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Abstract

Metagenomic studies using next-generation sequencing technologies have revealed rich human 

intestinal microbiome, which likely influence host immunity and health conditions including 

cancer. Evidence indicates a biological link between altered microbiome and cancers in the 

digestive system. Escherichia coli and Bacteroides fragilis have been found to be enriched in 

colorectal mucosal tissues from patients with familial adenomatous polyposis that is caused by 
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germline APC mutations. In addition, recent studies have found enrichment of certain oral 

bacteria, viruses, and fungi in tumor tissue and fecal specimens from patients with gastrointestinal 

cancer. An integrative approach is required to elucidate the role of microorganisms in the 

pathogenic process of gastrointestinal cancers, which develop through the accumulation of somatic 

genetic and epigenetic alterations in neoplastic cells, influenced by host genetic variations, 

immunity, microbiome, and environmental exposures. The transdisciplinary field of molecular 

pathological epidemiology (MPE) offers research frameworks to link germline genetics and 

environmental factors (including diet, lifestyle, and pharmacological factors) to pathologic 

phenotypes. The integration of microbiology into the MPE model (microbiology-MPE) can 

contribute to better understanding of the interactive role of environment, tumor cells, immune 

cells, and microbiome in various diseases. We review major clinical and experimental studies on 

the microbiome, and describe emerging evidence from the microbiology-MPE research in 

gastrointestinal cancers. Together with basic experimental research, this new research paradigm 

can help us develop new prevention and treatment strategies for gastrointestinal cancers through 

targeting of the microbiome.
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Introduction

Carcinomas that arise in the digestive system, including upper and lower gastrointestinal 

tract, liver, gallbladder, extrahepatic bile duct, and pancreas, are collectively leading causes 

of death worldwide (Cortes et al. 2020). The human intestine contains more than 100 trillion 

microorganisms, which can influence the immune system and health conditions including 

cancer (Tilg et al. 2020). Emerging longitudinal studies from the Integrative Human 

Microbiome Project have demonstrated associations of changes in the human microbiome 

with preterm birth (Fettweis et al. 2019), inflammatory bowel diseases (Lloyd-Price et al. 

2019), and prediabetes (Zhou et al. 2019). Accumulating evidence suggests that 

gastrointestinal cancers develop through the accumulation of somatic mutations and 

epigenetic alterations in tumor cells with complex influences of host genetic variations, 

microbiome, immunity, and environmental exposures (Fig. 1). Hence, it has been a challenge 

to elucidate the role of microbes in the pathogenic process of human gastrointestinal 

cancers.

The integration of molecular pathology and epidemiology has generated the 

transdisciplinary field of ‘molecular pathological epidemiology (MPE)’ (Ogino and 

Stampfer 2010), which aims to link germline genetics and modifiable factors (including 

environment, diet, lifestyle, and pharmacological factors) to pathologic features, most 

commonly tumor characteristics (Ogino et al. 2011; Ogino et al. 2019; Ogino et al. 2018). 

The concept of MPE as a distinct field has been widespread (Carr et al. 2018; Gunter et al. 

2019; Hughes et al. 2017; Rescigno et al. 2017; Waluga et al. 2018; Wang et al. 2020). 

Ogino et al. have shown basic approaches of MPE research in our previous review (Ogino et 
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al. 2011; Ogino et al. 2016; Ogino et al. 2018). Although an interventional study is a gold 

standard, to date no interventional MPE studies have been published. Hence, better approach 

of MPE research is a prospective cohort study, which can reduce potential bias related to 

case-case and case-control designs. In a prospective cohort study, disease incidence analyses 

of MPE can compute risk estimates of environmental exposures, including diet, nutrition, 

and lifestyle, for the incidence of disease with specific subtypes according to phenotypic 

characteristics (e.g. KRAS mutation), and disease consequence (e.g. patient survival) 

analyses of MPE can examine prognostic associations of environmental exposures according 

to phenotypic characteristics of diseases. Utilizing colorectal cancer cases in two U.S. 

nationwide prospective cohort studies (the Nurses’ Health Study and the Health 

Professionals Follow-up Study), MPE studies have shown that cigarette smoking is 

associated with an increased risk, especially of microsatellite instability (MSI)-high, CpG 

island methylator phenotype (CIMP)-high, and BRAF-mutated colorectal cancers (Limsui et 

al. 2010; Nishihara et al. 2013a), and that high levels of MSI and CIMP are common 

features of colorectal cancers arising within 5 years after colonoscopy (Nishihara et al. 

2013b). In addition, MPE studies have shown that regular aspirin use after diagnosis is 

associated with longer survival, especially in patients with PTGS2-overexpressing colorectal 

cancer (Chan et al. 2009), PIK3CA-mutated colorectal cancers (Liao et al. 2012), and 

CD274-low colorectal cancers (Hamada et al. 2017). These MPE studies demonstrate that 

the MPE approach can contribute to precision cancer medicine and prevention. In addition to 

cancer research, MPE approach can be applied to non-neoplastic diseases such as 

cardiovascular diseases, obesity, diabetes mellitus, drug toxicity, and immunity-related and 

infectious diseases (Ogino et al. 2016).

Genome-wide association studies (GWAS) suggest interactions of host genetic variations 

with diet, lifestyle, and other environmental exposures in the development of gastrointestinal 

cancers (Table 1). There are few gene-environment interaction studies considering 

microorganisms or immunity in gastrointestinal cancers to date. A gene-environment 

interaction study has shown a statistically significant interaction of the rs2294008 or 

rs2976392 single nucleotide polymorphism (SNP) at the PSCA gene with Helicobacter 
pylori infection in risk for gastric cancer (Nan et al. 2015). In a study of hepatocellular 

carcinoma (HCC), the rs7574865 SNP at the STAT4 gene and the rs9275319 SNP at the 

HLA-DQA1 gene showed a statistically significant interaction with hepatitis B virus 

infection in risk for HCC (Nan et al. 2013). A study using the integration of immunology 

and MPE into GWAS has revealed that the rs11676348 SNP was associated with colorectal 

cancer exhibiting Crohn’s-like lymphoid reaction or high-level of MSI (Khalili et al. 2015).

