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Abstract
Purpose The main purpose of this work was to develop an efficient approach for segmentation of structures that are relevant
for diagnosis and treatment of obstructive sleep apnea syndrome (OSAS), namely pharynx, tongue, and soft palate, from
mid-sagittal magnetic resonance imaging (MR) data. This framework will be applied to big data acquired within an on-going
epidemiological study from a general population.
Methods A deep cascaded framework for subsequent segmentation of pharynx, tongue, and soft palate is presented. The
pharyngeal structure was segmented first, since the airway was clearly visible in the T1-weighted sequence. Thereafter, it was
used as an anatomical landmark for tongue location. Finally, the soft palate region was extracted using segmented tongue and
pharynx structures and used as input for a deep network. In each segmentation step, a UNet-like architecture was applied.
Results The result assessment was performed qualitatively by comparing the region boundaries obtained from the expert
to the framework results and quantitatively using the standard Dice coefficient metric. Additionally, cross-validation was
applied to ensure that the framework performance did not depend on the specific selection of the validation set. The average
Dice coefficients on the test set were 0.89 ± 0.03, 0.87 ± 0.02, and 0.79 ± 0.08 for tongue, pharynx, and soft palate tissues,
respectively. The results were similar to other approaches and consistent with expert readings.
Conclusion Due to high speed and efficiency, the framework will be applied for big epidemiological data with thousands of
participants acquired within the Study of Health in Pomerania as well as other epidemiological studies to provide information
on the anatomical structures and aspects that constitute important risk factors to the OSAS development.
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Introduction

Obstructive sleep apnea syndrome (OSAS) is characterized
by recurrent episodes of partial and complete airway obstruc-
tions during sleep with repetitive apneas and hypopneas [31].
This syndromehas oneof thehighest prevalence rates of sleep
disorders in the general population, affecting approximately
3–7% and 2–5% of middle-aged male and female popula-
tion, respectively [11], reducing significantly the patients’
life quality. Therefore, understanding of the causes and fac-
tors that influence this problem is of high importance. In our
project, we were interested in the anatomical risk factors of
OSAS. To achieve this goal, we aimed to extract and ana-
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lyze such OSA-relevant structures as pharynx, tongue, and
soft palate from numerous data acquired from the general
population.

Whole-body magnetic resonance imaging (MRI) pro-
grams are usually utilized within epidemiological studies.
Although a specially dedicated sequence, which depicts the
organs listed above at high resolution, might not be available
within the MR program, these organs are usually imaged. In
our project, magnetic MRI data, which had been acquired
with the Study of Health in Pomerania (SHIP) [18], were
applied. SHIP is an on-going epidemiological study con-
ducted in the northeasternGermany.Namely, sagittal T1- and
T2-weighted sequences, that were primarily dedicated for
spine imaging, appeared to contain the structures of interest
for our project. Our goal was to develop a fast, fully auto-
mated, and efficient segmentation framework for pharynx,
tongue, and soft palate structures.

In this paper, we present a cascaded framework for seg-
mentation of the OSAS-relevant organs-of-interest from
non-dedicated MRI sequences. Such a cascaded framework
allows for efficient extraction of relatively small regions,
which requires segmentation of unbalanced classes. The
processing consists of several stages and is based on thewell-
known UNet architecture [4,27]. First, the head and neck
are extracted from the complete sequence, and the slices are
cropped accordingly. Second, the pharyngeal structures are
segmented slice-wise. Third, the extracted pharynx is utilized
for the next cascade level. Basically, it is used for cropping of
the tongue-relevant region,which the segmentation is applied
to. Finally, the segmented tongue together with the pharynx
defines the next cascade stage, and the central part of the soft
palate structure is extracted there.

The paper is organized as follows. In Sect. 2, the overview
of related works is given. We present and analyze the data
used in this project in Sect. 3. Our method is thoroughly
described in Sect. 4. The findings are presented in Sect. 5.
Section 6 concludes the paper.

Related work

Although computed tomography (CT) is the gold standard
in otolaryngological routine [2], its application for research
purposes on subjects without specific symptoms is not ethi-
cally justified. Cone Beam Computed Tomography (CBCT)
requires a significantly lower radiation dose than a conven-
tional CT, and it was also used for analysis of airways for
sleep apnea patients [3,8,9,21]. This imaging modality does
not allow for analysis of soft structures, such as tongue and
soft palate, though.

