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Abstract

This study assessed different methods (tracheal and choanal cleft swabs from individual

birds, and poultry dust as a population level measure) to evaluate the shedding kinetics

of infectious bronchitis virus (IBV) and Newcastle disease virus (NDV) genome in meat

chicken flocks after spray vaccination at hatchery. Dust samples and tracheal and choanal

cleft swabs were collected from four meat chicken flocks at 10, 14, 21 and 31 days post vac-

cination (dpv) and tested for IBV and NDV genome copies (GC) by reverse transcriptase

(RT)-PCR. IBV and NDV GC were detected in all sample types throughout the study period.

Detection rates for choanal cleft and tracheal swabs were comparable, with moderate and

fair agreement between sample types for IBV (McNemar’s = 0.27, kappa = 0.44) and NDV

(McNemar’s = 0.09; kappa = 0.31) GC respectively. There was no significant association for

IBV GC in swabs and dust samples (R2 = 0.15, P = 0.13) but NDV detection rates and viral

load in swabs were strongly associated with NDV GC in dust samples (R2 = 0.86 and R2 =

0.90, P<0.001). There was no difference in IBV and NDV GC in dust samples collected from

different locations within a poultry house. In conclusion, dust samples collected from any

location within poultry house show promise for monitoring IBV and NDV GC in meat chick-

ens at a population level and choanal cleft swabs can be used for detection of IBV and NDV

GC instead of tracheal swabs in individual birds.

1. Introduction

Infectious bronchitis (IB) and Newcastle disease (ND) are highly transmissible diseases that

cause substantial economic losses in the poultry industry [1, 2]. Infectious bronchitis is caused

by infectious bronchitis virus (IBV), a gammacoronavirus with a single-stranded positive

sense RNA genome [3]. Newcastle disease is caused by virulent strains of Newcastle disease
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virus (NDV), a paramyxovirus with a single-stranded negative sense RNA genome [4]. Infec-

tious bronchitis virus can be acquired by inhalation or direct contact with infected birds or

contaminated litter or equipment. Regardless of tissue tropism of strains, IBV initially infectes

the respiratory tract and the virus mainly replicates in the upper respiratory tract [5] causing

conjunctivitis, tracheitis, and ciliostasis [6]. IBV is excreted in respiratory aerosols and excreta

[5]. Birds can get infected with NDV by inhaling or ingesting contaminated dust, aerosols or

feces [7, 8]. ND affects the respiratory, gastrointestinal, nervous and reproductive systems [9]

and similarly to IBV, NDV is excreted in oropharyngeal secretions and excreta [10]. Newcastle

disease virus is relatively stable outside of the host and infectious NDV has been shown to sur-

vive in poultry houses for up to 16 days post depopulation of infected birds [11].

Vaccine and field strains of IBV and NDV have been detected in tracheal, oropharyngeal or

choanal cleft swabs for variable lengths of time post infection or vaccination. Different strains

of IBV were detected in tracheal tissue [12], and tracheal [13–17], choanal cleft [13, 18, 19] and

oropharyngeal swabs [20]. Similarly, NDV RNA has been detected from oral [21], oropharyn-

geal [22, 23] and tracheal [24] swabs. For detection of both viruses, choanal cleft and tracheal

swabs could be used as diagnostic samples. Choanal cleft swabs are less invasive and easier to

collect compared to tracheal swabs; however, to the best of the authors’ knowledge, a compari-

son on the sensitivity of detection of IBV and NDV nucleic acids for both sample types has not

yet been performed.

Regardless of the sample type chosen, disease incursion or vaccine uptake monitoring in

poultry flocks based on individual bird sampling requires collection of a large number of sam-

ples to achieve representativeness of the population, a process that is labour intensive and not

economical in large meat chicken flocks. A method based on population level sampling for

monitoring vaccine uptake or wild-type virus incursion of Marek’s disease virus using molecu-

lar testing of poultry dust has been used by the poultry industry in various countries [25–27].