The relationship between the complex gut microbiome, tumor cells, and immune cells in 

humans cannot be completely recapitulated in any in vivo or in vitro model. Hence, the 

integration of microbiology into the MPE model (microbiology-MPE) can contribute to 

better understanding of the complex interactions of environment, tumor cells, immune cells, 

and microbiome during the development and progression of gastrointestinal cancers (Chen et 

al. 2019a; Hamada et al. 2019; Luo et al. 2019). Herein, we review major clinical and 

experimental studies on the microbiome and gastrointestinal cancers, and describe emerging 

evidence from microbiology-MPE studies.
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Gut microbiome and gastrointestinal tract cancer

Esophageal cancer

Esophageal carcinoma largely consists of two histological types, esophageal squamous cell 

carcinoma (ESCC) and esophageal adenocarcinoma (EAC). ESCC is a common type of 

esophageal cancer worldwide and predominates in certain high-risk areas, such as China and 

Japan (Stewart et al. 2014). In contrast, EAC is a predominant type in European and North 

American countries (Ajayi et al. 2018; Baba et al. 2017). Cigarette smoking, alcohol 

consumption, caustic injury, poor oral health, and poor nutritional status are major risk 

factors for ESCC; whereas the risk factors of EAC include advanced age, male sex, obesity, 

gastro-esophageal reflex disease, cigarette smoking, and diet low in vegetables and fruit 

(Smyth et al. 2017). Genetic polymorphisms of the GSTM1, the ALDH2 and ADH1B 
(alcoholic metabolic enzymes), or the MTHFR (folate metabolic enzyme) have been 

associated with an increased risk of esophageal carcinoma (Tian et al. 2019a). Human 

studies suggest associations of the microbiome with ESCC and EAC (Table 2).

Low microbial diversity measured by the number of detectable bacterial genera sample in 

the oral cavity has been associated with the presence of ESCC (Chen et al. 2015; Yu et al. 

2014). Peters et al. have performed 16S rRNA gene sequencing in prediagnostic mouthwash 

specimens, and found that a high amount of Tannerella forsythia in the oral cavity may be 

associated with higher risk of EAC, and that Porphyromonas gingivalis may be associated 

with higher risk of ESCC (Peters et al. 2017). Yamamura et al. have demonstrated that a 

high amount of Fusobacterium nucleatum, which is common species in the oral microbiota, 

in tumor tissue is associated with shorter patient survival following resection of esophageal 

cancer, including both ESCC and EAC, and that the amount of Fusobacterium nucleatum 
correlates with tumor expression of chemokine CCL20, which has been shown to promote 

the accumulation of regulatory T cells (Yamamura et al. 2016). Epidemiological studies have 

demonstrated an association of indicators of poor oral health, such as high numbers of lost 

teeth, with an increased risk of ESCC (Chen et al. 2017). These data suggest that dysbiosis 

in the oral microbiome may play a role in esophageal carcinogenesis.

Other studies have shown that Escherichia coli and Campylobacter concisus, which have 

been shown to potentiate carcinogenesis through specific toxins that can induce DNA 

damage (He et al. 2019; Wilson et al. 2019), are enriched in Barrett’s esophagus (Blackett et 

al. 2013; Zaidi et al. 2016).

Gastric cancer

Gastric cancer remains one of the leading causes of cancer-related mortality worldwide and 

the most prevalent cancer in Eastern Asia (Ajani et al. 2017). The worldwide incidence of 

gastric cancer has declined rapidly over the recent few decades due to a decline in 

Helicobacter pylori infection rates. Gastric cancer can be classified according to tumor 

location as cardia (the upper part of the stomach) and non-cardia (the mid and distal 

stomach). The incidence of gastric cardia cancer and EAC has increased. Chronic infection 

with Helicobacter pylori, gram-negative species that colonizes gastric epithelium, has been 

associated with an increased risk of gastric cancer, and Helicobacter pylori is categorized as 
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a class I carcinogen by the World Health Organization (Ajani et al. 2017). Risk factors for 

cancers arising from cardia and non-cardia regions of the stomach may be different. 

Common risk factors for both cardia and non-cardia gastric cancer include advanced age, 

male sex, cigarette smoking, radiation, and family history (Ajani et al. 2017). Factors 

associated cardia gastric cancer include obesity and gastro-esophageal reflex disease; 

whereas the risk factors of non-cardia gastric cancer include Helicobacter pylori infection, 

low socioeconomic status, low consumption of fruits and vegetables and high intake of salty 

and smoked food (Karimi et al. 2014). Genetic polymorphisms of the APEX1, CASP8, 

DNMT1, ERCC5, GSTT1, IL1B, IL1RN, IL10, IL17F, MDM2, PPARG, TLR4, or TNF 
have been associated with higher risk for and gastric cancer (El-Omar et al. 2000; El-Omar 

et al. 2003; Tian et al. 2019b). A germline CDH1 mutation is associated with familial diffuse 

gastric cancer (Guilford et al. 1998). In addition to the infection with Helicobacter pylori, 
human metagenomic studies suggest a potential link between the gastric microbiome and 

gastric cancer (Table 2).