Since the ultimate goal of our project includes big data
analysis of airways as well as neighboring soft structures,

which are hardly distinguishable in CT and CBCT, only
methods for MRI data are of interest.

There are several MRI-based approaches for analysis of
the throat region described in the literature. Some studies, for
instance, by O’donoghue et al. [24], investigated upper air-
way anatomy fromMR scans using only manual delineation
of organ boundaries. Such an approach is prone to inter- and
intra-observer variability and requires a lot of human work-
ing hours. For analysis of data from hundreds of subjects,
this approach is hardly applicable.

Abbot et al. [1] analyzed airway volumes from children
withOSAusingK-means clustering algorithm in a semiauto-
matic manner. Trushali et al. presented a pharynx and larynx
cancer segmentation framework for automatic base of tongue
and larynx cancer segmentation from T1-weighted magnetic
resonance images (MRI) [7] in axial projection. The authors
applied classical algorithms, such as fuzzy c-means and level
sets [12] to extract the cancerous regions. Segmentation of
airways was implemented as the first preprocessing step to
define the region of interest. Campbell et al. proposed a 3D
level set approach for pharynx segmentation from axial MR
data [5]. However, the results were quantitatively evaluated
only on synthetic data. Ivanovska et al. [15] proposed a min-
imally interactive method for pharynx segmentation from
axial T1-weighted MR sequence using classical algorithms
and knowledge about location of the pharyngeal structures.
The approach was further extended to be a fully automated
[16] one. Shahid et al. presented an algorithm consisting of
visual feature space analysis for selection of a 3D pharyngeal
structure and refinement with intensity-based methods [30]
for automated pharynx segmentation on the similar dataset.
These methods were proposed to segment only a small part
of the structure in the retropalatal oropharyngeal region from
the MR sequence with the 1 mm resolution in each dimen-
sion. These methods were based on the fact that slices in
axial projection had a sufficient resolution to separate phar-
ynx from the other close structures and artifacts.

In the last years, the deep learning approaches gained a
tremendous popularity and proved their efficiency also in
medical image analysis tasks [13,29]. Tong et al. proposed a
shape-constrained GAN-DenseNet for multi-organ segmen-
tation fromCT and low fieldMR data [32]. The average Dice
coefficient for pharynx segmentation is 0.706. Erattakulan-
gara and Lingala [10] proposed to apply U-Net to segment
the vocal tract from mid-sagittal MRI images and achieved
DICE coefficient of 90%.

There are few methods for segmentation of tongue struc-
tures. Peng et al. [26] proposed a variational framework to
assess tongue contours from mid-sagittal images. However,
no complete tongue boundaries were obtained there. Harandi
et al. [20] tackled a 3D semiautomatic tongue segmentation
with inter-subject mesh-to-image registration scheme and
achieved DICE coefficient of 90.4%. Their dataset consisted
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Fig. 1 Example slices fromT1-weighted (left) andT2 (right) sequences

of 18 subjects and the data resolution was 256 × 256 × z (z
ranged from 10 to 24) with 0.94 mm × 0.94 mm in-plane
resolution and 3 mm slice thickness.

Soft palate region was analyzed in several works. Chen et
al. [6] extracted a computational three-dimensional (3D) soft
palate model from a set of MRI data to generate a patient-
specific model. The segmentation was performed manually.
Ogawa et al. [25] assessed tongue and soft palate mea-
surements in MR data of obstructive sleep apnea patients.
The measurements were also performed manually. To our
knowledge, there are no publications addressing automated
segmentation of the soft palate region frommid-sagittalMRI.

Materials

In our previous work [15,16,30], we utilized an isotropic T1-
weighted head sequence from the SHIP database. However,
this sequence does not contain some of the structures, such
as oral cavity, which are of interest in the current project.

Hence, a different sequence had to be chosen.Namely, T1-
weighted and T2-Weighted TSE (turbo spin echo) sequences
were utilized. The T1- and T2-weighted sequences were
taken in one measurement round, i.e., registered by acqui-
sition. These data in sagittal plane were primarily acquired
for spine analysis and contained only the central part of the
human body, which also included airway and soft structures
of interest for our project. The resolutionwas 1.116×1.116×
4.4mm3. The spatial resolution was 448×448, and the num-
ber of slices varied from 15 to 19. Such a resolution after
conversion to axial plane was not sufficient for successful
application of previously developed methods [16,30], since
the slice width in the axial projection would be 15 to 19 pix-
els only. In Fig. 1, example slices from T1- and T2-weighted
sequences are shown.