More recently, this method has been used to monitor infectious laryngotracheitis virus vaccine

uptake in chicken farms [28–30]. PCR-based dust testing has advantages of ease of collection

by farm staff, increased bird welfare as it is a non-invasive sample, and a reduced number of

samples are necessary to represent a flock compared to individual sampling. In addition, the

viral genomic material is highly stable in dust with IBV genome stable for at least 4 months in

dust stored up to 37˚C [31], although it appears that viruses are rapidly inactivated in this sam-

ple type [32]. Dust based molecular approaches of flock screening and monitoring could be

extended for other poultry viruses such as IBV and NDV.

This study aimed to provide a proof of principle on the use of a poultry dust, a population

level sample, for evaluating the shedding kinetics of IBV and NDV genome in a vaccinated

flock compared to tracheal and choanal cleft swabs from individual birds. The specific objec-

tives were to 1. Determine the detection rates and load of IBV and NDV genome in tracheal

and choanal cleft swabs and dust samples collected from commercial meat chicken flocks fol-

lowing live vaccination at hatchery; 2. Assess the agreement between tracheal and choanal cleft

swabs in detecting IBV and NDV genomes; 3. Investigate the association of the detection rates

of IBV and NDV genome in individual swab samples and viral load in dust samples; 4. To

determine the effect of location of dust collection within poultry house on dust deposition rate

and IBV and NDV detection rates and load in dust.

2. Materials and methods

2.1 Ethics statement

The experimental protocol used in this study was approved by the University of New England

(UNE, Armidale, Australia) Animal Ethics Committee (AEC19-011). Swab samples were

PLOS ONE NDV and IBV detection in chicken swabs and poultry dust

PLOS ONE | https://doi.org/10.1371/journal.pone.0247729 April 16, 2021 2 / 11

study design, data collection and analysis, decision

to publish, or preparation of the manuscript. The

specific roles of these authors are articulated in the

‘author contributions’ section.

Competing interests: The authors have read the

journal’s policy and have the following competing

interests: MS and SA are paid employees of Baiada

Poultry Pty Limited. This does not alter our

adherence to PLOS ONE policies on sharing data

and materials. There are no patents, products in

development or marketed products associated with

this research to declare.

https://doi.org/10.1371/journal.pone.0247729


quickly collected by experienced veterinarians to ensure bird welfare. Samples used in this

study were collected as part of a study on infectious laryngotracheitis virus vaccination [30].

2.2 Experimental design

The study was conducted in four meat chicken (Ross) flocks of a single commercial farm

located in New South Wales, Australia. Birds were kept in tunnel ventilated houses having rice

hulls as bedding material. Each one of the four poultry flocks had approximately 49,000 birds

[30]. Live IBV (VicS strain) and NDV (V4 strain) vaccines were mixed together and adminis-

tered in spray cabinet on the day of hatch at hatchery.

A total of 64 (n = 16/flock) dust samples were collected using dust collection settle plates as

previously described [28]. Four dust collection plates with a surface area of 520 cm2 were

placed at a height of approximately 1.5 m on the day of chicken placement in each house.

Plates were numbered from one to four, from the farthest to the nearest to the exhaust fans.

Dust samples were collected 10 days after chicken placement and then on weekly basis for

three consecutive weeks, corresponding to 10, 17, 24 and 31 days post vaccination (dpv). Total

amount of dust collected at each collection time was weighed and expressed as milligram of

dust per 100 cm2 area per day. Paired tracheal and choanal cleft swabs were collected on the

same days of dust collection from 20 arbitrarily selected chickens to determine the point preva-

lence of IBV and NDV, except on 10 dpv when only tracheal swabs were collected from five to

six birds per flock. On sampling days 17, 24 and 31 dpv, choanal cleft swabs were collected

from an additional 20 chickens. A total of 261 tracheal and 480 choanal cleft swabs were col-

lected. Dust and swab samples were transported in dry ice to the laboratory and stored at

-20˚C until processing.

