Skip to main content
. 2021 Apr 16;11:8381. doi: 10.1038/s41598-021-87737-3

Table 3.

Performance for four-class classification.

Model VGG ResNet-macro F1 ResNet-ACC DenseNet
Macro-average precision 0.360 ± 0.143 0.444 ± 0.071 0.340 ± 0.033 0.393 ± 0.110
Macro-average recall 0.342 ± 0.068 0.445 ± 0.054 0.328 ± 0.041 0.379 ± 0.067
Macro-average F1 score 0.304 ± 0.080 0.429 ± 0.062 0.364 ± 0.029 0.350 ± 0.095
Accuracy 0.691 ± 0.070 0.667 ± 0.078 0.712 ± 0.056 0.699 ± 0.064

Bold fonts represent the best performance among the methods.

ResNet-macro F1 ResNet early stopped with macro-average F1-score, ResNet-ACC ResNet early stopped with accuracy.