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Leaf-inspired homeostatic cellulose biosensors
Ji-Yong Kim1,2†, Yong Ju Yun3†, Joshua Jeong2, C.-Yoon Kim4,  
Klaus-Robert Müller5,6,7, Seong-Whan Lee1,5*

An incompatibility between skin homeostasis and existing biosensor interfaces inhibits long-term electrophysio-
logical signal measurement. Inspired by the leaf homeostasis system, we developed the first homeostatic cellulose 
biosensor with functions of protection, sensation, self-regulation, and biosafety. Moreover, we find that a meso-
porous cellulose membrane transforms into homeostatic material with properties that include high ion conduc-
tivity, excellent flexibility and stability, appropriate adhesion force, and self-healing effects when swollen in a 
saline solution. The proposed biosensor is found to maintain a stable skin-sensor interface through homeostasis 
even when challenged by various stresses, such as a dynamic environment, severe detachment, dense hair, sweat, and 
long-term measurement. Last, we demonstrate the high usability of our homeostatic biosensor for continuous and 
stable measurement of electrophysiological signals and give a showcase application in the field of brain-computer 
interfacing where the biosensors and machine learning together help to control real-time applications beyond the 
laboratory at unprecedented versatility.

INTRODUCTION
Continuous monitoring of human physiological signals on the skin is 
critical in diverse fields ranging from medical aspects such as disease 
diagnosis, rehabilitation, and recovery to neurotechnology, gaming, 
and entertainment (1–6). Existing noninvasive electrophysiological 
(EP) biosensors (7–12) have shown impressive performances, but they 
do not consider skin homeostasis (1, 13, 14). Furthermore, long-term 
biosafety has not been verified dermatologically (1, 15, 16).

The skin (15, 16) is vital for aspects of homeostasis (14) that include 
protection, regulation of body temperature, water balance, absorp-
tion of materials, and others. Accurate measurement of EP signals 
on the skin can be increased by an in-depth understanding of the 
complex structure and function of the skin (1, 13).

To pursue this goal, the botanical leaf is adopted as a useful ref-
erence. A leaf system consists of three main tissues: epidermis, 
mesophyll, and vascular tissue. The epidermis contains cuticle (17) 
and stomata (18). Leaf homeostasis maintains the water content in-
side the plant by regulating stomata against abiotic stresses such as 
flooding and drought (18–21). We will, in the following, exploit and 
mimic these properties of leaves to construct a homeostatic bio-
interface that is compatible with the human skin.

To develop homeostatic materials, which are the core component 
of the homeostasis system, a few studies proposed complex synthesis 
techniques (22, 23). However, we explore hints for the most natural 
homeostatic material within the leaf system.

Cellulose is the main component of the cell wall of a leaf (24–26). 
The presence of cellulose enables cells to reversibly swell as a result 
of water absorption (27, 28). Thus, wet cellulose exhibits a unique 
combination of excellent flexibility, self-healing capability, and out-
standing biocompatibility.

We have therefore analyzed properties that change in mesoporous 
cellulose membranes (CMs) (29, 30) during the absorption of saline 
solution, which is harmless to the skin. This analysis revealed that the 
CM markedly transforms its properties to become a homeostatic 
material of self-regulation at approximately 85% of the swelling 
(27, 28) process. In addition, we verified the long-term biosafety of 
CM based on in-depth dermatological tests.The performance of cel-
lulose biosensors (CSs) is shown to compare well to that of conduc-
tive gel sensors (GSs) (7, 8) that can establish a reliable conductive 
interface on the skin in the presence or absence of hair layers.

In our endeavor to imitate the architecture of the leaf system, the 
biosensor components include a surface designed to absorb, store, 
and diffuse water; a supporting structure to protect and support the 
surface from the outside; and a gate structure regulated by pressure 
(Fig. 1A).The key mechanism to construct a homeostatic interface 
between the skin and sensor surface is shown in Fig.  1B. In this 
mechanism, ions and water molecules inside the mesopores of the 
swollen CM spontaneously permeate into the inner layers of skin 
through the pores of the stratum corneum by diffusion gradient, 
thereby noninvasively increasing the contact surface area with the 
skin (fig. S1, A to E). When changes such as sweat secretion occur 
in the skin, the sweat penetrates into the CM pores by diffusion, 
keeping a stable conductive path between the skin surface and CM 
(fig. S1, A to C).

The high performance of CS on various locations of human skin 
could be verified by measuring representative EP signals [here electro-
encephalogram (EEG), electrooculogram (EOG), electromyography 
(EMG), and electrocardiogram (ECG); Fig. 1B, ii] (2), and the CS 
stability and robust quality are demonstrated below for a direct, real-
time control application using machine learning (31, 32) (Fig. 1B, iii).

RESULTS
Figure 1C presents a schematic illustration of the CS. The structure 
consists of a reservoir for saline solution, an Ag/AgCl electrode, a 
glass fiber membrane (GM) that supports and preserves the CM, 
and the CM with a perforated pore. Figure S2 (A and B) shows 
the surface detail and cross-sectional morphology of both the 
CM and GM.
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To reveal the underlying mechanism of the observed CM swell-
ing, comprehensive analyses are performed. These include the 
change of surface morphology and thickness as a function of rela-
tive humidity (RH) using environmental scanning electron micros-
copy (ESEM) (33, 34), the change of dry/wet adhesion strength in 
an adhesion test, and the variation of ionic conductivity under a 
function of RH (35).