2.3 Nucleic acid extraction and IBV and NDV genomic detection

Dust RNA was extracted from approximately 5 mg of sample using ISOLATE II RNA Mini kit

(Bioline, Australia) according to the manufacturer’s recommendations. Dust samples weighing

less than 5 mg (2/64) were not processed. Swabs were cut using clean scissors into a 1.5 ml

microtube containing 800 μl of sterile buffered phosphate saline. After vortexing for 10 sec-

onds, 200 μl of swab wash was taken and RNA was extracted using GeneJET Viral DNA and

RNA Purification Kit (Thermo Fisher Scientific, Australia) following manufacturer’s recom-

mendations providing a final eluted volume of 60 μl. Extracted RNA were stored at -20˚C until

needed for reverse transcriptase (RT)-PCR analysis.

Extracts were tested for IBV and NDV RNA by a one-step duplex real-time RT-PCR target-

ing the matrix (M) gene of NDV [33] and the 50 untranslated region (UTR) gene of IBV [34].

Standards used for quantification of IBV and NDV genome copies (GC) were constructed

using target DNA templates transcribed to RNA using TranscriptAid T7 High Yield Tran-

scription Kit (Thermo Fisher Scientific, Australia) following the manufacturer’s protocol and

used to create standard curves. Viral GC were expressed as log10 GC per milligram of dust for

dust samples and log10 GC per swab for swabs. The concentration per swab was calculated by

multiplying the viral load per reaction by 80, i.e. ×20 (corresponding to 3μl of 60μl elution vol-

ume was used as template for PCR) then × 4 (corresponding to 200 μl of 800 μl total volume of

PBS from swabs used for nucleic acid extraction).

2.4 Data analysis

Statistical analyses were performed using JMP software version 14 (SAS Institute, Cary, NC,

USA). Viral GC values were transformed to log10 (log10 GC +1) to better meet the assumptions

of the parametric analysis. Log10 GC of IBV and NDV per mg of dust were analysed using a
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restricted maximum likelihood model fitting location of dust collection (plate number) nested

within flock as a random effect and dpv, location, flock and their interactions as fixed effects.

Log10 GC of IBV and NDV per tracheal and choanal cleft swabs were analysed using a general

linear model fitting dpv, flock and their interactions as fixed effects. Dust deposition rate was

analysed by fitting chicken age, flock, plate location and their interaction as fixed effects in a

general linear model. Discrete data such as IBV and NDV positive or negative RT-PCR results

for choanal cleft and tracheal swabs at different dpv were subjected to contingency table analy-

sis. Level of agreement in log10 IBV and NDV GC between paired tracheal and choanal cleft

swabs was determined by intraclass correlation coefficient (ICC). ICC values< 0.5, 0.5–0.75,

0.75–0.9 and> 0.9 were considered as indicative of poor, moderate, good and excellent agree-

ment respectively [35]. The agreement between paired tracheal and choanal cleft swabs in

detecting IBV and NDV positive birds was tested by McNemar’s test. Kappa value was used to

determine the strength of agreement. Values� 0 were considered to have no agreement, 0.01–

0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1.00

as almost perfect agreement [36]. The association between prevalence of IBV and NDV in tra-

cheal and choanal cleft swabs from individual birds with IBV and NDV GC in dust was deter-

mined by linear regression analysis.

3. Results

3.1 The profile of IBV and NDV GC in tracheal and choanal cleft swabs and

dust samples was affected by days post vaccination

IBV and NDV GC detection rates and viral load at different days post vaccination in tracheal

and choanal cleft swabs, and dust samples are summarised in Tables 1 and 2. There was a sig-

nificant effect of dpv on the IBV GC detection rates and viral load in tracheal swabs, with

Table 1. Proportion of IBV positive samples and log10 GC/mg of dust or per swab (LSM ± SEM) in tracheal and choanal cleft swabs and dust samples collected

from different flocks at different days post vaccination.

