Table 1.
Summary of related techniques in the literature.
Reference | Dataset | Pretrained | Architecture | Input size | Stain normalization | Image-wise accuracy |
---|---|---|---|---|---|---|
Araújo et al. [5] | Bioimaging 2015 | No | Custom CNN | 512 × 512 | Macenko | 4-class: 77.8% |
2-class: 80.6% | ||||||
Vo et al. [17] | Bioimaging 2015 | No | 3 × Inception-ResNet-v2 | 600 × 600 | Macenko | 4-class: 96.4% |
450 × 450 | 2-class: 99.5% | |||||
300 × 300 | ||||||
Nawaz et al. [3] | ICIAR2018 | Yes | AlexNet | 512 × 512 | Macenko | 81.25% |
Ferreria et al. [20] | ICIAR2018 | Yes | Inception-ResNet-v2 | 244 × 244 | Nonnormalized | 90% |
Kassani et al. [21] | ICIAR2018 | Yes | VGG16 | 512 × 512 | Macenko | 83% |
Reinhard | 87% | |||||
Kassani et al. [21] | ICIAR2018 | Yes | VGG19 | 512 × 512 | Macenko | 80% |
Reinhard | 84% | |||||
Kassani et al. [21] | ICIAR2018 | Yes | Inception-ResNet-v2 | 512 × 512 | Macenko | 90% |
Reinhard | 88% | |||||
Kassani et al. [21] | ICIAR2018 | Yes | Xception | 512 × 512 | Macenko | 91% |
Reinhard | 94% | |||||
Kassani et al. [21] | ICIAR2018 | Yes | Inception-v3 | 512 × 512 | Macenko | 90% |
Reinhard | 90% |