Immersion of a CM in saline solution leads to infiltration of two 
types of hydrated ions and water molecules between cellulose nano- 
and microfibril sheets (Fig. 1D, i). Cellulose is an organic polymer 
whose chains are linked via hydrogen bonding, and water or ion 
molecules participate in the binding sites, causing the polymer 
volume to increase. This results in swelling. The saline solution per-
meates inside the CM by changes in the contact angle according to 

drop volume (fig. S2C, i and ii). The diffusion rate at which CM 
diffuses the electrolyte is about 0.41 ± 0.05 l/min.

We determined the changes of thickness of the CM in an ESEM 
chamber, where the RH around the dry specimen has increased 
from 40 to 100%. As shown in the ESEM images of the CM (Fig. 1D, 
ii), the CM underwent a drastic thickness change as the environ-
mental humidity reached approximately 85% by absorbing water 
molecules. The more detailed ESEM imaging results are shown in 
fig. S2D.

Wet adhesion (7.18 ± 1.79 kPa) of the CM on hairy skin is ob-
served to increase by nearly 100-fold (Fig. 1D, iv, and fig. S1, F and 
G). The swollen CM displays pronounced adhesive capability under 
wet conditions on hairy skin without leaving a trace after detachment 
through an effortless peel-off procedure.

Fig. 1. Design, mechanism, and applications of cellulose-based biosensor. (A) Structure of the proposed biosensor surface based on two types of porous membranes 
that mimic the leaf architecture. (B) (i) Illustration of a homeostatic interface between skin and sensor surface. (ii) Schematic illustration of measurement locations on a 
human model for multiple acquisition of EP signals. (iii) The flow of application control through artificial intelligence learning. (C) Exploded-view schematic illustration of 
a cellulose biosensor (CS). (D) (i) Schematic illustration showing the direction of ion/water permeation along the cellulose porous layers (center). (ii and iii) ESEM images 
of the cross section of CMs under different conditions of RH. In (iii), the perforated pore was closed by the self-healing effect of CM. (iv) Comparison of the adhesion 
strengths of solid and swollen CM. (E) (i) Photograph of an individual performing the steady-state visual evoked potentials paradigm while pedaling an exercise bike. 
(ii) Normalized comparison of the performances of CSs in resting, cycling set 1, and cycling set 2, respectively. Photo credit: Ji-Yong Kim, Korea University.
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Morphology changes of the perforated pore inside the CM show 
little change in the pores until an RH of approximately 80% (fig. S3, 
A and B). At RHs ≥85%, the self-healing effect of CM on the pore 
becomes evident (Fig. 1D, iii), and at 100% RH, the pore is mostly 
closed. This pore reopens or recloses because of the external (con-
tact pressure) or internal pressure (swelling)—a concept similar to 
the leaf stoma (18). Using this property of the CM, a controllable 
releasing mechanism is devised based on the self-healing gate capa-
ble of discharging a small amount of electrolyte by contact pressure 
(fig. S3, D and E).

At an RH of 40%, the CM is nonconductive (36) with an electrical 
resistance of 109 ohm·cm (Fig. 2A). At RHs between 60% and 80%, 
the electrical resistance slowly decreases to 1.0 × 105 ohm·cm in 
a stepwise manner (35). At an RH of approximately 85%, the CM 
thickness markedly expands to 22 ± 1 m and resistance significantly 
decreases to 5.2 × 104 ohm·cm (Figs. 1D, ii, and 2A). This electrical 
resistance level, which is lower by roughly four orders of magnitude 
(1.9 × 104 times) compared to the initial value, is conveniently the 

same level as that of a conductive gel (CG). At RHs ≥85%, the resist
ance reaches saturation level (Fig. 2A).

Long-term conductivity and electromechanical stability under 
bending deformations are critical requirements for applications in 
skin electronics (11, 12). When investigating the ionic conductivity 
of the CM (swollen for 8 hours), the CM exhibits considerably 
improved electrical properties (Fig. 2, A and B). In particular, the 
conductivity value of approximately 9.23 × 10−5 S/cm was approxi-
mately four times higher than the value of CG (fig. S10) (37). In 
addition, the electrical conductivity of the CM was studied in a 
bending experiment: Bending by up to 1.0 mm (fig. S3G) yields no 
observable change in conductivity, whereas a 2.0-mm bending radius 
showed a decrease by approximately 2%. Long-term stability of the 
CM was evaluated by measuring the conductivity during 10,000 repeat 
bend-and-release cycles at RH >90% (fig. S3F). The conductivity 
remained unchanged even after 10,000 bending cycles at a bending 
radius of 3.0 mm (Fig. 2C). The findings provide evidence of the 
excellent flexibility and durability of the CM.