Factors Tracheal swabs Choanal cleft swabs Dust samples

N N. positive/total

(%)

Log10 IBV GC/swab

(LSM ± SE)

N N. positive/total

(%)

Log10 IBV GC/swab

(LSM ± SE)

N N. positive/total

(%)

Log10 IBV GC/mg dust

(LSM ± SE)

DPV 261 P < 0.0001 P < 0.0001 480 P < 0.0001 P < 0.0001 62 P < 0.0001

10 21 20/21 (95)A 6.90 ± 0.62A - - - 14 14/14 (100) 7.89 ± 0.08B

17 80 49/80 (61)B 4.20 ± 0.32B 160 111/160 (69)AB 4.75 ± 0.24A 16 16/16 (100) 7.64 ± 0.06B

24 80 52/80 (65)B 4.09 ± 0.32B 160 89/160 (56)B 3.56 ± 0.24B 16 16/16 (100) 7.63 ± 0.06B

31 80 72/80 (90)A 6.03 ± 0.32A 160 132/169 (83)A 5.35 ± 0.24A 16 16/16 (100) 8.31 ± 0.06A

Flock 261 P = 0.02 P = 0.05 480 P = 0.14 P = 0.06 62 P = 0.89

1 65 52/65 (80)A 5.88 ± 0.42A 120 82/120 (68)A 4.45 ± 0.28A 14 14/14 (100) 7.86 ± 0.08A

2 65 39/65 (60)B 4.40 ± 0.42A 120 74/120 (62)A 3.98 ± 0.28A 16 16/16 (100) 7.84 ± 0.06A

3 65 48/65 (74)AB 5.16 ± 0.42A 120 90/120 (75)A 4.84 ± 0.28A 16 16/16 (100) 7.86 ± 0.06A

4 66 54/66 (82)A 5.78 ± 0.42A 120 86/120 (72)A 4.95 ± 0.28A 16 16/16 (100) 7.91 ± 0.06A

Plate

location

- - - - - - 62 P = 0.14

1 - - - - - - 15 15/15 (100) 7.75 ± 0.07A

2 - - - - - - 16 16/16 (100) 7.94 ± 0.06A

3 - - - - - - 15 15/15 (100) 7.94 ± 0.07A

4 - - - - - - 16 16/16 (100) 7.84 ± 0.06A

Bold text indicates statistically significant values (P<0.05), bold text in italics indicate a trend towards significance.

https://doi.org/10.1371/journal.pone.0247729.t001
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higher detection rates at 10 and 31 dpv (P < 0.0001). In choanal cleft swabs, IBV detection

rates and viral load were highest at 17 and 31 dpv (P< 0.0001). For dust, all 62 collected sam-

ples were positive, and log10 IBV GC was higher at 31 dpv (Table 1). IBV GC detection rate

and viral load were similar in all flocks, except for flock 2 that had a lower IBV detection rate

in tracheal swabs (Table 1).

NDV GC detection rates and viral load were highest at 31 dpv for choanal cleft and tracheal

swabs (P< 0.0001) (Table 2). For dust samples, although there was no difference in the num-

ber of NDV GC positive samples among the sampling times, the log10 NDV GC was highest at

31 dpv (P<0.0001) (Table 2). NDV detection rates among flocks were different in tracheal

(P = 0.01) and choanal cleft swabs (P = 0.001). Log10 NDV GC detection in choanal cleft swabs

(P< 0.0001) and dust samples (P = 0.002) were the lowest in flock 3, with a tendency towards

lower detection in tracheal swabs in this flock (P = 0.05) (Table 2).

3.2 IBV and NDV detection rate and viral load in paired choanal cleft and

tracheal swabs were similar

Overall, tracheal and choanal cleft swabs had similar IBV GC detection rates with moderate

agreement between sample types (McNemar’s = 0.27, Kappa = 0.44). The overall agreement

between paired tracheal and choanal cleft swabs in IBV detection rate was 78% (188/240). For

discrepant results on paired swabs collected from the same bird, 30 choanal cleft swabs were

positive but tracheal swabs negative and 22 tracheal swabs were positive but choanal cleft

swabs were negative (Table 3).

Overall, tracheal and choanal cleft swabs had similar NDV GC detection rates with fair

agreement between sample types (McNemar’s = 0.09, Kappa = 0.31). There was 82% (197/240)

agreement between paired tracheal and choanal cleft swabs in NDV detection rates. For dis-

crepant results on paired swabs collected from the same bird, 27 tracheal swabs were positive

Table 2. Proportion of NDV positive samples and log10 GC/mg of dust or per swab (LSM ± SEM) in tracheal and choanal cleft swabs and dust samples collected

from different flocks at different days post vaccination.