A Chinese pilot study showed that low microbial diversity in gastric nontumor tissues was 

associated with advanced tumor grade in patients with gastric cardia cancer, and that patients 

with metastatic gastric cardia cancer had lower relative abundance of Lactobacillales in 

gastric nontumor tissues compared to gastric cardia cancer patients without metastasis (Yu et 

al. 2017). Metagenomic analyses of gastric mucosal microbiota have shown a gradual 

decrease in microbial diversity from gastritis to intestinal metaplasia to gastric cancer 

(Aviles-Jimenez et al. 2014), and that lower microbial diversity, lower amount of 

Helicobacter, and higher amounts of certain members of the oral microbiota, including 

Parvimonas micra, Peptostreptococcus stomatis, and Fusobacterium nucleatum, were 

observed in both cardia and non-cardia gastric cancer tissues, compared with nontumor 

tissues (Coker et al. 2018; Ferreira et al. 2018). Dysbiosis in the tongue coating microbiome 

was observed in patients with gastric cancer (Wu et al. 2018). These findings suggest that 

oral microbes may play a role in the development of gastric cancer.

Colorectal cancer

Colorectal cancers are a heterogeneous group of diseases that result from the accumulation 

of genomic and epigenomic alterations, and tumor-host interactions, which is influenced by 

environmental exposures including, diet, nutrition, and lifestyle, the microbiome, and host 

immunity (Tilg et al. 2018; Wong and Yu 2019). Modifiable risk factors for colorectal cancer 

include cigarette smoking, alcohol consumption, overweight and obesity, physical inactivity, 

high consumption of red and processed meat, and low consumption of dietary fiber, whole 

grains, and other healthful nutrients (Islami et al. 2018). Genome-wide association studies of 

colorectal caner have reported that genetic polymorphisms associated with higher risk for 

colorectal cancer are located either inside or near protein-coding genes that include ATOH1, 

APOBEC1, BMPR1B, BMP5, CDKN2A, CYP17A1, EIF3H, FKBP5, MED13L, PDLIM5, 

PTGER4, PTPN1, RTEL1, RPS21, SMARCAD1, SPSB2, TERT, or TFEB (Schmit et al. 

2019; Zeng et al. 2016). Germline mutations in the APC gene or the DNA mismatch repair 

genes (MSH2, MLH1, PMS1, PMS2, and MSH6) have been associated with familial 

adenomatous polyposis or hereditary nonpolyposis colorectal cancer. Germline mutations of 

the MUTYH, STK11, SMAD4, BMPR1A, or PTEN have been associated with other 
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familial polyposis syndromes (Kuipers et al. 2015). Human metagenomic studies 

demonstrate associations of the microbiome in mucosal tissue and fecal specimens with 

colorectal neoplasms (Table 3).

Colorectal mucosal microbiome has been significantly different from the fecal microbiome 

in patients with colorectal cancer (Chen et al. 2012; Flemer et al. 2017). Metagenomic 

analyses of the microbiome in human colorectal tumor tissues have demonstrated that the 

tumor microbiome changes across time periods from adenoma to adenocarcinoma, and that 

some members of the oral microbiota, including Fusobacterium, Gemella, 

Peptostreptococcus, Parvimonas, and Leptotrichia, were enriched in colorectal 

adenocarcinoma tissues (Nakatsu et al. 2015). Metagenomic analyses of the fecal 

microbiome in patients with colorectal neoplasms by Yachida et al. identified that 

Atopobium parvulum and Actinomyces odontolyticus were significantly increased in 

patients with adenomas and early stage adenocarcinoma, and that Parvimonas micra, 

Peptostreptococcus stomatis, Fusobacterium nucleatum, and Peptostreptococcus anaerobius 
were enriched in patients with metastatic colorectal adenocarcinoma (Yachida et al. 2019). 

Meta-analyses of human metagenomic studies of the fecal microbiome have revealed that 

oral microbes, including Fusobacterium nucleatum, Parvimonas micra, and 

Peptostreptococcus stomatis, were enriched in patients with colorectal carcinoma (Thomas 

et al. 2019; Wirbel et al. 2019). Experimental evidence indicates that Peptostreptococcus 
anaerobius can activate the NFKB signaling pathway in colorectal cancer cell lines and 

inhibit T-cell-mediated immune responses against colorectal tumors through the recruitment 

of myeloid-derived suppressor cells and tumor-associated macrophages into the tumor 

microenvironment in the ApcMin/+ mouse model (Long et al. 2019). Epidemiologic studies 

have demonstrated an association of periodontal disease with colorectal cancer risk 

(Michaud et al. 2018; Momen-Heravi et al. 2017). These findings demonstrate potential 

roles of oral and intestinal microbes in the progression of colorectal neoplasm.

In addition to altered composition of the bacteria in colorectal mucosal tissue and fecal 

specimens, emerging evidence suggests that dysbiosis of the viral microbiome (virome) or 

the fungal microbiome (mycobiome) is associated with colorectal cancer (Coker et al. 2019; 

Nakatsu et al. 2018). Nakatsu et al. found that some viral taxa, such as Orthobunyavirus, 

Inovirus, or Tunalikevirus, were enriched in fecal specimens from patients with colorectal 

cancer, and that dysbiosis of intestinal virome was associated with worse clinical outcomes 

in colorectal cancer (Nakatsu et al. 2018). Analyses by Coker et al. found that altered 

composition of the intestinal mycobiome was associated with colorectal cancer, and that 

fecal specimens from patients with colorectal cancer had higher amounts of 

Malasseziomycetes and lower amounts of Saccharomycetes and Pneumocystidomycetes 
compared to cancer-free individuals (Coker et al. 2019).

Accumulating evidence suggests enrichment of Fusobacterium nucleatum in human 

colorectal adenomas and carcinomas compared with adjacent normal tissue (Mima et al. 

2017). Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in 

their colorectal cancer and oral cavity (Komiya et al. 2019). In addition, higher amount of 

tissue Fusobacterium nucleatum has been associated with advanced disease stage 

(Castellarin et al. 2012; Flanagan et al. 2014; Kostic et al. 2012), a lower density of T cells 
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in colorectal carcinoma tissue (Mima et al. 2015), and worse patient survival (Mima et al. 