Fig. 2. Electrical characterization and biosafety test of biosensor based on CM. (A) Comparison of the variations of resistance values of CM and CG for 8 hours. The 
inset shows the resistance measurement setup. (B) Comparison of variations of ionic conductivity of CM and CG. (C) Electromechanical stability test of CMs. Data show 
relative variations in conductivity versus bending cycles under repeated bending to an R of 2.5 mm. Inset image shows the flat and bent CMs. (D) Electrochemical imped-
ance spectroscopy test results of CS and GS (E) Comparison of time-dependent average impedance variations of CS and GS measured for 8 hours daily for 7 days. 
(F) Comparison of impedance variations during an 8-hour continuous recording daily for 7 days. (G) In vivo animal test of CM. The images are of a mouse implanted with a 
piece of CM and PDMS as a control. Images of hematoxylin and eosin (H&E)–stained tissue around the implant site of CM (left) and PDMS (right) after 14 days. (H) In vitro 
cytotoxicity test of CM. Data of human keratinocytes cell morphology and MTT assay results. CCK-8 analysis of cell proliferation on culture dish (control), PDMS, and CM 
during 14 days. Photo credit: Yong Ju Yun, Korea University, and C.-Yoon Kim, Konkuk University.
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In vivo and in vitro biosafety test data of the CMs are essential 
for biosensor applications (1, 13). Multiple dermatologic tests are 
required, including in vivo animal testing, in vitro cell culture, pro-
liferation analysis, and skin biosafety testing. A representative 
image of hematoxylin and eosin (H&E)–stained tissue around the 
implant site of the CM could establish the absence of inflammatory 
responses (Fig. 2G). In vitro, most human keratinocytes on the CM 
were alive and spread uniformly. Furthermore, the CM showed ex-
cellent cell viability compared to the control samples (Fig. 2H and 
fig. S1H). These results confirm that the CM can be used for biosensors 
without any biosafety issues.

Electrochemical stability was also assessed. During the electro-
chemical impedance spectroscopy (EIS) test, contact impedances of 
CSs maintained an average of ≤6.0 kilohms at frequencies ranging 
from 10−1 to 103 Hz (Fig. 2D). The CSs also showed a level of phase 
stability similar to that of GSs. Furthermore, in the open circuit po-
tential (OCP) test of polarization voltage stability, average equilibrium 
potentials of Ag/AgCl and CS oscillated at a similar small magni-
tude (fig. S4, C and D). The findings indicate that the structures of 
CS have a negligible effect on the polarization voltage.

In general, the performance of biosensors is only considered re-
liable and robust when it generalizes across a wide range of experi-
mental paradigms and individuals with different skin and hair types, 
lengths, and scalp properties (7). Homeostatic CSs have a homeo-
static function based on the diffusion-based self-regulation and the 
self-healing gate–based releasing mechanism to quickly construct a 
conductive path on any normal skin and maintain it continuously. 
To demonstrate this robustness, we measure high-quality EEG at 
low impedances of approximately 10 kilohms (fig. S4, E to G) on 
both Westerners and Asians, independently of individual differences 
in the thickness and density of hair. Specifically, the evaluation of 
the CSs comprises 52 individuals with dense hair layers, including 
women with long hair, and overall, a highly sensitive conductive 
interface with a grand average impedance of 8.18 ± 5.1 kilohms is 
observed (table S1).

The impedance stability for long term is important because the 
measurement period for high-quality EP signals depends on the im-
pedance stability (38). In the average results of an 8-hour continuous 
recording daily for 7 days, during 1-hour monitoring, both CSs and 
GSs provided high-quality EEG data (Fig. 3, D and E), with a very 
low impedance (6.64 ± 0.95 and 6.90 ± 1.06 kilohms, respectively) 
and a high signal-to-noise ratio (SNR) (Fig. 2E and fig. S5E). There 
was no significant difference in the two-sample test (P = 0.5866). 
Power spectral density (PSD) and spectrogram detected clear alpha 
rhythm features at approximately 10 Hz for both sensors (Fig. 3F 
and fig. S5, F and G).

After 8 hours, high-quality EEG measurements were still obtained 
with the CSs with a very low impedance (5.71 ± 2.44 kilohms) and 
high SNR (6.41 ± 2.58), similar to the initial value. In contrast, only 
low-quality EEG measurements were obtained using the GSs, with 
a high impedance and low SNR (Figs. 2E and 3E and fig. S5E). The 
difference in the two-sample test was highly significant (P = 0.0001).

Variation in the impedance of CSs over an 8-hour period was 
very small (2.09 ± 1.39 kilohms), whereas that in the impedance of 
GSs was excessively large (Fig. 2F). In spectrogram analysis, the CSs 
still displayed clear alpha rhythm patterns, which were not detected 
anymore with the GSs (Fig. 3F and fig. S5G). These findings con-
firmed that CS maintained unprecedented sensitivity with high 
temporal resolution of brain activities for a long time.

The effect of artifacts associated with relative motion depends on 
how intimate the interface between the sensor surface and skin is 
(1, 2, 7). We analyzed the influence of the stability of the homeostatic 
interface on the occurrence of severe artifacts by repeatedly detach-
ing the sensor from the scalp (Fig. 3A and movie S2) (39). The initial 
impedance of CS was, on average, 5.78 ± 1.87 kilohms, which in-
creased slightly to an average of 6.67 ± 1.76 kilohms after a total of 
180 detachments for nine individuals (Fig. 3C). However, the im-
pedance of GS exceeded 100 kilohms after only seven detachments, 
and further measurements in our system were impossible. An analysis 
was performed of the recovery time needed for successful remoni-
toring of normal EEG. When the detached sensor was reset on the 
skin, the average recovery time of CSs was 2.04 ± 0.65 s (Fig. 3B). A 
recovery time could not be determined for GSs following few de-
tachments (fig. S7). The findings confirm the reliable stability of 
homeostatic CSs against severe artifacts.

Accurate measurements of EP signals of the central and peripheral 
nervous systems are in general use for medical diagnosis (2). Thus, 
we performed simultaneous as well as single measurements (12) of 
EP signals to demonstrate the accuracy, reliability, and broad us-
ability of the proposed biosensor. In the single measurements, the 
CSs clearly captured EP signals (Fig. 3G, i) similar to those of GSs 
(Fig. 3G, ii, and fig. S6, A to C).

