from 100 to
500 um (Fig. 8E) and were only weakly correlated with the spa-
tial scales measured with contrast-reversing gratings (Spearman’s
p = 0.12, p=0.007). And unlike the spatial scale obtained from
reversing gratings, the spatial scale from blurred images (normal-
ized by the RF center diameter) was strongly related to LN model
performance (Fig. 8F) in both individual experiments (median
Spearman’s p = 0.60, 9 of 9 experiments had p < 0.01) and in the
pooled population (Spearman’s p = 0.61, p <10 ).

SC sensitivity differs among RGC classes

The analyses so far have shown that the characteristics of spatial
integration are consistent for individual ganglion cells across dif-
ferent stimulus conditions, including natural and artificial stim-
uli. We thus hypothesized that they reflect cell type-specific
properties. To test this hypothesis, we looked at three readily
identifiable cell classes, detected through a standard set of artifi-
cial stimuli.

First, we focused on IRS cells, which form a single functional
cell type in the mouse retina and which correspond to transient
OFF-a ganglion cells (Krishnamoorthy et al., 2017). We identi-
fied IRS cells by their characteristic response peaks to rapid shifts
of a grating with no net displacement of the grating position
(Fig. 9A). As expected, IRS cells were all OFF-type, with fast

temporal filters and tiling RFs. For these cells, all our spatial inte-
gration measures displayed relatively narrow distributions.
LN model performance for IRS cells was high (Fig. 9D, left;
median =0.94, n=29), suggesting linear spatial integration.
However, rather than showing no sensitivity to SC, the distri-
bution of SC sensitivity for IRS cells was significantly shifted
toward negative values (Fig. 9D, right; median = —0.11, n =29,
Wilcoxon sign-rank test, p=0.005). This indicates that IRS
cells had a particular preference for spatially homogeneous
natural stimuli. Specifically, about half (14 of 29) of the IRS
cells were inversely sensitive to SC of natural images, as identi-
fied by a significant negative slope comparing differences in
SC and in spike count for image pairs with similar mean illu-
mination (compare Fig. 3C-E). In terms of spatial integration
measured by the checkerboard flashes, most IRS cells showed
profiles, such as the one in Figure 5B (Cell 7), with low rectifi-
cation (median=0.12, n=28) and slightly negative convexity
indices, yet not significantly different from zero (median =
—0.06, Wilcoxon sign-rank test, p=0.07).

Second, we tested DS ganglion cells (Fig. 9B), detected
through their responses to drifting gratings. DS cells had either
ON- or OFF-type temporal filters (Fig. 9B, right top), with OFF-
type filters likely corresponding to ON-OFF DS cells. DS cells
with OFF-type filters typically showed U-shaped nonlinearities
in LN models obtained from white-noise stimulation (data not
shown) and responses under light-intensity steps to both increas-
ing and decreasing intensity. DS cells generally displayed rather
nonlinear spatial integration for natural images (Fig. 9D), with
low LN model performance (median=0.71, n=46) and signifi-
cant SC sensitivity (median=0.41, n=46, Wilcoxon sign-rank
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n =36 of 41 OFF OS cells, and clustering was performed with these cells only. For the other cells, responses to checkerboard flashes were not recorded, and the cells were assigned to the group
whose cluster centroid was closest for the two available measures, LN model performance and SC sensitivity. G, Distributions of differences in preferred orientation for pairs of 0S cells that

belonged to either the same group (“within group”) or to different groups (“between group”).

test, p<<107). As expected for cells sensitive to SC, their full-
field rectification indices were rather large (median=1.46,
n=31), and their convexity indices were significantly larger than
zero (median=0.25, n =31, Wilcoxon sign-rank test, p < 1073).
Thus, DS cells showed nonlinear spatial integration under both
natural and artificial stimuli.

Finally, using drifting gratings with higher speed, we identi-
fied OS ganglion cells (Fig. 9C). We found both ON- and
OFF-type OS cells, possibly corresponding to the recently
described different classes in the mouse retina (Nath and
Schwartz, 2016, 2017). OS cells displayed characteristics of
spatial integration that lay in between IRS and DS cells (Fig.
9D). Compared with DS cells, for example, OS cells showed
better LN model performance (Wilcoxon rank-sum test,
p <1077), yet many cells still revealed poor model predictions