2016b). Fusobacterium nucleatum has been detected not only in primary tumors, but also in 

metastatic lymph nodes and liver metastases (Bullman et al. 2017; Yu et al. 2016). In 

addition to Fusobacterium nucleatum, several fusobacterial species, including 

Fusobacterium gonidiaformans, Fusobacterium periodonticum, and Fusobacterium varium 
have been enriched in colorectal cancer from southern Chinese populations (Yeoh et al. 

2020). Experimental evidence implies potential roles of Fusobacterium nucleatum in the 

development and progression of colorectal cancer. Fusobacterium nucleatum may inhibit T-

cell-mediated immune responses against colorectal tumors through the recruitment of 

myeloid-derived suppressor cells into the tumor microenvironment in the ApcMin/+ mouse 

model (Kostic et al. 2013). The Fap2 protein of Fusobacterium nucleatum has been shown to 

interact with T cell immunoglobulin and ITIM domain (TIGIT) receptor, and inhibit 

activities of NK cells and T cells (Gur et al. 2015). Fusobacterium nucleatum expresses the 

virulence factor FadA on the bacterial cell surface, which has been shown to bind to CDH1, 

activate the WNT signaling pathway in colorectal carcinoma cells, and promote colorectal 

tumor growth (Rubinstein et al. 2013). The Fap2 protein has been shown to mediate 

attachment of Fusobacterium nucleatum to colorectal cancers that express host Gal-GalNAc, 

and be transmitted hematogenously to colorectal carcinoma tissue (Abed et al. 2016). 

Fusobacterium nucleatum has been shown to activate the NFKB signaling pathway and up-

regulate MIR21 expression in colorectal cancer cell lines, and promote the development of 

intestinal tumors in ApcMin/+ mouse model (Yang et al. 2017).

Cytolethal distending toxin (CDT) is a well-characterized genotoxin (Ge et al. 2007; Graillot 

et al. 2016; Guidi et al. 2013; Nesic et al. 2004). Enrichment of Campylobacter species has 

been observed in colorectal cancer tissue and fecal specimens from patients with colorectal 

cancer (Warren et al. 2013; Wu et al. 2013). In a mouse model, Campylobacter jejuni can 

potentiate the development of intestinal tumors through the genotoxic action of the CDT (He 

et al. 2019). Colibactin is encoded by the polyketide synthase (pks) island present in 

Escherichia coli from phylogroup B2, and has been found to induce DNA damage (Cuevas-

Ramos et al. 2010; Nougayrede et al. 2006; Wilson et al. 2019), and promote colon 

carcinogenesis in Il10−/− mice (Arthur et al. 2014; Arthur et al. 2012). Pleguezuelos-

Manzano et al. have demonstrated that pks-positive Escherichia coli could induce mutations 

characterized by a specific signature in human intestinal organoids and promote 

carcinogenesis (Pleguezuelos-Manzano et al. 2020). Clinical studies with a limited sample 

size suggest that the amount of Escherichia coli is higher in colorectal carcinoma tissue than 

in adjacent normal tissue, and that higher amount of Escherichia coli may be associated with 

advanced disease stage (Bonnet et al. 2014; Kohoutova et al. 2014).

Enterotoxigenic Bacteroides fragilis expresses the virulence factor Bacteroides fragilis toxin, 

which has been shown to activate the WNT, NFKB, and STAT3 signaling pathways in 

colonic epithelial cells, and to potentiate the development of intestinal tumors in ApcMin/+ 

mice (Chung et al. 2018; Wu et al. 2003; Wu et al. 2004; Wu et al. 2007). Accumulating 

evidence indicates that T helper 17 (TH17) cells, which produce IL17 and IL22, can promote 

tumor development and progression in the gastrointestinal tract (Chae et al. 2010; Gaffen et 

al. 2014; Grivennikov et al. 2012). Enterotoxigenic Bacteroides fragilis induces TH17 cells, 

which activate the STAT3 signaling pathway in tumor cells in the ApcMin/+ mouse model of 
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colon cancer (Wang et al. 2009; Wu et al. 2009). Some human studies suggest that 

enterotoxigenic Bacteroides fragilis is detected significantly more often in colon mucosa 

tissue or fecal specimens of colorectal cancer cases than cancer-free individuals, and that 

higher amount of enterotoxigenic Bacteroides fragilis is associated with advanced disease 

stage (Boleij et al. 2015; Toprak et al. 2006; Wei et al. 2016).

Familial adenomatous polyposis is caused by germline APC mutations (Groden et al. 1991; 

Nishisho et al. 1991). Dejea et al. have identified that pks-positive Escherichia coli and 

enterotoxigenic Bacteroides fragilis were more commonly found in colorectal tissues from 

patients with familial adenomatous polyposis (68% and 60%, respectively), compared to 

those from healthy individuals (22% and 30%, respectively). In mouse models, co-

colonization with these two microbes can potentiate intestinal carcinogenesis through 

increased DNA damage in colonic epithelium and IL17 induction in the colon (Dejea et al. 

2018). These findings suggest a potential link between the microbiome and germline 

genetics in colorectal carcinogenesis.

Enterococcus faecalis has been shown to produce extracellular superoxide that induces DNA 

damage and genomic instability in colonic epithelial cells (Huycke et al. 2002; Wang et al. 

2008; Wang and Huycke 2007), and activates macrophages to produce 4-hydroxy-2-nonenal, 

which promotes colon carcinogenesis in Il10−/− mice (Wang et al. 2013; Wang et al. 2012). 