Multichannel decoding analysis of EEG and ECG measured 
simultaneously from the CSs in the awake state could clearly reveal 
the appearance of a beta wave in the EEG (40), and ECG-generated 
waveforms of approximately 0.77 s associated with cardiac systole-
diastole cycle (Fig. 3, H and I) (41). In the drowsy state, as to be expect-
ed, alpha activity was captured in EEG (40), and the ECG waveforms 
became longer with cycles between 0.87 and 0.89 s [Fig. 3, H and I, 
and fig. S8; ECG cycles in the drowsy state were, on average, 0.07 ± 
0.04 s longer than those in the awake state; (41)].

In the EEG time domain analysis of movement intention (fig. S6D), 
movement-related cortical potentials (42), which reflect cortical pro-
cesses in movement planning and execution, were clearly generated 
approximately 1.5 s before EMG onset (Fig. 3J). The potential began 
to decrease negatively approximately 0.3 s after the cue sound and 
returned to baseline after a peak negativity at approximately 0.8 s, 
all in line with neurophysiological literature. These findings show 
exemplarily a usefulness of CSs enabling accurate simultaneous re-
cording of EP signals across various human cognitive states.

Noninvasive brain-computer interfaces (BCIs) (3–6, 31), which 
measure EEG related to brain activities using sensors placed on the 
scalp and process the signals using machine learning (43–45), provide 
a direct communication pathway between a brain and external devices. 
In the motor imagery (MI) paradigm (46, 47) (fig. S6E), grand average 
event-related desynchronization/event-related synchronization (ERD/
ERS) patterns (43, 46, 47) were clearly generated from C5 and C6 of the 
CSs (Fig. 4A). In addition, the ERD/ERS pattern changes appeared 
according to topographic maps of certain intervals (45). In case of the 
SSVEP (steady-state visually evoked potential) paradigm that allows 
the transfer of information for control by decoding frequency-locked 
brain states (fig. S6F) (46), the PSD was significantly activated at target 
frequencies (12, 8.57, 6.67, and 5.45) (Fig. 4B and Supplementary Text).

Monitoring faint EP signals that are easily obscured in dynamic 
environments that encompass various types of environmental noise, 
body noise, movement artifacts, and sensor misalignment is a 
very challenging issue (1, 5, 48). As a robustness test of our novel 
biosensor, we perform SSVEP paradigms while the volunteer pedals 
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an exercise bike (Fig. 1E and movie S1) (49). Without the use of arti-
fact removal algorithms and an abrasive skin preparation gel, the CSs 
were able to continuously maintain low impedances and a decoding 
accuracy of SSVEP (Fig. 1E, ii). Furthermore, the SNR of alpha rhythms 
somewhat increased on the sweaty scalp (50). This effect occurs be-
cause the CSs have a stable equivalent circuit model against a sudden 
change in skin conductivity, such as that caused by sweat secretion, 
and the variation in CS impedance within a 4 to 8 pH range is very 

small (1.0 ± 1.1 kilohms) (fig. S9 and Supplementary Text) (51). The 
homeostatic interface thus has established itself as very stable and 
robust in dynamic environments, forming more intimate contact 
with the skin through sweat (fig. S1B and Supplementary Text).

Last, computer games are used as a further demonstration of BCI 
as they are inherently safe and attractive to a layperson (6). Thus, we 
applied the CSs to a real-time BCI avatar control game established 
as a benchmark for our previous real-world BCI competitions (Fig. 4C) 

Fig. 3. Artifact-robust and long-term stable biosensors for multiple EP recording. (A) Photographs of CS detachment from the skin. (B) Recovery time of sensors for 
remeasurement of normal EEG when reset after detachment. (C) Impedance measurement according to the number of sensor detachments. (D) Schematic diagram and 
photograph of the biosensor setup for long-term EEG monitoring. (E and F) EEG raw signals and spectrograms at 1 hour and 8 hours in the eye open/closed paradigm for 
8 hours. (G) Schematic illustration of CSs attached to the human body for recording of single EP signals. (i) EP signals of CSs. (ii) EP signals of GSs. (H and I) EEG and ECG 
recorded simultaneously from CSs in awake (blue) or drowsy (red) state (J) Time-dependent comparison of average EEG (red) and EMG (blue) recorded simultaneously 
from CSs when gripping a handgrip a total of 160 times across eight individuals. Photo credit: Ji-Yong Kim, Korea University.
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(6). Eight users successfully completed the avatar race in a reason-
able average time of 177.83 ± 32.52 s using the classifiers trained by 
deep learning (52) (see Supplementary Text and movie S3). These 
findings establish that the CSs are able to continuously and robustly 
capture high temporal resolution brain patterns as a robust measure-
ment basis for a subsequent real-time application system.

DISCUSSION
In summary, from in-depth consideration of skin homeostasis (1, 2, 7, 13), 
a novel biosensor with functions such as protection, self-regulation, 
biosafety, and sensation required for long-time measurement was con-
ceived. Existing EP sensors (7–12) developed with a focus on sensation 
or protection (table S2) are not compatible with skin homeostasis, 

Fig. 4. Offline and real-time BCIs based on machine learning algorithms. (A) ERD/ERS pattern analysis of CSs in the binary MI paradigm. Grid plots of time domain for 
grand average EEG are shown. Topographic maps corresponding to certain intervals emphasized by gray areas in the grid plot are presented. Topographic maps and grid 
plot for signed r values (significance level) between the classes are depicted. (B) PSD at the POz (CS) in the SSVEP paradigm. FFT, fast Fourier transform. (C) Real-time BCI 
avatar control game system. (i) Training phase for learning classifier parameters based on deep learning in the four-class MI paradigm. (ii) Testing phase for real-time 
classification of motor intentions of the user. (iii) Avatar control according to stage type. Photo credit: Ji-Yong Kim, Korea University.
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causing skin allergies or contact dermatitis or are being affected by 
sweat (1, 13–16, 50).