(median =0.85, n=63). Likewise, SC sensitivity was lower
than for DS cells, yet still significantly larger than zero (median =
0.15, n=63, Wilcoxon sign-rank test, p<<10~>). This was also
reflected in the OS cells’ responses to the checkerboard flashes, with
lower full-field rectification (median=0.46, n=>50) and convexity
indices (median=0.13, n=50) compared with DS cells, yet with
both indices significantly larger than zero (Wilcoxon sign-rank test,
p <107 for rectification and p = 0.005 for convexity indices).
Examining the distributions of these measures for OS cells
more closely, we observed that they appeared to be bimodal (Fig.
9E), which may indicate that different types of OS cells differ in
how nonlinear their spatial integration is. Indeed, we found that
ON-type OS cells showed fairly linear spatial integration charac-
teristics (Fig. 9E), whereas OFF-type OS cells could be clustered
into two separate groups: one with linear spatial integration and
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good LN model performance and another with nonlinear spatial
integration and poorer LN model performance (Fig. 9F).
Interestingly, the linear and nonlinear OFF OS cells also differed
systematically in their preferred orientations (Wilcoxon rank-
sum test, p =0.006; Fig. 9G); cells from different clusters (i.e., one
linear and one nonlinear cell) often had orthogonal preferred
orientations, whereas cells from the same cluster more often also
had similar preferred orientations. Although we do not know the
preferred orientations of these cells in absolute retinal coordi-
nates, our data suggest that linear and nonlinear OFF-type OS
cells have different preferred orientations and might correspond
to the previously described classes of OS cells with preference for
horizontal or vertical orientations (Nath and Schwartz, 2016,
2017).

Discussion

In this work, we directly addressed the question whether mouse
RGC responses to natural images are consistent with a linear RF.
This was the case only for a subset of cells (Fig. 1), as SC inside
the RF influenced responses for many cells beyond the mean
stimulus intensity (Fig. 3). Interestingly, classical identification of
sensitivity to contrast-reversing high-frequency gratings pro-
vided only a moderate prediction of which cells are affected by
RF nonlinearities under natural images (Fig. 4). We therefore
devised a new stimulus to characterize subunit nonlinearities in
detail for many simultaneously recorded cells, revealing consid-
erable variability in the characteristics of nonlinear stimulus inte-
gration (Figs. 5, 6) and providing a better prediction of the
relevance of RF nonlinearities for natural images (Fig. 7).
Experiments with blurred natural images corroborated that non-
linear RFs affect responses under natural images and that specific
ganglion cells are inversely sensitive to SC (Fig. 8). Finally, the
relevance of nonlinear RFs appears to be cell type-specific and
may help differentiate subtypes within broader functional cell
classes (Fig. 9).

Diversity in natural stimulus encoding among the retina’s
output channels

Using a simple linear RF model, we observed multiple facets of
natural image encoding in the mouse retina. We found ganglion
cells that were consistent and others that were inconsistent, to
different extents, with linear RFs. Of the few previous studies
with natural stimuli in the mouse retina, one supports generally
linear RFs in mouse ganglion cells (Nirenberg and Pandarinath,
2012). However, both spatially linear and nonlinear ganglion cell
types had been identified in the mouse retina with artificial stim-
uli. For example, the PixON (Johnson et al., 2018) or the sus-
tained OFF-a cells (Krieger et al., 2017) appear to have linear
RFs, whereas nonlinear RF properties can be detected for ON-
delayed or ON-OFF DS cells (Mani and Schwartz, 2017). Here,
we showed that mouse DS cells, like several other ganglion cells,
are spatially nonlinear also for natural images.

Related investigations with natural images in other species
have shown, for example, that the macaque retina also contains
cells with linear as well as nonlinear RFs (Turner and Rieke,
2016). Our work demonstrates that this also holds for mouse ret-
ina where, moreover, we identify a surprising diversity of spatial
integration, including linear and nonlinear cells within broader
cell classes (e.g., within ON-OFF or OS cells) as well as cells that
are inversely sensitive to SC. In rabbit retina, ganglion cell
responses to natural images had also been found to deviate from
linear RFs in different ways (Cao et al,, 2011). Similar to our
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approach, this study used the dependence of image-evoked
responses on the local variability of pixel intensities beyond the
mean intensity as a signature of nonlinear spatial integration
under natural images. Cao et al. (2011) then went on to demon-
strate that the skewed distribution of intensity values in natural
scenes affects ganglion cell responses via this texture sensitivity,
whereas our work here focuses on characterizing the features
and variability of spatial nonlinearities across ganglion cells.