The experienced observer manually delineated several
OSA-relevant structures, namely: pharynx, tongue, and the

central part of soft palate. The pharyngeal structure consists
of the following parts: nasopharynx from the end of the hard
palate posterior nasal spine to the posterior margin of the
soft palate; oropharynx from the margin of the soft palate
to the tip of the epiglottis; and hypopharynx from the tip of
the epiglottis to the vocal cords. The tongue structure was
the biggest one. Whereas it was clearly visible in the central
slices, the observer was rather uncertain in marking the lat-
eral tongue parts, which were adjacent to the cheeks. For the
same reason, only the central parts of the soft palate were
marked.

In total, data from 181 subjects weremanually segmented.
The human reader required about two hours per dataset. 20
datasets were randomly selected as the test set. Thereafter,
we randomly selected 10 more datasets for validation, and
the other 151 datasets were used in training.

Methods

Analysis of intra-observer variability

In Fig. 2, manual readings for three example slices from one
dataset are presented. To evaluate the intra-observer variabil-
ity, the experienced observer repeated manual segmentation
of 20 datasets, which were put to the test set. The manual
readings were performed in Horos Software, a free and open
source code software (FOSS) program that is distributed free
of charge under the LGPL license [23]. The second round of
reading was performed in one month after the first one, and
the expert could not check the first reading again.

Automated segmentation in a cascaded framework

As it can be observed in Fig. 1, the slices cover approximately
half of a subject’s body, whereas the structures of interest are
relatively small. Therefore, we designed and applied a cas-
caded framework, which allowed for localization of the oral
cavity region and efficient segmentation of pharynx, tongue,
and soft palate. The cascade stages are schematically pre-
sented in Fig. 3. Each stage is described in detail below.
Stage 0 starts from original data, which cover approximately
the upper half of the human body. Since the organs of interest
liedwithin and adjacent to the oral cavity, we applied a proce-
dure to remove the background and the chest. Each slice was
cropped to the resolution of 256× 256. The cropping proce-
durewas designed as follows. First, a three-dimensional (3D)
region with voxel intensity values ≥ than a certain thresh-
old l = 50 was selected. Second, the axis-aligned bounding
box (AABB) was constructed around the thresholded result,
which allowed for exclusion of the background regions. The
left AABB’s boundary line (x0) corresponded to the tip of
the nose. The top AABB’s boundary line (y0) corresponded
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Fig. 2 Example slices with
overlaid manual segmentation of
pharynx (left), tongue (middle),
soft palate (right) with original
T1-weighted slices 2, 7, 10 of
one dataset

either to the slice top, or the highest point of the head. Finally,
255 pixels were added to x0 and y0, and the right and bot-
tom cropping lines, namely x1 = x0 + 255, y1 = y1 + 255,
were obtained. Of course, it was also checked that x1 and
y1 did not exceed the slice dimensions. Otherwise, the start
positions x0 and y0 were updated accordingly. Such crop-
ping resulted in slightly different images among subjects and
served as basic data augmentation. Additionally, we applied
further augmentation methods as rotation and elastic defor-
mation [27]. Finally, each dataset was z-score normalized
[17].
Stage 1 was designed for segmentation of the pharyngeal
structure on the head-cropped 256 × 256 slices. Due to the
high slice thickness and limited amount of ground truth
data, a 3D segmentation problem was approximated by an
encoder–decoder network with 2D convolutions, and the
datasets were considered in a slice-wise manner. We ran a
series of experiments with several well-known architectures
for semantic segmentation. Namely, we applied UNet [27]
with different encoders. The general feature of the network
is that it consists of the encoding (contracting) and decod-
ing (upsampling) parts. The skip connections are used from
the encoder to decoder at each block. We experimented with