The proposed CSs that mimic the leaf homeostasis system can 
robustly maintain a stable skin-sensor interface by virtue of the 
homeostatic functionality. Specifically, the leaf-inspired convex sensor 
surface, which consists of two types of membrane layers, maintains 
conformal contact with uneven skin by the properties of adhesion, 
while exhibiting excellent flexibility and mechanical stability (fig. 
S4B). These properties are able to protect the interface stably despite 
physical stress such as exercise by dynamic real-world environments 
(Figs. 1E and 3, A to C; fig. S7; and movies S1 and S2).

The core of the homeostatic conductive interface is sustainability 
such as leaf homeostasis. The CSs have the self-regulation function 
based on continuous diffusion between the skin and the sensor sur-
face to maintain a stable conductive interface by itself for long term 
(Figs. 2, E and F, and 3, E and F). Moreover, the self-healing gate–
based releasing function made the CSs possible to construct a highly 
sensitive electrical interface even on various skins of 52 individuals 
with dense hair layers (fig. S4, E to G, and table S1).

CM, a nonconductive material, has never been considered for use as 
a main conductive component in the biosensor field (36). When absorb-
ing a saline solution, CM changes to conductive homeostatic material 
that is compatible with the skin and can provide a reliable sensor mea-
surement. In addition, because of the biosafety and reversible property 
of cellulose, CS can provide long-time usage and reusability (27, 28).

In conclusion, the CSs could display very notable performance 
with high stability and fidelity for the total of 60 individuals. The 
homeostatic CSs will thus increase the repertoire of biosensor func-
tionality for broad clinical and nonclinical applications.

MATERIALS AND METHODS
In the biosensor fabrication
The retention rate, thickness, and pressure drop of the GM (Hyundai 
Micro Co., Republic of Korea) were 2.7 m, 0.53 mm, and 140 mbar, 
respectively. A commonly used regenerated cellulose dialysis tube 
with a molecular weight cutoff of 8000 to 14,000 was used as the 
CM. The CM had 2.5-nm-diameter pores, 50 ± 2% degree of swelling, 
and a thickness of 16 ± 3 m. To mimic the water absorption and 
diffusion of a leaf system, a pore with a radius of around 100 m was 
perforated inside the CM; this pore functioned as a gate, similar to 
the role of the stoma.

The CS surface was a wide ellipse, which extended the surface 
width as much as possible during CS swelling. To maintain the 
swollen phase of the CM, we constructed a reservoir of NaCl saline 
solution inside the CS and added Ag/AgCl to transform the ionic 
current to an electric current. In addition, a hydrophobic macroporous 
GM layer was added inside the CM to prevent direct contact between 
the electrical conductor and CM. The GM layer also supported the 
convex shape of the CM under external pressure.

Adhesion test of CM
The adhesion force of CM in the solid or swollen state was measured 
by 5000 g digital force gaze (FG-5005, Lutron, Taiwan). The average 
adhesion force from 10 measurements was determined.

Characterization of two types of membranes
The surface morphology and thickness of membranes were analyzed 
using field-emission scanning electron microscopy (FESEM) under 

a SU8010 microscope (Hitachi High-Technologies, Japan). Humidity-
dependent surface morphology of the CM was analyzed using ESEM 
(XL-30 FEG, FEI, USA). The hydrophilicity of the samples was in-
vestigated by measuring the contact angle using a model DSA100 
analyzer (KRUSS GmbH, Germany). The electrical properties were 
characterized using a B2901A source measurement unit (Keysight 
Technologies, USA).

Self-healing gate–based releasing mechanism
To quickly form a conductive path between the skin and the surface 
of the sensor when the CM is attached to the skin with dense hair 
layer (fig. S4, E and G), a self-healing gate–based releasing mecha-
nism was developed. The perforated pore inside the CM is reopened 
by a contact pressure of 9.8 to 17.6 kPa generated when attaching 
the CS to the skin. At that time, approximately 20 to 30 l of saline 
solution is released to the skin (fig. S3E). The saline penetrates into 
the dense hair layers (fig. S4E) to form a conductive interface between 
the skin and CS. The gate then recloses by the self-healing effect 
of the CM. If an extra electrolyte is required to maintain the electrical 
sensor-skin interface for long-term measurement, a small amount 
of saline solution can be supplied through the pore reopened by 
electrode-finger pressure (fig. S3D).

Mechanics of finite-element analysis simulation of biosensors
COMSOL (ver. 5.4) commercial software was used to study the re-
lease mechanism of the biosensors. Two-dimensional finite-element 
analysis was used to calculate the flow density of the biosensor (fig. 
S3, D and E). To simplify the analysis, the sensor was modeled using 
two domains. Boundary conditions corresponding to pressure were 
applied on the top of the reservoir. The dynamic viscosity () and 
density () of saline solution are as follows: saline solution = 1000 Pa·s 
and saline solution = 1.0 kg/m3.