Factors Tracheal swabs Choanal cleft swabs Dust samples

N N. positive/total

(%)

Log10 NDV GC/swab

(LSM ± SE)

N N. positive/total

(%)

Log10 NDV GC/swab

(LSM ± SE)

N N. positive/

total (%)

Log10 NDV GC/mg dust

(LSM ± SE)

DPV 261 P < 0.0001 P < 0.0001 480 P < 0.0001 P < 0.0001 62 P < 0.0001

10 21 11/21 (52)B 2.58 ± 0.41C - - - 14 14/14 (100) 5.89 ± 0.10C

17 80 58/80 (73)B 3.91 ± 0.21B 160 96/160 (60)B 3.12 ± 0.17C 16 16/16 (100) 6.16 ± 0.09C

24 80 74/80 (93)AB 5.48 ± 0.21A 160 136/160 (85)AB 4.82 ± 0.17B 16 16/16 (100) 7.46 ± 0.09B

31 80 77/80 (96)A 5.88 ± 0.21A 160 147/160 (92)A 5.44 ± 0.17A 16 16/16 (100) 8.06 ± 0.09A

Flock 261 P = 0.01 P = 0.06 480 P = 0.001 P < 0.0001 62 P = 0.002

1 65 61/65 (94)A 4.99 ± 0.28A 120 105/120 (88)A 4.99 ± 0.19A 14 14/14 (100) 6.98 ± 0.10A

2 65 58/65 (89)A 4.65 ± 0.28A 120 101/120 (84)A 4.74 ± 0.19A 16 16/16 (100) 7.09 ± 0.09A

3 65 49/65 (75)B 4.02 ± 0.28A 120 82/120 (68)B 3.80 ± 0.19B 16 16/16 (100) 6.58 ± 0.09B

4 66 52/66 (79)B 4.20 ± 0.27A 120 91/120 (76)B 4.31 ± 0.19AB 16 16/16 (100) 6.91 ± 0.09AB

Plate

location

- - - - - - 62 P = 0.50

1 - - - - - - 15 15/15 (100) 6.08 ± 0.09A

2 - - - - - - 16 16/16 (100) 6.98 ± 0.09A

3 - - - - - - 15 15/15 (100) 6.93 ± 0.09A

4 - - - - - - 16 16/16 (100) 6.85 ± 0.09A

Bold text indicates statistically significant values (P<0.05), bold text in italics indicate a trend for significance.

https://doi.org/10.1371/journal.pone.0247729.t002

PLOS ONE NDV and IBV detection in chicken swabs and poultry dust

PLOS ONE | https://doi.org/10.1371/journal.pone.0247729 April 16, 2021 5 / 11

https://doi.org/10.1371/journal.pone.0247729.t002
https://doi.org/10.1371/journal.pone.0247729


but choanal cleft swabs negative and 16 birds were positive in choanal cleft swabs but tracheal

swabs negative (Table 3).

Paired tracheal and choanal cleft swabs, collected from same chicken, had excellent agree-

ment in both log10 IBV GC (ICC = 1; 4.78 ± 0.19 and 4.94 ± 0.19, respectively) and log10 NDV

GC (ICC = 0.96; 5.09 ± 0.12 and 4.67 ± 0.12) per swab.

3.3 The prevalence of NDV positive birds and log10 NDV GC in swabs were

positively associated with log10 NDV GC in dust but no significant

association was found for IBV

A bird was considered positive for IBV when either choanal cleft or tracheal swab was IBV GC

positive, and the same classification rule applied for NDV. There was a strong positive associa-

tion between log10 NDV GC/mg dust and the prevalence of NDV positive birds and log10

NDV GC/swab (Fig 1).

