Skip to main content
. 2021 Apr 14;41(15):3545–3561. doi: 10.1523/JNEUROSCI.1939-20.2021

Table 2.

Quality of model fits for computational models of altruistic decision-making in sessions 1 and 2

Model Description Parameters per subject Exceedance probability (session 2) BIC (session 2) BIC (session 1)
F1.1 κ,λ 2 0 3708 7697
F1.2 κ, α, λ 3 0.71 3223 6690
F1.3 κ, β, λ 3 0.29 5269 6892
F1.4 κ, α,λ 3 0.0007 8470 14,367
F1.5 κ, α, β, λ 4 0 4328 8090
F2.1 κ, m,λ 3 0.0005 4456 7843
F2.2 κ, m, α, λ 4 0 3369 7719
F2.3 κ, m, β, λ 4 0.0001 5140 11,841
F2.4 κ, m, α, λ 4 0 6211 12,620
F2.5 κ, m, α, β, λ 5 0 5802 11,881
F3.1 κ, m, p, λ 4 0 4042 7076
F3.2 κ, m, p, α, λ 5 0 3537 6971
F3.3 κ, m, p, β, λ 5 0.0001 5307 12,009
F3.4 κ, m, p, α, λ 5 0 6379 12,788
F3.5 κ, m, p, α, β, λ 6 0 5970 12,049

BIC, Bayesian information criterion. BIC scores are summed across subjects. Model F1.2 was favored across both sessions. All models have an inverse temperature parameter λ. κ, relative weighting parameter for others' benefits (altruistic preference) in models F1.1– F1.5; κ, weighting parameter for others' benefits in models F2.1–F2.5 and F3.1–F3.5; m, weighting parameter for one's own costs in models F2.1–F2.5 and F3.1–F3.5; p, weighting parameter for interaction between benefit and cost in models F3.1–F3.5; α, power exponent which modulates the nonlinearity of others' benefits; β, power exponent which modulates the nonlinearity of one's own costs.