One human study showed that Enterococcus faecalis was detected more often in fecal 

specimens of colorectal cancer cases than controls (Balamurugan et al. 2008). Studies 

demonstrated that the amount of Streptococcus gallolyticcus in human colorectal carcinomas 

was higher than in control tissue, and that the amount of Streptococcus gallolyticcus was 

correlated with PTGS2 (cyclooxygenase-2) expression level in colorectal cancer (Abdulamir 

et al. 2010; Boleij and Tjalsma 2013; Gupta et al. 2010).

Gut microbiome and hepatobiliary-pancreatic cancer

Hepatocellular carcinoma (HCC)

HCC is the most common primary liver malignancy, and the major risk factors for HCC 

include hepatitis B and C, alcohol consumption, non-alcoholic fatty liver disease, and liver 

cirrhosis (Llovet et al. 2016). Numerous polymorphisms in the genes, which are associated 

with oxidative stress (GSTM1 and GSTT1 genes) and detoxifying (CAT gene) systems, iron 

metabolism (HFE gene), inflammation (TNF, IL1B, TGFB1, and NFKB1 genes), DNA 

repair mechanisms (MTHFR gene) cell cycle regulation (MDM2 and TP53 genes), growth 

factors (EGF gene), or immune response (CD24 gene), have been reported as risk factors of 

HCC (Nahon and Zucman-Rossi 2012). Clinical studies suggest associations of microbes 

and microbial dysbiosis with the development of HCC (Table 4).

Metagenomic analyses of the fecal microbiome in patients with liver cirrhosis or HCC 

revealed that Gemmiger, Parabacteroides, and Paraprevotella were enriched in patients with 

HCC, compared with those with liver cirrhosis (Ren et al. 2019). Helicobacter pylori and 

other Helicobacter species have been detected human HCC tissue specimens (Huang et al. 

2004; Kruttgen et al. 2012; Rocha et al. 2005). Experimental studies have shown that 

Helicobacter hepaticus may colonize the hepatic bile canaliculi and the large intestine of 
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mice, and potentiate liver tumor development by increasing tumor cell proliferation, 

damaging DNA, activating the WNT and NFKB signaling pathways in tumor cells, and 

suppressing the innate immunity to recognize and eliminate tumor cells in a mouse model of 

aflatoxin- and hepatitis C virus-induced HCC (Fox et al. 2010; Ward et al. 1994). 

Escherichia coli has been shown to induce double-strand DNA breaks and promote colon 

carcinogenesis in Il10−/− mice (Arthur et al. 2014; Arthur et al. 2012). The increased amount 

of Escherichia coli in the fecal specimens is associated with the presence of HCC in patients 

with liver cirrhosis, suggesting that intestinal overgrowth of Escherichia coli may contribute 

to the development of HCC (Grat et al. 2016).

Evidence suggests an association of diabetes, obesity, non-alcoholic fatty liver disease, and 

non-alcoholic steatohepatitis with the development HCC (Anstee et al. 2019). Experimental 

studies using mouse models of obesity-induced HCC have shown that microbial dysbiosis 

correlates with high levels of bile acids, including deoxycholic acid, in the liver, which can 

potentiate tumor development by up-regulating the expressions of inflammation-related 

genes such as IL6 and TNF (Xie et al. 2016a; Xie et al. 2016b). Yoshimoto et al. have shown 

that deoxycholic acid produced by gut microbiota can potentiate tumor development by 

provoking the senescence-associated secretory phenotype in hepatic stellate cells and up-

regulation of IL6 in a mouse model of obesity-induced HCC (Yoshimoto et al. 2013). 

Among various microbial species, Clostridium species were enriched in these mouse models 

of obesity-induced HCC (Niwa et al. 2015; Xie et al. 2016a; Xie et al. 2016b; Yoshimoto et 

al. 2013). Ma and colleagues demonstrate that in multiple mouse models, Clostridium 
species can inhibit the accumulation of hepatic natural killer T (NKT) cells, and suppress 

antitumor immune response against both primary and secondary liver tumors (Ma et al. 

2018). Colonization with a commensal Clostridium species, which are gram-positive 

bacteria and involved in the conversion of primary to secondary bile acids, decreased hepatic 

NKT cells and increased liver tumor metastases. Analysis of Clostridium species in human 

HCC tissue specimens would be required for clinical application.

Biliary tract cancer

Cholangiocarcinomas are cancers of the intrahepatic or extrahepatic bile ducts (Banales et 

al. 2016). Primary sclerosing cholangitis, biliary infections with Opisthorchis viverrini and 

Clonorchis sinensis, biliary malformations such as Caroli’s disease and choledochal cysts, 

hepatolithiasis, recurrent bacterial cholangitis, carcinogens such as thorotrast and dioxins, 

and hepatitis C and liver cirrhosis are major risk factors for cholangiocarcinomas (Ray 

2015). Genetic polymorphisms in CXCR2 and the drug metabolizing enzyme genes 

(CYP1A2, NAT1, NAT2, GSTM1, GSTT1, or MTHFR) have been associated with biliary 

tract cancers (Hsing et al. 2008; Kukongviriyapan 2012). Genetic polymorphisms of the 

IL10 and VEGFA genes are associated with high risk for gallbladder cancer (Hsing et al. 

2008). Although there are a few experimental studies on microbes in relation to biliary tract 

cancers, clinical studies have shown associations of microbes and microbial dysbiosis with 

the development of biliary tract cancer (Table 4).

A metagenomic study of the fecal microbiome in patients with intrahepatic 

cholangiocarcinoma has revealed that amounts of four genera (Lactobacillus, Actinomyces, 
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Peptostreptococcaceae, and Alloscardovia) were increased in fecal specimens from patients 

with intrahepatic cholangiocarcinoma, compared with those from healthy individuals (Jia et 

al. 2019). In preliminary studies of the bile microbiome, dysbiosis in the bile microbiome 

was associated with biliary mucosal dysplasia or cholangiocarcinoma (Chen et al. 2019b; 

Pereira et al. 2017).