The association of log10 IBV GC/mg dust with both percentage of IBV positive birds and

log10 IBV GC/swab was not significant (Fig 2). This poor association is probably due to the

high loads of log10 IBV GC in dust despite a significant reduction in the log10 IBV GC load

and detection rates in swabs from 10 to 24 dpv (Table 1).

3.4 Location of dust collection affected dust deposition rate but not IBV

and NDV GC load

The amount of dust collected was affected by both dpv (p = 0.0001) and location of settle plates

in the house (p< 0.0001). Dust deposition rate was highest near to the extraction fan end of

the poultry house (10.37 ± 0.94 mg/100 cm2/day) compared to plate farthest from the extrac-

tion fan (6.67 ± 0.97 mg/100 cm2/day). Dust deposition rate increased with bird age, which

was 2.8 ± 0.47 mg/100 cm2/day for days 0 to 9 and 10.92 ± 0.44 mg/100 cm2/day for 10–16

days of bird age. Then after it remained higher until the last collection at day 31. Although

Table 3. Number of birds positive and negative for IBV and NDV GC in choanal cleft and tracheal swabs.

IBV NDV

Choanal cleft swabs Choanal cleft swabs

Negative Positive Total Negative Positive Total

Tracheal swabs Negative 37 30 67 15 16 31

Positive 22 151 173 27 182 209

Total 59 181 240 42 198 240

https://doi.org/10.1371/journal.pone.0247729.t003

Fig 1. Linear association of log10 NDV GC in dust with the percentage of NDV positive birds in swabs (A) and

log10 NDV GC in swabs (B). Each data point represents the mean value for each one of the four poulty houses on a

given dpv.

https://doi.org/10.1371/journal.pone.0247729.g001
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there was a difference in dust deposition rate at different locations in the house, there was no

difference in viral load for both IBV (p = 0.30) and NDV (p = 0.62).

4. Discussion

In this study, the IBV and NDV GC profiles in dust and choanal cleft and tracheal swab sam-

ples after vaccination with live vaccines were determined in commercial meat chicken flocks.

There was a fair to moderate agreement on viral detection between tracheal and choanal cleft

swabs for both viruses, with no bias for a higher detection in a particular sample type. IBV and

NDV GC were readily detected in dust samples at 10 dpv until the end of study at 31 dpv. The

findings from this study indicate that dust could be used as a screening tool for IBV and NDV

in commercial flocks.

A high IBV GC load was detected in dust samples and tracheal swabs at 10 dpv with a sub-

sequent decline in the detection rates and GC load in individual birds at 17 and 24 dpv, fol-

lowed by increase in GC load at 31 dpv. This profile is in agreement with previous studies that

reported vaccine virus shedding from 3 dpv, and a peak in viral load and detection rates at 11

and 14 dpv [13, 14, 37]. Later increase in the viral load could be due to re-excretion of the virus

from persisting infection. In contrast to IBV, NDV GC detection in swabs and dust increased

with bird age. This may be explained by the longer incubation period of NDV for mild strains

[9]; or by a rolling infection due to poor initial vaccine uptake that could have occurred

because of the presence of maternal antibodies that prevented initial infection or because of

sub-optimal vaccine administration. As serological tests were not performed to evaluate the

presence of maternal antibodies at hatch and seroconversion after vaccination, it was not pos-

sible to further investigate the reasons for the increase in NDV detection rates over time.

IBV and NDV GC were readily detected in dust samples after vaccination. The detection of

virus GC in dust in early sampling days could be partially explained by aerosalisation of the

vaccine virus deposited in the feathers of the birds during spray vaccination. However, the sus-

tained high levels of IBV and NDV GC in dust and the high proportion of positive birds

throughout the cycle suggest that at least part of the detected viral load was due to active IBV

and NDV shedding. In a previous study, a high infectious laryngotracheitis virus GC load was

reported in dust at 7–8 days post drinking water vaccination when the percentage of positive

birds in laryngotracheal swabs was as low as 25% [28, 38]. Another study reported that infec-

tious laryngotracheitis virus GC load in dust remained similar while the percentage of positive

birds in tracheal swabs declined from 100% to 58% [29]. This is likely explained by accumula-

tion of viral genome in poultry dust over time. Further work is required to determine the con-

tributions of dried vaccine virus in feathers after coarse spray vaccination and active virus

shedding by infected birds in the IBV and NDV GC load detected in dust.