The degree and type of the spatial nonlinearity appear to differ
between RGC types, yet functional cell-type classification schemes
rely mostly on linear model components, such as RF size and tem-
poral filter shapes (Chichilnisky and Kalmar, 2002; Baden et al.,
2016; Franke et al, 2017; Jouty et al, 2018; Ravi et al, 2018;
Rhoades et al., 2019). Including characteristics of nonlinear spatial
integration, such as LN model performance, subunit rectification,
or spatial scale of nonlinear integration, may help to better distin-
guish cell types. For example, the mouse retina contains at least four
subtypes of OS cells, two of which (ON- and OFF-type) are tuned
to horizontal and the other two (again ON and OFF) to vertical ori-
entations (Nath and Schwartz, 2016, 2017). Here, we found distinct
groups of OS cells with linear and nonlinear spatial integration, sug-
gesting that OS subtypes might differ not only in contrast prefer-
ence or preferred orientation, but also in how they integrate SC,
which provides additional information for separating and identify-
ing subtypes of OS cells.

When considering that synaptic transmission is often inher-
ently nonlinear, the occurrence of linear RFs may actually be sur-
prising (Shapley, 2009). In the salamander retina, for example,
nonlinear ganglion cell RF centers and surrounds seem to be the
norm (Bolinger and Gollisch, 2012; Takeshita and Gollisch,
2014). Linear RFs may be a property of mammalian retinas, as
they have been described also in cat, rabbit, and macaque retinas
(Enroth-Cugell and Robson, 1966; White et al., 2002; Petrusca et
al.,, 2007; Molnar et al., 2009), and may have specifically evolved
to provide raw information about illumination patterns to the
cortex for further processing (Roska and Meister, 2014).

A cell class with particular sensitivity to spatial homogeneity
of natural images

We identified cells in the mouse retina with particular sensitivity
to spatially homogeneous regions in the images. Specifically,
these cells were inversely sensitive to SC: although well described
by an LN model, they respond more strongly to homogeneous
stimuli than to structured stimuli of equal mean light level. This
feature is not to be confused with the characteristics of sup-
pressed-by-contrast cells (Levick, 1967; Tien et al., 2015; Jacoby
and Schwartz, 2018), which are also known as uniformity detec-
tors, and which are suppressed below baseline activity by (tem-
poral) contrast. The homogeneity-preferring cells identified here,
on the other hand, are generally activated by a new image and
particularly strongly so if a spatially homogeneous region of pre-
ferred contrast falls onto the RF. This is reminiscent of the ho-
mogeneity detectors that have been described in the salamander
retina (Bolinger and Gollisch, 2012), although the latter showed
rectification of nonpreferred contrasts, unlike the homogeneity-
sensitive cells described here. These cells, through their particular
sensitivity to homogeneous stimuli, could provide information
about image focus; blurring through defocusing will increase ac-
tivity for this cell type and simultaneously decrease activity for
spatial-contrast-sensitive cells, such as ON-delayed cells (Mani
and Schwartz, 2017), which have been implicated in focus-sens-
ing functions. A readout based on activity differences between
cells of opposite tuning under image blur could provide a code
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for image focus that is particularly robust, for example, to varia-
tions in contrast and spatial structure (Kithn and Gollisch, 2019).

IRS cells appear to be part of the homogeneity-sensitive
cells. The IRS cells correspond to transient OFF-a cells
(Krishnamoorthy et al.,, 2017) and should therefore also match
the PV5 ganglion cells, which have been shown to be approach-
sensitive (Miinch et al.,, 2009). It seems that approach sensitivity,
image-recurrence sensitivity, and sensitivity to homogeneous
natural images may rely on the same circuit component: strong,
local (glycinergic) ON-type inhibition, which transient OFF-«
cells are known to receive (van Wyk et al, 2009), and which
needs to be suppressed, perhaps below baseline level, by OFF-
type stimuli for maximal activity.

Assessing nonlinear spatial integration with artificial and
natural stimuli

The classical test for nonlinear spatial integration in the retina is
to check for frequency-doubled responses under contrast-revers-
ing spatial gratings whose spatial frequency is below the resolu-
tion of the linear RF (Hochstein and Shapley, 1976; Krieger et al.,
2017). Yet, we found that sensitivity to fine gratings is generally
not a good predictor for relevant spatial nonlinearities under nat-
ural stimuli, as measured by a failure of the LN model (Fig. 4).
Several aspects likely contribute to this discrepancy. Perhaps
most importantly, fine gratings isolate responses to high spatial
frequencies and therefore sensitively detect nonlinear response
components. Natural stimuli, on the other hand, have a broad
frequency spectrum, and linear responses to the prevalent low
frequencies may dominate the responses even when reversing
gratings reveal nonlinear spatial integration. In addition, analyses
under reversing gratings can be confounded by sensitivity to
both light increments and decrements in ON-OFF cells. Finally,
the high contrast typically used with reversing gratings may
emphasize nonlinear effects, since higher contrast makes nonli-
nearities more pronounced (Turner and Rieke, 2016). The differ-
ence in temporal structure between reversing gratings and
flashed images, on the other hand, did not seem to play a major
role (Fig. 4L,L).

