Table 2.
Model | VGG | ResNet | DenseNet | |||
---|---|---|---|---|---|---|
Easy | Difficult | Easy | Difficult | Easy | Difficult | |
Precision | 0.787 ± 0.081 | 0.434 ± 0.083 | 0.802 ± 0.047 | 0.507 ± 0.038 | 0.772 ± 0.076 | 0.436 ± 0.047 |
Recall | 0.607 ± 0.048 | 0.656 ± 0.102 | 0.719 ± 0.081 | 0.611 ± 0.098 | 0.631 ± 0.057 | 0.615 ± 0.045 |
F1 score | 0.680 ± 0.016 | 0.511 ± 0.048 | 0.757 ± 0.062 | 0.553 ± 0.062 | 0.694 ± 0.061 | 0.507 ± 0.026 |
ACC | 0.614 ± 0.024 | 0.695 ± 0.042 | 0.627 ± 0.037 | |||
AUC | 0.657 ± 0.061 | 0.680 ± 0.021 | 0.626 ± 0.034 |
Bold fonts represent the best performance among the methods.
AUC area under the receiver operating characteristic curve, ACC accuracy.