Fig 2. Linear association of log10 IBV GC in dust with the percentage of IBV positive birds in swabs (A) and log10

IBV GC in swabs (B). Each data point represents the mean value for each one of the four poulty houses on a given

dpv.

https://doi.org/10.1371/journal.pone.0247729.g002
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Under the conditions of this study, there was a strong positive association of individual bird

measures (prevalence of positive birds and viral load in swabs) for NDV and log10 NDV GC in

dust. This indicates that monitoring of NDV using dust samples may be a good proxy for

NDV shedding in individual chickens throughout the production cycle. Unlike NDV, there

was a weak positive association between IBV GC detection rates and viral load in swab samples

and in dust. The differences on the NDV and IBV profile are likely because of the high propor-

tion of NDV positive birds throughout the study, while the decrease of IBV positive birds was

not accompanied by a decrease in viral load in dust samples as discussed above. A total of 741

swabs and 62 dust samples were processed in this study. A single dust sample at each sampling

point could identify flocks as positive for IBV or NDV when at least 40% of the chickens were

positive while a larger number of swab samples were required to account for lower detection

rates. Collecting swab samples require handling of individual birds which is labour intensive

and stressful for both birds and staff. Poultry dust, a population level sample, is easy to collect,

welfare friendly and can be used as a screening tool for IBV and NDV GC in meat chickens.

This study provides proof of concept that dust can be used as a population level for detecting

IBV and NDV GC in poultry houses and this approach could potentially be used to monitor

vaccine uptake or the incursion of field strains in commercial flocks. Further studies with

larger numbers of flocks, with earlier days of sample collection and a follow up with a serologi-

cal testing of the flock are required for further validation of this work to be used for assessing

vaccine uptake.

Choanal cleft and tracheal swabs were comparable in detecting IBV and NDV GC following

live vaccination. Therefore, easier to collect choanal cleft swabs could be used for sampling of

individual birds without loss in sensitivity. Collection of tracheal swabs requires a higher skill

level and has a higher risk of bird stress compared to collection of choanal cleft swabs. This

finding brings practical information to veterinarian practioners and researchers evaluating

IBV and NDV shedding profiles with potential increased bird welfare if choanal swabs are

selected.

Dust deposition rate was affected by location in the house and bird age. All houses in this

study were tunnel ventilated and the highest amount of dust was collected in plates located

near exhaust fans which is in agreement with previous studies [28, 29]. An increase in dust

deposition rate with bird age in this study is consistent with a previous report in layer chickens

[29]; but different from another study which reported a decline in dust deposition rate with

bird age [28]. This disparity between studies may be because of differences in the bedding

material and level of ventilation used. IBV and NDV GC were similar for dust samples col-

lected from different locations within the poultry house in agreement with previous reports for

infectious laryngotracheitis virus and Marek’s disease virus [28, 29]. Dust samples for detection

and quantification of IBV and NDV GC can be collected from any location within a poultry

house.

5. Conclusions

In conclusion, detection rate and load of IBV and NDV genomes following spray vaccination

at hatchery in meat chickens grown in tunnel ventilated houses can be determined using tra-

cheal and choanal cleft swabs, and dust samples. Choanal cleft swabs, which are easier and less

invasive to collect compared to tracheal swabs, gave comparable results to tracheal swabs for

detection of IBV and NDV GC and are thus a preferable sample type. Dust could be used for

monitoring IBV and NDV GC in poultry houses. NDV GC in dust samples were positively

associated with the detection rates and viral load in swabs from individual birds for the dura-

tion of the production cycle. Higher level of IBV in dust 10 dpv was likely due to earlier
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shedding of this virus and the possibility of detecting the virus earlier than 10 dpv. Dust sam-

ples for detection and quantification of IBV and NDV GC can be collected from any location

within poultry house, with increased dust deposition near to exhaust fans in tunnel ventilated

houses.
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