Table 3.
Model | VGG | ResNet-macro F1 | ResNet-ACC | DenseNet |
---|---|---|---|---|
Macro-average precision | 0.360 ± 0.143 | 0.444 ± 0.071 | 0.340 ± 0.033 | 0.393 ± 0.110 |
Macro-average recall | 0.342 ± 0.068 | 0.445 ± 0.054 | 0.328 ± 0.041 | 0.379 ± 0.067 |
Macro-average F1 score | 0.304 ± 0.080 | 0.429 ± 0.062 | 0.364 ± 0.029 | 0.350 ± 0.095 |
Accuracy | 0.691 ± 0.070 | 0.667 ± 0.078 | 0.712 ± 0.056 | 0.699 ± 0.064 |
Bold fonts represent the best performance among the methods.
ResNet-macro F1 ResNet early stopped with macro-average F1-score, ResNet-ACC ResNet early stopped with accuracy.