Epidemiologic studies have demonstrated associations of Helicobacter species, including 

Helicobacter pylori, Helicobacter bilis, and Helicobacter hepatics, with an increased risk of 

cholangiocarcinoma (Bulajic et al. 2002; Fukuda et al. 2002; Murphy et al. 2014; Segura-

Lopez et al. 2015; Shimoyama et al. 2010; Zhou et al. 2013). Experimental evidence 

suggests that Helicobacter bilis can activate the NFKB signaling pathway and increase the 

production of VEGFA, which leads to enhancement of angiogenesis in human 

cholangiocarcinoma cell lines (Takayama et al. 2010). Clinical studies using metagenomic 

analyses have shown that Bifidobacteriaceae, Enterobacteriaceae and Enterococcaceae are 

enriched in tumor tissue specimens of cholangiocarcinoma (Chng et al. 2016), and that 

amounts of Methylophilaceae, Fusobacterium, Prevotella, Actinomyces, Novosphingobium 
and Helicobacer pylori were increased in cholangiocarcinoma tissue specimens compared 

with nontumor tissue specimens (Aviles-Jimenez et al. 2016).

Epidemiologic studies have shown that chronic Salmonella typhi infection is associated with 

an increased risk of gallbladder cancer (Nagaraja and Eslick 2014). Experimental evidence 

suggests that Salmonella typhi can induce malignant transformation in the ApcMin/+ mouse 

model, murine gallbladder organoids, and fibroblasts that exhibit TP53 inactivation and 

MYC amplification through activation of the AKT and MAPK signaling pathways (Scanu et 

al. 2015).

Pancreatic cancer

Pancreatic cancer is associated with an extremely poor prognosis: the 5-year survival rate is 

6–10% and approximately 367,000 new cases were diagnosed worldwide in 2015 (Kleeff et 

al. 2016). Although 10–20% of patients with pancreatic cancer have surgically resectable 

disease at the time of presentation, only 15–20% of those survive for 5 years or more. 

Cigarette smoking, a high intake of fat or meat, and diabetes mellitus are major risk factors 

for pancreatic cancer (Kleeff et al. 2016). Genetic variations as well as environmental 

exposures have been associated with the development of pancreatic cancer. Genetic 

polymorphisms associated with an increased risk for pancreatic cancer have been located 

either inside or near protein-coding genes that include ABO, BCAR1, DAB2, DPP6, 

FOXQ1, HNF1B, HNF4G, GRP, NOC2L, NR5A2, ETAA1, SUGCT, PDX1, TERT, TFF1, 

and TP63 (Klein et al. 2018; Wolpin et al. 2014; Wu et al. 2011). Major germline mutations 

associated with an increased risk of pancreatic cancer includes mutations in the STK11, 

CDKN2A, or BRCA2. The pancreas is anatomically connected to the gastrointestinal tract 

via the pancreatic duct and communicates with the liver via the common bile duct (Thomas 

and Jobin 2020). An increasing body of evidence suggests possible roles of microbes in the 

development of pancreatic tumors (Table 4).
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Pushalkar et al. have found that Pseudomonas and Elizabethkingia were enriched in tumor 

tissue and fecal specimens from patients with pancreatic cancer, and that intestinal microbes 

can migrate from the gut to the pancreas and inhibit T-cell-mediated immune responses 

against pancreatic tumors through the recruitment of myeloid-derived suppressor cells into 

the tumor microenvironment in a mouse model (Pushalkar et al. 2018). Metagenomic 

analyses of human pancreatic cancer microbiome by Riquelme et al. have found that high 

amount of Pseudoxanthomonas, Streptomyces, or Saccharopolyspora in pancreatic cancer 

tissue specimens was associated with high density of CD8+ T-cells in tumor tissues and 

better overall survival (Riquelme et al. 2019). Analyses of fungal microbiome (mycobiome) 

in pancreatic cancer tissue specimens by Aykut et al. have revealed that Malassezia was 

enriched in human pancreatic cancer tissue specimens, and that Malassezia can potentiate 

the development of pancreatic tumors in a mouse model (Aykut et al. 2019).

Epidemiologic studies have shown positive associations of periodontitis with an increased 

risk of development of pancreatic cancer (Hujoel et al. 2003; Michaud et al. 2007). Human 

studies using metagenomic analyses suggest that high amounts of pathogenic periodontal 

microbes, such as Neisseria elongata and Porphyromonas gingivalis, in saliva are associated 

with an increased risk of development of pancreatic cancer (Farrell et al. 2012). 

Metagenomic analyses of the oral microbiome in patients with pancreatic cancer from a 

prospective cohort study have revealed that dysbiosis in the oral microbiome was associated 

with the incidence of pancreatic cancer, and that the presence of Porphyromonas gingivalis 
or Aggregatibacter actinomycetemcomitans in the oral cavity was associated with higher 

incidence of pancreatic cancer (Fan et al. 2018). Gaiser et al. have found enrichment of oral 

microbes, including Fusobacterium nucleatum and Granulicatella adiacens, in tumor tissue 

specimens of intraductal papillary mucinous neoplasms with high-grade dysplasia, which 

have been precursors to invasive pancreatic cancer (Gaiser et al. 2019). Mitsuhashi et al. 

have shown that a high amount of Fusobacterium species in tumor tissue is associated with 

worse prognosis in patients with pancreatic cancer (Mitsuhashi et al. 2015).