the number of blocks, which defined the network’s depth.
Moreover, VGG, ResNet, and MobileNet architectures for
the encoder were tested [4,28,33]. The best performance for
pharynx segmentation was achieved by using 4 blocks. We
observed that the encoders resulted in similar performance
and selected a VGG-like structure, which had less param-
eters, when compared to ResNet18, ResNet34, VGG11,
VGG16, VGG19 with BatchNorm (9 to 20M parameters),
and with a slightly better performance, when compared
to MobileNetV2 encoder (2M parameters only). Our final
model had 7M parameters. Each block in the encoder had
two convolutional layers with batch normalization andReLU
activation function, and one max pooling layer. In the
decoder, the up-convolutional layers were employed. The
first layer started with 32 filters, and in the bottleneck part
there were 512 filters. We trained several networks with T1
and T2 only inputs and combined the results on the postpro-
cessing step, as well as the combined T1, T2 multi-channel
input. Output was a single channel probability map, which
was converted to a binary segmentation by thresholding. It
was shown that the best performance had been achieved with
only T1-weighted sequence on input for the air-filled struc-
ture.
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Fig. 3 The schematic
presentation of the proposed
cascade framework for
segmentation of pharynx,
tongue, and soft palate

T1 T2

Stage 0: Original Data 448× 448

T1 T2

Stage 1: Locate Head 256× 256

Pharynx Result

T1 T2 Pharynx

Stage 2: Use Pharynx 128× 128

Tongue Result

T1 T2 Pharynx Tongue Palate Result

Stage 3: Use Pharynx and Tongue 64× 64

Stage 2 used the detected pharynx as a physiological land-
mark, which defined the tongue location. Therefore, the input
image was cropped to the size of 128 × 128. The cropping
procedure was designed as follows. First, the axis-aligned
bounding box was built around the pharynxmask, which was
computed in Stage 1. The box consisted of top, bottom, left,
and right boundaries, namely py0, py1, px0, px1. Second,
it was taken into account that the possible tongue dimen-
sions could not exceed top, bottom, and right box boundaries,
namely py0, py1, and px1, due to the subject’s position and
physiology. The position of the tongue tip could not exceed
the position of the nose tip x0, which was detected in Stage 0.
Therefore, the cropping could be performed. If, for instance,
the difference py1 − py0 was smaller than 128, some pix-
els were added from above and below, such that the cropped
region stayed within the original slice dimensions.

Similarly, as the Stage 1, we experimented with differ-
ent network architectures, network depth, and initializations.

The best performing model for tongue segmentation used a
VGG-like encoder, T1- and T2-weighted sequences on input,
started with 32 filters, and required about 7M of parameters.
Stage 3 was the final one in the proposed framework. The
soft palate is a very small structure, which lies approximately
between the tongue and the pharynx part. Here, the detected
tongue and pharynxwere utilized as physiological landmarks
for the soft palate location. Themain idea was that the central
part of the soft palate lied in the region, where both pharynx
and tongue were visible. The approximate target region was
defined by the pharynx mask from the top and right sides,
and the tongue mask from the left and bottom sides, respec-
tively. Therefore, a cropping procedure to the size of 64×64
was designed. The top and right boundaries were obtained
from the pharynx mask (py0 and px1), and 64 pixels were
added/subtracted from them to obtain the other two bound-
aries. It was checked that they did not exceed the tongue
mask. Apart from the pre-extraction of the region of inter-
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Fig. 4 Dice coefficients for 20 datasets measured by the experienced
observer in two rounds

est, a smaller network and additional oversampling of the
soft palate slices in training were introduced to alleviate the
problem of the strong class imbalance. The U-Net started
with 16 filters and used T1- and T2-weighted sequences.

Postprocessing in Stages 1-3 consisted of extracting of
the biggest 3D connected component [12] and thresholding
of the output probability map. All voxels with probabilities
< 0.5 were set to 0, and the other ones were set to 1. Finally,
the Dice coefficient [12] was computed for each dataset.

Results and discussion

Analysis of intra-observer variability

In order to fairly evaluate the performance of the auto-
mated approach, first we analyzed the human performance.
To accomplish this task, our expert executed a double reading
of 20 datasets within one-month interval. The datasets were
given to the observer in a randomorder, and during the second
reading, it was of course not allowed to view the results of
the first one. As it can be observed, the tongue is the biggest
segmented structure, and the observer was themost confident
in its segmentation. The measurements of the soft palate suf-
fer from the biggest variations due to the small organ’s size.
Mean Dice values for 2 measurements are shown in Fig. 4.
The averaged Dice values are 0.904 ± 0.04, 0.865 ± 0.035
, 0.776 ± 0.13 for tongue, pharynx, and soft palate, respec-
tively. We aimed that the trained network would reach values
lying close to this range.

