Table 2.
Model | Description | Parameters per subject | Exceedance probability (session 2) | BIC (session 2) | BIC (session 1) |
---|---|---|---|---|---|
F1.1 | , | 2 | 0 | 3708 | 7697 |
F1.2 | , , | 3 | 0.71 | 3223 | 6690 |
F1.3 | , , | 3 | 0.29 | 5269 | 6892 |
F1.4 | , , | 3 | 0.0007 | 8470 | 14,367 |
F1.5 | , , , | 4 | 0 | 4328 | 8090 |
F2.1 | , , | 3 | 0.0005 | 4456 | 7843 |
F2.2 | , , , | 4 | 0 | 3369 | 7719 |
F2.3 | , , , | 4 | 0.0001 | 5140 | 11,841 |
F2.4 | , , , | 4 | 0 | 6211 | 12,620 |
F2.5 | , , , , | 5 | 0 | 5802 | 11,881 |
F3.1 | , , , | 4 | 0 | 4042 | 7076 |
F3.2 | , , , , | 5 | 0 | 3537 | 6971 |
F3.3 | , , , , | 5 | 0.0001 | 5307 | 12,009 |
F3.4 | , , , , | 5 | 0 | 6379 | 12,788 |
F3.5 | , , , , , | 6 | 0 | 5970 | 12,049 |
BIC, Bayesian information criterion. BIC scores are summed across subjects. Model F1.2 was favored across both sessions. All models have an inverse temperature parameter . κ, relative weighting parameter for others' benefits (altruistic preference) in models F1.1– F1.5; κ, weighting parameter for others' benefits in models F2.1–F2.5 and F3.1–F3.5; , weighting parameter for one's own costs in models F2.1–F2.5 and F3.1–F3.5; , weighting parameter for interaction between benefit and cost in models F3.1–F3.5; , power exponent which modulates the nonlinearity of others' benefits; , power exponent which modulates the nonlinearity of one's own costs.