Emerging findings of the microbiology-MPE research

The concept and study designs of the microbiology-MPE research have been figured and 

discussed in our previous review (Hamada et al. 2019). Using this approach, we can examine 

associations of germline genetic variations and environmental exposures, including lifestyle 

factors, dietary patterns, medications, with specific cancer subtypes according to microbial 

profile, which are not detectable in conventional epidemiology and microbiology research. If 

the microbial data before cancer diagnosis are available in prospective studies, we can link 

microbial profile and the incidence of specific cancer subtypes classified by tumor molecular 

characteristics (e.g. somatic mutations and epigenetic alterations in tumor cells) or the tumor 

microenvironment (e.g. antitumor immunity). In patient survival analysis, the microbiology-

MPE approach enables us to examine prognostic associations of the environmental 

exposures according to specific cancer subtypes classified by microbial profile. In addition, 

we can examine an association of microbial profile with patient survival according to 

specific cancer subtypes classified by molecular characteristics.
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The envirome (or the exposome), which broadly includes dietary and lifestyle factors, have 

been implicated in the development of colorectal tumors. Smoking, adiposity (body fatness), 

alcohol drinks, and red and processed meat have been associated with an increased risk of 

colorectal cancer, whereas regular aspirin use, physical activity, plasma vitamin D level, and 

high intakes of dietary fiber, whole grains, calcium, and marine omega-3 fatty acid may 

decrease risk of colorectal cancer (Song et al. 2020). The microbiology-MPE studies have 

shown that a so-called prudent diet that is rich in whole grains and fiber was associated with 

a lower risk of colorectal carcinoma with detectable levels of Fusobacterium nucleatum but 

not with a lower risk of carcinoma without Fusobacterium nucleatum (Fig. 2A) (Mehta et al. 

2017), and that an inflammatory dietary pattern (rich in red and processed meat, refined 

grains, and sugar) has been associated with a higher risk of Fusobacterium nucleatum-

positive proximal colon carcinoma, but not with a risk of Fusobacterium nucleatum-negative 

proximal colon carcinoma (Fig. 2B) (Liu et al. 2018b). These findings support a potential 

role for the gut microbes in mediating the effect of diet on colorectal carcinogenesis. 

Although mechanistic studies have been a major part of microbiology research on 

carcinogenesis, insights from microbiology-MPE research would serve as particularly 

valuable evidence for the microbial etiologies and pathogenesis of human neoplasms.

The proportions of colorectal cancers with specific molecular features such as high-level 

MSI, high-level CIMP, and BRAF and PIK3CA mutations have been shown to gradually 

increase along the bowel subsites from rectum to ascending colon (Yamauchi et al. 2012) 

and these findings have been replicated in other datasets (Phipps et al. 2012; Phipps et al. 

2015; Rosty et al. 2013). These findings led to the colorectal continuum concept that most 

likely reflected the influence of the gut microbiome on local tissue microenvironment and 

carcinogenesis. Studies have demonstrated that a high amount of Fusobacterium nucleatum 
in carcinoma tissue is associated with high-level MSI (Ito et al. 2015; Mima et al. 2015; 

Tahara et al. 2014), autophagy status (Haruki et al. 2019), lower density of T cells in tumor 

tissue (Mima et al. 2015), and worse patient survival (de Carvalho et al. 2019; Kunzmann et 

al. 2019; Mima et al. 2016b), and that the proportion of colorectal cancers containing high 

amounts of Fusobacterium nucleatum increased gradually along the bowel subsites from 

rectum to cecum (Mima et al. 2016a). In addition, our further analyses revealed that 

Fusobacterium nucleatum in tumor tissue was associated with lower-level tumor-infiltrating 

lymphocytes (TIL) in MSI-high colorectal carcinoma, while it was associated with high-

level TIL in non-MSI-high carcinoma; these findings might reflect divergent effects of the 

bacteria on the tumor-immune microenvironment according to the amount of tumor 

neoantigens (Hamada et al. 2018). MSI-high colorectal cancers are genetically characterized 

by a hypermutator phenotype associated with a high number of neoantigens (Giannakis et al. 

2016). These data would inform future mechanistic studies to examine the interplay of 

Fusobacterium nucleatum and tumor characteristics in colorectal carcinogenesis.

Future perspectives, challenges, and conclusions

Considering that oral health, diet, lifestyle, pharmacological factors (including antibiotics), 

probiotics, and prebiotics can influence the composition of intestinal microbiota 

(Biedermann et al. 2013; O’Keefe et al. 2015; Zitvogel et al. 2015), future investigations 

need to examine potential influences of those modifiable factors on the gut microflora and 
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tumorigenic processes. Although to date, no clinical trials demonstrate the efficacy of 

modulating the microbiome in the development or progression of gastrointestinal cancers, 

some clinical studies have shown the effect of microbiome modulation in inflammatory 

bowel diseases and toxicity of cancer chemotherapy. Fecal microbiota transplantation (FMT) 

has been effective treatment for recurrent or refractory Clostridium difficile infection 

(Costello et al. 2015; van Nood et al. 2013). Ulcerative colitis is a chronic inflammatory 

bowel disease characterized by colonic mucosal inflammation, and is associated with an 

increased risk of colorectal cancer (Castano-Milla et al. 2014). FMT has been shown to 

induce clinical remission and endoscopic improvement in active ulcerative colitis (Moayyedi 

et al. 2015; Paramsothy et al. 2017; Rossen et al. 2015). Probiotic refers to bacteria or a 

combination of live bacteria that confer a health benefit to hosts when consumed in adequate 

amounts (Suez et al. 2019). In 15 patients with colorectal cancer, administration of 

probiotics may reduce amounts of Fusobacterium and Peptostreptococcus (Hibberd et al. 

2017). Patients with colorectal cancer who received 5-FU and Lactobacillus rhamnosus were 

less like to have diarrhea (Osterlund et al. 2007).