Mechanisms of linear and nonlinear spatial integration
Nonlinear spatial integration as measured with gratings is attrib-
uted to the rectified excitation that bipolar cells provide to the
ganglion cell (Demb et al,, 2001). The same mechanism likely
also dominates the nonlinear response characteristics under nat-
ural images, as underscored by the relation between signal rectifi-
cation and LN model failure (Fig. 7). Biophysically, rectification
of bipolar cell signals seems to originate presynaptically from a
nonlinear dependence of vesicle release on calcium concentra-
tion in the synaptic terminal (Singer and Diamond, 2003; Jarsky
et al., 2011). The nonlinear integration of preferred contrast sig-
nals, which we quantified in the CI, may have a similar origin, as
vesicle exocytosis and postsynaptic currents increase suprali-
nearly with increasing calcium concentration, at least for moder-
ate levels (Jarsky et al., 2011).

Yet, the degree of nonlinear spatial integration varied widely
across cells, suggesting different levels of partial rectification in
the signal transmission from bipolar to ganglion cells. What is
the origin of this variability in the degree of rectification among
ganglion cell types? Presynaptically, baseline activity of bipolar
cell synapses may vary, allowing some synapses to modulate
transmitter release in both directions and precluding others from
decreasing activity much below baseline, thus causing rectified
transmitter release. For example, regarding inputs to Y-type
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ganglion cells in guinea pig and mouse, the basal glutamate
release is higher at the more linear ON (compared with OFF)
bipolar cell terminals (Zaghloul et al., 2003; Borghuis et al,
2013). Further mechanisms, such as postsynaptic receptor dy-
namics and inhibition, may also contribute in shaping signal
transmission between bipolar and ganglion cells. Crossover inhi-
bition from glycinergic amacrine cells (Werblin, 2010), for exam-
ple, can provide response suppression below baseline for
nonpreferred contrast and thereby (partially) linearize the recti-
fied pure bipolar cell signals. The crossover inhibition can act on
bipolar cell terminals (Molnar et al., 2009) or directly on the gan-
glion cell, and its gain, relative to the gain of the preferred-con-
trast excitation, would determine the degree of nonlinearity in
spatial integration.

The spatial scale of nonlinear spatial integration that we iden-
tified through the presentation of blurred images (100-120 pm;
Fig. 8) is somewhat larger than typical bipolar cell RFs in mouse
retina of ~40-60 pm (Berntson and Taylor, 2000; Schwartz et al.,
2012; Franke et al., 2017). This might be an effect of the spatial
correlations in natural images, which reduce the impact of blur-
ring. Furthermore, electrical coupling between bipolar cells may
increase the spatial scale, especially for stimuli with considerable
spatiotemporal correlations (Kuo et al., 2016).

Limitations of this study

The lack of anatomic or genetic information often complicates
the clear identification of individual ganglion cell types in extrac-
ellular multielectrode array recordings. On the other hand, these
high-throughput recordings can provide an overview that high-
lights the diversity of response properties in a way not easily pos-
sible with targeted single-cell recordings. Another issue with
multielectrode array recordings is the distribution of recorded
ganglion cell RFs over the broad range of the recording sites.
Under natural images, different cells are stimulated by different
image regions, which contributes variability among cells of the
same type, as some cells may experience more spatial structure
within the presented images than others. The lack of RF informa-
tion may also present a problem for artificial stimuli that should
target, for example, the RF center. However, our application of
locally sparse stimulus presentations shows that this can be over-
come, allowing high-throughput investigations of center-sur-
round effects (Figs. 5-7), as previously used in single-cell patch-
clamp recordings (Turner et al., 2018).

To analyze the cells’ sensitivity to spatial structure beyond
mean light intensity, we analyzed the effect of SC within the RF
center, defined via the variance of pixel intensities. This simple
and straightforward quantification of spatial structure fails to
capture which aspects of natural images provide the most rele-
vant SC, which may result, for example, from object boundaries,
textures, or gradients in light intensity. Once sensitivity to SC is
established, follow-up investigations may ask which of these nat-
ural image features might be most relevant for mediating the SC
effects.