In vitro biocompatible test
The cell viability and proliferation rate were analyzed using an indi-
rect method. Human keratinocyte cells were grown in an incubator 
with a 5% CO2 atmosphere at 37°C. The samples were cleaned with 
ethanol and ultraviolet exposure. The samples were then placed in 
24-well plates, and 1 ml of the solution containing the fibroblast 
cells was seeded on the samples. The cell density of the solution was 
1 × 105 cells·ml−1. The cell viability was analyzed using the Cell 
Counting Kit-8 (CCK-8). The light absorbance was measured at 
450 nm using a VersaMax microplate reader (Molecular Devices 
LLC, USA). Before measuring the absorbance, 50 l of the CCK-8 
kit solution was dropped onto each sample and kept in the incubator 
for 2 hours. Next, 100-l aliquots of the L929 cell suspension were 
seeded in the wells of a 96-well culture plate.

In vivo biocompatible test
To evaluate the biological responses of the subcutaneous tissues to 
the implanted material, we followed the International Organization 
for Standardization (ISO)–10993 and notification no. 2014-115 of 
Korea Ministry of Food and Drug Safety. Following ISO 10993-2, 
healthy male 6-week-old BALB/c mice with a mean ± SD body weight 
of 21.3 ± 0.8 g were used. The mice were obtained at 5 weeks of age 
from Orient Bio Co. (Republic of Korea) and maintained under an 
artificial 12-hour light/dark cycle at a constant temperature of 22 ± 1°C 
and constant humidity of 55 ± 10%. The mice were kept in their 
cages for 1 week to acclimate to the laboratory conditions.
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Each mouse was subcutaneously implanted with a piece of CM 
and poly(dimethylsiloxane) (PDMS; Sylgard s18, Dow Corning, USA; 
10:1 weight ratio of prepolymer to cross-linker) as a control following 
ISO 10993-6. Briefly, the mice were anesthetized with 2% isoflurane 
and the dorsal hair was removed by shaving. A sagittal skin incision 
was made on the back, and subcutaneous pouches were made. The 
CM and PDMS were prepared following ISO 10993-12 and finely 
cut into 10-mm-diameter circles. The samples were subcutaneously 
implanted at least 1 cm apart. The skin was sutured with nonab-
sorbable 6-0 silk. The mice were allowed unrestricted cage activity. 
Two weeks after surgery, the mice were euthanized in a CO2 chamber 
and whole skins were freshly sampled for analysis.

To evaluate the local histopathological effects, freshly excised skin 
samples were fixed with 4% paraformaldehyde for 24 hours. The 
tissues were processed using routine tissue techniques and embed-
ded in paraffin. The paraffin-embedded specimens were sliced into 
4-m-thick sections. The sections were then transferred to micro-
scope slides. Subsequently, deparaffinized skin sections were stained 
with H&E. All stained sections were examined under a light micro-
scope to assess histological changes generally indicative of irritation, 
including polymorphonuclear cell infiltration, mononuclear cell in-
filtration, necrosis, angiogenesis, fibrosis, and fatty infiltration. All 
operating procedures for handling of experimental animals were 
performed in accordance with guidelines and regulations of the In-
stitutional Animal Care and Use Committee (IACUC) of Konkuk 
University, which was accredited for laboratory animal care by the 
Korea Ministry of Food and Drug Safety.

Skin erythema test
Skin compatibility tests were performed on one individual using the 
swollen CM. The biosensor surface was attached on the forearm for 
4 days with a clinical usable air permeable tape (Himom Band, JW 
Pharmaceutical Corporation). The skin reaction (itching and erythema) 
was investigated (fig. S1H). This test was approved by the Institu-
tional Review Board of Korea University, Seoul, Republic of Korea 
(IRB no. 1040548-KU-IRB-18-101-A-2).

Measurement of electrical resistance, conductivity, 
and electromechanical stability of the CM
The circular CMs with 3-cm diameter and 20-m thickness were 
sandwiched with top and bottom electrodes. A PDMS (Sylgard 184 kit) 
film was cut with an opening (4 cm2), which served as a well for 
holding the electrolyte solution. Electrolytes were filled into a molded 
PDMS well. The electrical resistance was recorded from a CM using a 
pair of top and bottom electrodes using a multimeter (Keysight 34460A) 
interfaced with computerized recording software (BenchVue 3.7).

For electrochemical stability tests of the swollen CM, we varied 
the RH through a homemade humidifier. Briefly, air bubbling 
through a water-containing conical flask was led into a gas-purge 
desiccator cabinet, and the gas flow rate was adjusted to control the 
RH in the desiccator cabinet. The RH and temperature were moni-
tored in real time using a thermohygrometer (P330, Swiss). We 
used the bubbler method to control the RH in high-humidity envi-
ronments. Variations of resistance were measured using a two-probe 
method. Electromechanical stability of the samples as a function of 
the number of bending cycles was measured by repeated bending 
using a homemade bending system. A 2.0-cm-long CM underwent 
release bending for up to 10,000 cycles with simultaneous recording 
of electrical resistance.

Measurement setup of EP signals
The impedance and EP signals were measured using a BrainAmp 
DC system (Brain Products GmbH, Germany). The impedance 
value of each channel at 10 Hz was recorded automatically using a 
BrainVision system (Brain Products GmbH, Germany). The instru-
ment only measures values between 0 and 100 kilohms. The sam-
pling rate was 1000 Hz, and the band-pass filter was set at 0.3 to 
70 Hz. A notch filter was applied at 50 Hz. The EIS test under a 
frequency range of 0.1 to 1000 Hz was conducted in an electro-
chemical workstation (CHI750E, CH Instruments Inc., USA) using 
a two-electrode system. The distance between the two-electrode cen-
ters on the scalp was 4 cm. The current was applied on the electrode 
pair to measure the contact impedance. The amplitude of the test 
signal for the impedance test was 5 mV, and the frequency of the test 
signal ranged from 0.1 to 1000 Hz. A commercial 64-channel EEG 
cap (EASYCAP GmbH, Germany) was used to mount the electrodes. 
The results of the average EIS were derived through six trials.