Results from the automated framework and
discussion

We adapted the implementations provided by [4,33]. The
networks were trained for 100 epochs. Adam optimizer [19]
with learning rate of 0.0001, and the Dice loss function [22]
were used as default settings. The processing of one dataset
with the complete framework and result saving took about 2
seconds using NVIDIA GeForce GTX 1070 with 8Gb.

Since there were two registered modalities available,
namely T1- and T2-weighted, it was first investigated, which
channel combination would allow for the best performance.
We trained three following networks: with T1-weighted
as input channel, with T2-weighted as input channel, and
the multi-channel input consisting of T1- and T2-weighted
images. It is known from the literature that usually the fusion
schemes outperform the single-modality schemes, and fusing
at the feature level can generally achieve the best perfor-
mance in terms of both accuracy and computational cost,
but can also suffer from the decreased robustness due to the
presence of large errors in one or more image modalities
[14]. The final (maximal) Dice coefficients for the valida-
tion set for pharynx training are 0.875, 0.831, 0.861 for
T1-weighted channel, T2-weighted channel, and T1- and T2-
weighted channels, respectively. Although our T2-weighted
channel did not contain errors, it had more darker regions
that lied close to the pharyngeal structures (see Fig. 1), and
this obviously confused the network. The combination of two
channels performed almost as good as a single T1-weighted
input, and the usage of the second channel did not influence
much the performance. Therefore, we used our final net-
work with T1-weighted input only. However, we observed
that multi-channel input was beneficial for segmentation of
soft structures, namely of tongue and soft palate.

We performed the evaluation in several steps. First, each
network was trained and evaluated separately, and manual
readingswere used in Stages 2 and 3 to pre-extract the tongue
and soft palate regions. We held out the test set for final
analysis and cross-validated the models to assure that the
results did not depend on a particular random choice for the
train andvalidation sets.Wegenerated k = 5 splits of training
and validation sets with 10 patients in each validation set
and trained k models for each stage. The splits were unique,
i.e., if a certain patient was used in the validation set for
one split, it was used in the training sets for the other splits
and did not appear in the other validation sets. The cross-
validation results are presented in Table 1. It can be observed
that the performance of the models was quite similar for all
splits. The largest variation between the splits appears for the
soft palate region, which can be explained by the uncertainty
of the expert. We took the models from split 0 for further
analysis, since its performance was close to the average one
of all five models for each organ.
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Table 1 Dice coefficients for
cross-validation of each stage.
For each split, 10 patients were
selected for validation and the
rest was used for training

Mask Split μ ± σ

0 1 2 3 4

Pharynx 0.892 0.885 0.875 0.903 0.8845 0.89 ± 0.01

Tongue 0.91 0.905 0.907 0.899 0.891 0.9 ± 0.007

Soft palate 0.84 0.833 0.869 0.825 0.8435 0.842 ± 0.016

Table 2 Dice coefficients (μ ± σ ) for validation (10 datasets) and test
(20 datasets) sets. Left: Each network in the framework was trained and
evaluated using the expert ground truth. Right: the cascade framework

was executed, and in the intermediate stages the results from the previ-
ous stages were employed. Only the final results were compared to the
expert ground truth

Mask dsc_μ ± dsc_σ
Independent Cascade

Validation set Test set Validation set Test set

Pharynx 0.89 ± 0.01 0.87 ± 0.02 0.89 ± 0.03 0.87 ± 0.02

Tongue 0.91 ± 0.03 0.89 ± 0.04 0.91 ± 0.02 0.89 ± 0.03

Soft palate 0.84 ± 0.06 0.79 ± 0.09 0.839 ± 0.05 0.79 ± 0.08

Second, we ran the cascade framework in the inference
mode to check if the cascade steps might introduce some
errors in detection of tongue and soft palate. Namely, the
pharynx was detected in the first step, then the computed
pharynx mask was used in the second step to localize the
tongue, and finally, both pharynx and tongue masks found
in the previous steps were used to localize the soft palate
location and the soft palate region of interest was fed to the
network for segmentation. In Table 2, the Dice coefficients
for validation and test set for both setups are given. In Fig. 5,
the results from the automated framework and the human
reader are overlaid with the T1-weighted slice, as it can be
observed that the largest regions are true positives (green),
with some minor false positives (shown in yellow) and false
negatives (shown in blue).