We used flashed image presentations because our study was
focused on spatial integration. Thus, while the applied stimuli
had natural spatial structure, they lacked, for example, motion
components that are induced by eye movements. This simplifica-
tion of actual natural stimuli allowed us to specifically target spa-
tial nonlinearities without having to explicitly consider the
influence of temporal filtering and adaptation on the responses.
It seems likely that nonlinear spatial integration observed under
our flashed natural images will also shape responses to natural
movies. On the other hand, our approach is insensitive to
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nonlinearities triggered through specific temporal stimulus fea-
tures. For example, IRS cells, which we here reported as being
rather linear for the encoding of images flashed in isolation, can
reveal nonlinearities when rapid image transitions are considered,
for which disinhibitory interactions mediate a sensitivity to recur-
ring spatial patterns (Krishnamoorthy et al., 2017). Additionally, we
focused on a single light level, but spatial nonlinearities may change
with light level: sustained ON-a ganglion cells in the mouse retina,
for example, become more linear with decreasing light intensity
(Grimes et al., 2014).

The presentation of full-field natural images stimulates both
the RF center and surround. Our modeling approach aimed at
capturing effects of surround suppression by using a difference
of Gaussians as a spatial filter, which could contain positive and
negative values. Yet, this might not reflect the actual surround
strength under natural images because the surround might be
underestimated with spatiotemporal white noise (Wienbar and
Schwartz, 2018) and because the extraction of the spatial filter
from the spatiotemporal STA, which often lacks space-time sepa-
rability (Cowan et al., 2016), may further diminish the surround
component. We thus cannot exclude that disregarded surround
effects contribute to shortcomings of the LN model. However,
the following two arguments indicate that, regardless of sur-
round effects, nonlinear integration in the RF center is a main
factor in LN model performance. First, our SC sensitivity analysis
showed that across-cell differences in LN model performance
could be explained to a large degree by considering SC only in
the RF center. And second, rectification indices obtained from
the full-field and from the locally restricted checkerboard flashes
worked about equally well to explain the performance differences
of the LN model.

More generally, the good correspondence between measures
of spatial nonlinearity and LN model performance, in particular
the fact that cells with little SC sensitivity (Fig. 3) or rectification
(Fig. 7) displayed model performance near unity, supports the
suitability of our approach to apply a parameterized LN model
with fitted spatial filters and nonlinearities for assessing spatial
nonlinearities in the encoding of natural images. It also under-
scores the reliability of the recorded data, reaffirming that
observed variability in a cell’s response to different images results
from the cell’s differential activation by the images and not from
drift or rundown over the course of the long in vitro recordings.

Implications for neuronal modeling

Proposed improvements to LN-type models go in many direc-
tions (Latimer et al., 2019; Shi et al., 2019). Here we demon-
strated that the incorporation of sensitivity to fine spatial
structure into models (e.g., with spatial subunits) should be sig-
nificant for natural stimuli. We found that cells with low LN
model performance mostly showed nonlinear spatial integration
and that rectification of nonpreferred contrast in the RF center
was particularly important. This observation of the importance
of rectification agrees with results from nonlinear subunit mod-
eling of ganglion cells: in the macaque retina, the rectification of
subunits determines the degree of nonlinear integration under
natural images (Turner and Rieke, 2016); and in a model of sala-
mander RGCs under white-noise stimulation, threshold-linear
rectification of subunit signals worked nearly as well as more
elaborate, fitted shapes (Real et al., 2017). However, we here also
found that there is considerable variability in the type of subunit
nonlinearities with different degrees of rectification and convex-
ity as well as cells with inverse sensitivity to SC. This suggests
that not all cells will be well captured by a standard subunit
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model with summation over half-wave rectified local signals.
Our approach of analyzing SC and iso-response stimuli rather
than assessing the performance of an explicit subunit model
allowed us to capture this diversity. Furthermore, the checkerboard
flash stimulation introduced here can be used to efficiently estimate
the characteristics of subunit nonlinearities for many RGCs simulta-
neously. Given the recently developed techniques for estimating
subunit locations (Liu et al., 2017; Maheswaranathan et al., 2018;
Shah et al,, 2020), this paves the way for building more detailed
models for different ganglion cell types. Our results also indicate
that such cell type-specific approaches may be needed as there
might not be a satisfactory single “standard model” (Carandini et
al,, 2005).
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