Multiple experimental procedures
To quantitatively verify the performance of the CS, various experiments 
were conducted. These experiments were approved by the Institu-
tional Review Board of Korea University, Seoul, Republic of Korea 
(IRB no. 1040548-KU-IRB-18-101-A-2). The experiments addressed 
electrochemical stability, verification on various skins (including 
people from Asian and Western countries), long-term stability, sta-
bility concerning severe detachment artifacts, simultaneous moni-
toring of multiple EP signals, stability in dynamic environments, and 
offline-online BCI application. A total of 60 individuals aged 20 to 
40 years participated in the experiments (table S1). A numerical 
program (MATLAB, MathWorks, USA) was used to preprocess, 
separate, and classify datasets. For signal processing, BBCI-Toolbox 
(46), EEGLAB (53), and OpenBMI toolbox (47) were applied.

Electrochemical stability
An OCP experiment was conducted to examine the electrochemical 
stability of CS. An Ag/AgCl electrode was used as the reference elec-
trode. Each OCP value of the Ag/AgCl and CS was measured in a 
saline solution for 10 min using a model 2100 multimeter (Keithley 
Instrument Inc., USA). Equilibrium electrode potential, defined as 
the average potential value within 10 min, was determined to evaluate 
electrode polarization characteristics.

In the test of OCP for the stability of polarization voltage, the 
potential of Ag/AgCl oscillated between −594.57 and 396.65 V and 
that of CS oscillated between −793.36 and 409.88 V (fig. S4, C 
and D). The average equilibrium potentials of Ag/AgCl and CS 
were −12.94 ± 61.41 and −31.27 ± 81.15 V, respectively (fig. S4D).

Verification on various scalps
Participants included 10 Asians and 8 Westerners. Two of the 
Westerners were women with long hair. In experiments involving 
the Westerners, impedance and EEG were measured from five 
channels of CSs (FP1, FP2, Oz, O1, and O2) (fig. S4E). AFz and the 
right mastoids served as ground and reference electrodes, respectively. 
Eye open/closed/blink paradigm (eye opening for 10 s, eye closing 
for 10 s, followed by eye blinking for 10 s) was used. For Asians, 
impedance and EEG were measured from 10 channels (GSs: FP1, 
FP2, Oz, O1, and O2; CSs: AF7, AF8, POz, PO7, and PO8) (fig. S4G). 
The same eye open/closed and SSVEPs paradigms (5, 7.5, and 10 Hz) 
were used. To quantify the signal quality of the dataset related to 
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SSVEP between the CSs and GSs, Pearson’s correlation coefficient 
analysis was conducted (fig. S5A). In addition, SNR analysis of SSVEPs 
for channels positioned to the visual cortex region was performed 
(GSs: Oz, O1, and O2; CSs: POz, PO7, and PO8). The energy of y(f) 
was calculated using fast Fourier transform. For SSVEPs at a stimu-
lation frequency f, the SNR in decibels was defined as the ratio of 
y(f) to the mean value of the two adjacent frequencies as follows

	​ SNR  =  20 × ​log​ 10​​ ​ 
y(f )
 ───────────  (y(f − 1 ) + y(f + 1 ) ) ​​	

For the SSVEP (5, 7.5, and 10 Hz) paradigm, the grand average 
SNR of CSs and GSs was 22.701 ± 10.96 and 23.835 ± 9.67, respec-
tively (fig. S5B). There was no significant difference in the two-sample 
test (P = 0.3659). In the PSD analysis, the peaks corresponding to 
the stimulation frequencies were clearly detected (fig. S5C).

Long-term stability
For the long-term experiment, impedance measurements and EEG 
recordings were performed using the eye open/closed paradigm for 
8 hours daily for 7 days. The electrode setup consisted of 11 GSs and 
11 CSs. All positions of the electrodes were based on the interna-
tional 10-20 system (GS: FP1, FP2, Cz, C3, C4, Pz, P3, P4, Oz, O1, 
and O2; CS: AF7, AF8, FCz, C5, C6, CPz, P5, P6, POz, PO7, and 
PO8). Seven individuals participated in this experiment. To evalu-
ate the impedance stability, impedance variation was defined as the 
value of impedance over time minus the value of initial impedance. 
To quantify the signal quality of dataset related to alpha rhythm 
between the CSs and GSs, Pearson’s correlation coefficient analysis 
was conducted (fig. S5D). In addition, for the SNR analysis (10) in 
the alpha rhythm, data between 8 and 12 Hz were applied. SNR was 
calculated as

	​ SNR  =  20 × ​log​ 10​​ ​ 
eye closed data

  ─  eye open data ​​	

Recovery time after sensor detachment
A sensor detachment experiment was conducted to verify the effect 
of the scalp-sensor owing to the severe motion artifact generated by 
an external force. Detachment of the sensors was conducted at in-
tervals of 6 s, determined using a metronome. The attachment 
process of the sensors was not performed separately. Sensor-scalp 
reattachment was reset automatically by the elasticity of the elec-
trode cap. A total of 180 sensor detachments on the scalp of nine 
individuals were conducted, and the impedance was recorded for the 
detachment. The recovery time was calculated from the time that 
the sensor was reset to the time that the sensor began to remeasure 
the normal EEG. The criteria for normal EEG were set when the 
impedance was <100 kilohms and the amplitude of the signal oscil-
lated between 0 and 100 V.