It can be observed that the cascaded framework using the
structures found in Stages 1 and 2 produced results with basi-
cally the same accuracy as in the independent setup, where
the pharynx and tongue regions are taken from the manual
ground truth.

Finally, we compared the results from the proposed frame-
work to the second expert reading provided for 20 datasets.
The Dice results were 0.89, 0.87, and 0.756 for tongue, phar-
ynx, and soft palate, respectively. Such values were close
enough to the intra-observer variability (Sect. 4.1). These
slightly lower values are explained by the fact that the net-
works were trained with the ground truth provided by the
expert in the first measurement round.

Other methods for pharynx segmentation, such as the
approaches by Erattakulangara and Lingala [10] and Shahid
et al. [30], reported Dice coefficients around 90%. Our
approach delivered slightly lower Dice coefficients (87 −
88%), which were fully consistent with the intra-observer

difference though. Moreover, these methods were applied to
different MR data, therefore, no direct comparison was pos-
sible.

The tongue segmentation approach [20] was developed
for MR images with similar resolution to the data used in
our project, and the Dice coefficients were around 90%. We
observed that the main differences in tongue segmentations
appear in lateral slices, where the rest of tongue tissue was
not well distinguishable from the other soft tissues in the
oral cavity (cf. Fig. 6), and the expert could not deliver the
consistent readings there.

Segmentation of central soft palate parts was rather
challenging even for the expert, which was reflected in
the intra-observer variability. The main misclassifications
appeared due to the fact that this small structure could be
delineated only on several slices. However, the expert him-
self was often unsure, which slices exactly to choose. It is
demonstrated in Fig. 4, where the drops in Dice coefficient
values for several datasets meant that the expert selected
a slice in the first round of soft palate measurement, but
missed it in the second round or vice versa. Similar situation
was observed for the automated framework. As presented in
Fig. 7, the framework detected a soft palate region, but the
expert rejected this slice. The network detections, as demon-
strated in Fig. 7, were not wrong, though. Moreover, in the
other slices, automated results were similar to the manual
readings (cf. Fig. 5). Our approach allowed for accurate seg-
mentation, which was comparable to another expert opinion.
To our knowledge, the proposed framework is the first one,
which considers automatic segmentation of soft palate parts
in MR data.
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Fig. 5 Example T1-weighted
slice from a dataset from the
validation set. Dice coefficients
for pharynx, tongue, and soft
palate are 0.9, 0.94, 0.87,
respectively. Segmentation
results from the automated
framework and the human
observer are overlaid with the
zoomed in regions of interest.
True positives (TP) are green;
false positives (FP) are yellow,
and false negatives (FN) are
light blue

Fig. 6 Two close-up views of
lateral slices from the
T1-weighted dataset from the
validation set. Left: the original
slice; Right: segmentation
results from the automated
framework and the human
observer are overlaid. True
positives (TP) are green; false
positives (FP) are yellow, and
false negatives (FN) are light
blue. The false positive and false
negative rates are much higher
than in the central slices (cf.
Fig. 5)

Fig. 7 A close-up view of a slice from the T1-weighted dataset from
the validation set. Left: the original slice; Right: segmentation results
from the automated framework and the human observer are overlaid.
True positives (TP) are green; false positives (FP) are yellow, and false
negatives (FN) are light blue. Here, the expert omitted this slice, but the

framework detected a soft palate region, which was considered as false
positives. However, it cannot be claimed that the network detection is
wrong, since anatomically it is in the correct position, and the expert
had probably rejected the slice due to a relatively low size of the soft
palate region
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Conclusions

The deep cascaded framework for efficient segmentation of
sleep apnea-relevant structures was presented. The frame-
work consisted of three stages and allowed for segmentation
of pharynx, tongue, and soft palate tissues from mid-sagittal
T1- and T2-weighted MRI images. The approach produced
accurate results, which were consistent with intra-observer
variability, and was very fast: namely, the processing of one
dataset took around 2 seconds using a modern GPU. The
frameworkwill be applied to population-based data available
in Study of Health in Pomerania to provide information on
the anatomical structures and aspects that constitute impor-
tant risk factors to the development of OSAS. Such data will
be further analyzed to determine the occurrence and severity
of OSAS in the general population, as well as aiding in the
early detection and management of OSAS patients.
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