Escherichia coli and Bacteroides fragilis have been enriched in colorectal mucosal tissues 

from patients with familial adenomatous polyposis that is caused by germline APC 
mutations, suggesting a potential link between the microbiome and germline genetics in 

carcinogenesis. Further investigations need to examine potential combined influences of 

germline mutations and the microbiome on carcinogenesis in hereditary neoplasms. The 

integrative approach of microbiology-MPE can be a novel tool that potentially expands our 

knowledge of the etiologies and pathogenesis of cancers not only in the digestive system but 

also in other body sites. Future microbiology-MPE analyses can reveal additional links of 

host genetic variations and modifiable lifestyle factors with specific subtypes of neoplasms, 

which will contribute to the development of precision prevention and treatment strategies. 

With the advances in next-generation sequencing technologies, large population-based 

research on genomics, metagenomics, and other omics (epigenomics, transcriptomics, 

proteomics, and metabolomics) has become reality, but necessitates our efforts to new 

transdisciplinary frameworks of our science and research enterprise, including 

interdisciplinary education system (Ogino et al. 2012). Successful microbiology-MPE 

studies may be among research examples that can inform such efforts.

Although clinical studies have linked specific microbes and microbial dysbiosis to 

gastrointestinal cancers, there are considerable study-to-study differences in reported 

specific microbes and microbial dysbiosis, which may be due to limitations including small 

sample sizes, undefined tissue sampling sites, procedures for biospecimen collection, 

processing, and storage, methods for microbiome analysis, and limited data on clinical 

features and tumor molecular features. Challenges exist in the microbiology-MPE research, 

as previously discussed (Hamada et al. 2019; Ogino et al. 2011). Sample size is generally 

limited based on biospecimen availability, which can also lead to selection bias. Hence MPE 

investigators should make efforts to maximize the number of cases available for research. 

Statistical analysis methods to test hypothesis on etiological heterogeneity between disease 

subtypes (Lu et al. 2018; Wang et al. 2015b; Wang et al. 2016) and to address missing data 

(Liu et al. 2018a; Nevo et al. 2018) in MPE research have been validated in various study 

designs. Standardized procedures for collecting, processing, and storing biospecimens, and 
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methods of microbiome analyses are required for collaborative projects on microbiology-

MPE. In addition, transdisciplinary education and transdisciplinary research teams are also 

important to perform the MPE research due to the nature of microbiology-MPE. We have 

started training programs of molecular pathology, epidemiology, microbiology, and 

immunology for physicians and researchers (e.g. Lectures and/or hands-on training of 

epidemiology and biostatistics in departments of pathology).

In conclusion, accumulating evidence supports the influential role of the microbiome in 

cancers of the digestive system and likely neoplasms of other organs and tissues. The 

microbiology-MPE research can provide a novel methodological framework to integrate data 

on host genetic variations and modifiable factors into analyses of the microbiome and tumor 

characteristics, to generate novel insights into tumor-immune-microbiome interactions. This 

new type of research effort can inform cancer prevention and treatment strategies targeting 

the microbiome.
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Fig. 1. 
Influences of host genetic variations, microbiome, immunity, and environmental exposures 

on tumor genetic and epigenetic alterations. Gastrointestinal cancers develop through the 

accumulation of somatic mutations and epigenetic alterations in tumor cells with complex 

influences of microbiome and immunity in the tumor microenvironment, host genetic 

variations, and environmental exposures.
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Fig. 2. 
Illustration of the microbiome-MPE approach using tumor microbial status. Fusobacterium 
nucleatum can inhibit antitumor immune response and potentiate colonic neoplasia 

development in animal models. Using data on colorectal cancer cases and tumor microbial 

profile in two U.S. nationwide prospective cohort studies (the Nurses’ Health Study and the 

Health Professionals Follow-up Study), the microbiome-MPE studies have revealed that a 

so-called prudent diet that is rich in whole grains and fiber was associated with a lower risk 

of colorectal carcinoma with detectable levels of Fusobacterium nucleatum but not with a 

lower risk of carcinoma without Fusobacterium nucleatum (A), and that an inflammatory 

dietary pattern (rich in red and processed meat, refined grains, and sugar) was associated 

with a higher risk of Fusobacterium nucleatum-positive colorectal carcinoma, but not with a 

risk of Fusobacterium nucleatum-negative carcinoma (B).
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Table 1.

Major studies of interactions between host genetic variations and environmental exposures in gastrointestinal 

cancers

Environmental exposure Gene (References)

Esophageal adenocarcinoma

 Smoking ADH1B and ALDH2 (Tanaka et al. 2010)
RNF144A (Dong et al. 2018)

 Recurrent gastroesophageal reflux disease symptoms RND3 (Dong et al. 2018).

Gastric adenocarcinoma

 Helicobacter pylori infection PSCA (Cai et al. 2017)

 Alcohol drinking SLC52A3 (Cai et al. 2017)

Colorectal carcinoma

 Processed meat or total red meat NAT2 (Wang et al. 2015a)

 Vegetables EIF3H (Hutter et al. 2012)

 Smoking SMAD7 and TGFBR1 (Zhong et al. 2013)

 Alcohol drinking MFSD14B (Gong et al. 2016)
DUSP10 (Song et al. 2018)

 Aspirin and/or anti-inflammatory drugs use MGST1, IL16 (Nan et al. 2015; Nan et al. 2013).

 Use of estrogen plus progesterone therapy CYP24A1 (Garcia-Albeniz et al. 2016)

Hepatocellular carcinoma

 Hepatitis B virus infection STAT4, HLA-DQA1 (Jiang et al. 2013)

Pancreatic cancer

 Smoking XRCC3 (Duell et al. 2008)
EPHX1 (Jang et al. 2012)

 Obesity IGF1 (Nakao et al. 2011)
FTO and ADIPOQ (Tang et al. 2011)

 Alcohol drinking IGF2R, IRS1 (Dong et al. 2012)

 Diabetes mellitus PTGS1 (Tang et al. 2014)
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