Simultaneous monitoring of multiple biosignals
To decode the drowsy, awake, or movement state of the user, mul-
tiple EP signals were simultaneously measured. To record the EEG, 
ECG, and EMG signals simultaneously, AFz and right mastoid po-
sitions served as the ground and reference electrodes, respectively. 
The sensors recorded the signals on Cz and FCz channels for EEG, 
on the right forearm for EMG, and on the left forearm for ECG.

For the detection of movement intention, a handgrip was used as 
an application. The eight users grabbed the handgrip with their right 
hand and attempted a grip 20 times at an interval of 3 s produced by 
a metronome. For MRCP analysis, downsampling of 100 Hz and a 
filter of 0.1 to 1 Hz were applied (42). EEG and EMG data were also 
segmented from 0 to 3000 ms with respect to stimulus onset. Average 
MRCP and EMG were compared using time-amplitude analysis.

To monitor the drowsy state, nine individuals were instructed to 
close the eyes for approximately 15 min and allowed to drowse in a 
soft armrest chair. The laboratory light was turned off and the room 
was kept quiet. Nine individuals participated in this experiment.

In addition, experiments for single EMG and ECG measurements 
based on our previous study (12) are reported in fig. S6 (A to C). 
The average impedance of CSs across 14 individuals was 18.9 ± 
9.2 kilohms on the wrist for ECG and 24.8 ± 9.5 kilohms on the arm 
for EMG.

Offline and online BCI
BCI experiments were conducted to quantify the performances of 
CSs. As the experimental paradigm, the binary MI and four-class 
SSVEP paradigms were applied. All experiment programs and anal-
ysis methods were based on our previous study (47). The analysis 
code and toolbox are available in the GitHub (https://github.com/
PatternRecognition/OpenBMI) and BCI (http://openbmi.org) web-
sites. The EEG channels were set to each of the 16 GS and 16 CS 
channels (fig. S6G), and 17 individuals participated.

BCI in a dynamic environment
To verify the sensing ability of CSs in a dynamic environment, an 
experiment was conducted in which individuals performed BCI 
paradigms while cycling on an exercise bicycle (Iwha Sean Lee X 
Bike Inc., Republic of Korea). The BCI paradigm (the four-class 
SSVEP paradigm) involved a rest state, a cycling 1 set (20 min), and 
a cycling 2 set (20 min). To analyze the variation of performances of 
CSs as influenced by sweat, the eye open/closed paradigms were 
conducted in the rest state, immediately after the cycling 1 set, and 
immediately after the cycling 2 set.

Eight BCI naïve individuals participated in the experiment: 
Participants cycled, on average, 6.0 ± 1.0 km at an average speed of 
9.2 ± 1.9 km/h for 40 min, and they burned approximately 193.75 ± 
33.47 cal. EEG signals were measured from the CSs of six channels 
(FP1, FP2, Cz, Oz, O1, and O2), and the performance of CSs was 
quantified through impedance measurement, alpha rhythm SNR, 
and SSVEP classification accuracy.

Deep learning-based real-time BCI game system
The experiment was conducted to apply the CSs to a real-time game 
control system. The game system used in this experiment is a soft-
ware called Brain Runner that controls a virtual avatar (i.e., an ob-
stacle race game using BCI; BCI racing) (6). The experiment was 
conducted with a 16-channel CSs setting. Eight BCI naïve individuals 
participated. The user performed four classes of MI (right hand, left 
hand, foot, and resting state) to collect datasets of a total of 30 trials 
corresponding to each class. Conventional augmented common 
spatial patterns and convolution neural network (CNN) architectures 
(52) were applied for feature extraction and classifier parameter 
learning of the MI datasets. Two CNN architectures learned the data-
sets using two convolutional layers and one fully connected layer 
before the output layer. The input data to the network were an array 

https://github.com/PatternRecognition/OpenBMI
https://github.com/PatternRecognition/OpenBMI
http://openbmi.org
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of frequency bands, pattern size, and the number of the epoch. The 
first CNN training involved 32 feature maps (size: 32 × 1) in the first 
convolution layer. Next, the convolution layer also involved 32 fea-
ture maps (size: 1 × 20). The number of units in the fully connected 
layer was 480, and the training involved feeding a training batch of 
20 and epochs of approximately 20. The second CNN training in-
volved 48 feature maps (size: 1 × 96) in the first convolution layer. 
Next, the convolution layer also involved 48 feature maps (size: 1 × 80). 
The number of units in the fully connected layer was 1280 and in-
volved feeding a training batch of 5 and epochs of approximately 50. 
In the testing phase, we applied the first CNN model to classify the 
brain patterns of MI and the resting state. Then, the other CNN 
model was applied to classify the patterns of three-class MI. In the 
classifier training phase, the classification accuracy for multiclass MI 
(right hand, left hand, foot, and rest) averaged 51.4 ± 6.6% through 
fivefold cross-validation. For real-time operation, features were cal-
culated every 40 ms with a 3-s sliding window. The categorized 
patterns were converted into commands, and the game avatar was 
controlled via user datagram protocol communication.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/16/eabe7432/DC1
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