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Abstract 

Objectives:  To generate and validate state-of-the-art radiomics models for prediction of radiation-induced lung 
injury and oncologic outcome in non-small cell lung cancer (NSCLC) patients treated with robotic stereotactic body 
radiation therapy (SBRT).

Methods:  Radiomics models were generated from the planning CT images of 110 patients with primary, inoperable 
stage I/IIa NSCLC who were treated with robotic SBRT using a risk-adapted fractionation scheme at the University 
Hospital Cologne (training cohort). In total, 199 uncorrelated radiomic features fulfilling the standards of the Image 
Biomarker Standardization Initiative (IBSI) were extracted from the outlined gross tumor volume (GTV). Regularized 
models (Coxnet and Gradient Boost) for the development of local lung fibrosis (LF), local tumor control (LC), disease-
free survival (DFS) and overall survival (OS) were built from either clinical/ dosimetric variables, radiomics features or a 
combination thereof and validated in a comparable cohort of 71 patients treated by robotic SBRT at the Radiosurgery 
Center in Northern Germany (test cohort).

Results:  Oncologic outcome did not differ significantly between the two cohorts (OS at 36 months 56% vs. 43%, 
p = 0.065; median DFS 25 months vs. 23 months, p = 0.43; LC at 36 months 90% vs. 93%, p = 0.197). Local lung fibrosis 
developed in 33% vs. 35% of the patients (p = 0.75), all events were observed within 36 months. In the training cohort, 
radiomics models were able to predict OS, DFS and LC (concordance index 0.77–0.99, p < 0.005), but failed to general‑
ize to the test cohort. In opposite, models for the development of lung fibrosis could be generated from both clinical/
dosimetric factors and radiomic features or combinations thereof, which were both predictive in the training set 
(concordance index 0.71– 0.79, p < 0.005) and in the test set (concordance index 0.59–0.66, p < 0.05). The best per‑
forming model included 4 clinical/dosimetric variables (GTV-Dmean, PTV-D95%, Lung-D1ml, age) and 7 radiomic features 
(concordance index 0.66, p < 0.03).
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Introduction
Stereotactic body radiation therapy (SBRT) is an effec-
tive therapy for early-stage, node-negative, medically 
inoperable non-small cell lung cancer (NSCLC). Dose-
fractionation schemes usually depend on tumor size 
and location and have been largely standardized by cur-
rent guidelines [1–4]. However, after irradiation, about 
10–15% of the tumors will recur locally, up to 50% of 
the patients will experience systemic disease progres-
sion despite PET-based staging before SBRT [5], and 
25–30% of the patients will develop radiation-induced 
lung injury (RILI) on follow-up chest imaging. Apart 
from an established dose–response relationship for 
local control [6], dosimetric and clinical factors have 
only shown limited capability in predicting these events 
[7–14].

Radiomics aims at extraction of biomarkers from 
high-dimensional analysis of digital images and has 
been extensively studied in lung cancer by using com-
puted tomography (CT) or Fluor-Deoxyglucose Posi-
tron Emission Tomography (FDG-PET) of the chest 
[15–20]. Several studies have applied radiomic analy-
sis in SBRT of NSCLC [21–34], but so far, the clinical 
impact of the developed algorithms has been low due 
to low reproducibility of the results [35], lack of stand-
ardization of the extracted radiomic features and lack 
of external validation on data from other institutions.

The availability of open-source software solutions 
allows the extraction of standardized radiomic features 
and generation of complex, non-linear models which 
are able to account for complex interactions between 
features and have the potential to achieve high per-
formance. The primary objective of the present study 
was to build a model for the development of radiation-
induced lung injury by use of state-of-the-art feature 
extraction and machine-learning algorithms in order to 
determine the extra value of imaging tumor biomarkers 
when used in addition to dosimetric and clinical factors 
in a cohort of patients with NSCLC treated by robotic 
SBRT. Secondary objectives of the study were the devel-
opment of models for local control, disease free sur-
vival and overall survival. The models were trained on 
data from one institution and tested on a cohort from a 
separate institution that treated patients based on simi-
lar inclusion criteria and fractionation schemes. This 
work extends an earlier single institution report [36].

Patients and methods
Patients, treatment and follow‑up
Two cohorts of patients with stage I/IIa NSCLC 
(according to staging classification of the Union for 
International Cancer Control [UICC], 8th edition) who 
underwent definitive robotic SBRT were retrospec-
tively analyzed. The first cohort comprised 110 patients 
treated at the University Hospital of Cologne, Germany 
and was used for identification of clinical, dosimetric 
and image-derived parameters to predict local control 
(LC), overall survival (OS), disease free survival (DFS) 
and occurrence of local lung fibrosis (LF) as a manifes-
tation of radiation-induced lung injury after SBRT. This 
cohort had already been analyzed in a previous study 
using a simpler radiomics approach that only included 
first-level features and a small set of 5 texture features 
from the Gray-Level Co-occurrence Matrix (GLCM) 
without wavelet-filtering [36] and served as the training 
data set. A second cohort of 71 patients was treated at 
the Radiosurgery Center Northern Germany, Guestrow, 
and was used as test set (in machine learning terminol-
ogy) for the predictive power of the models developed 
in the training set.

In both cohorts, patients suffering from a periph-
eral T1/2 (UICC 8) NSCLC without lymph node 
metastases who were either medically inoperable or 
refused resection were treated solely by means of the 
CyberknifeR system (Accuray, Sunnyvale, USA) with-
out concomitant therapy using a risk-adapted frac-
tionation scheme (peripheral T1 tumors 3 × 13–18 Gy, 
T1 tumors with broad contact to the chest wall and 
T2 tumors 5 × 10–11  Gy, near-central or true central 
tumors 8 × 6–7.5 Gy). The dose was calculated using a 
Monte Carlo dose calculation algorithm (Multiplan 4.5, 
Accuray, Sunnyvale, USA) and the prescribed dose was 
referred to the 65–70% isodose in most cases. The GTV 
was manually outlined for clinical use on the planning 
CT, and the PTV was generated by adding a margin of 
3-4  mm (Table  1). A set of volumetric and dosimetric 
parameters was extracted from the planning system 
including GTV (gross tumor volume), PTV (planning 
target volume), GTV-Dmax (maximal dose in GTV), 
GTV-Dmean (mean dose in GTV), GTV-D95% (dose 
achieved in 95% of the GTV), PTV-D95% (dose achieved 
in 95% of the PTV) and lung doses Lung-D1ml, Lung-
D10ml, Lung-D50ml, Lung-D100ml [13, 37–40], see Table 1. 
According to the different dose/ fractionation schemes, 

Conclusion:  Despite the obvious difficulties in generalizing predictive models for oncologic outcome and toxicity, 
this analysis shows that carefully designed radiomics models for prediction of local lung fibrosis after SBRT of early 
stage lung cancer perform well across different institutions.
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the doses covered a wide range in both datasets. The 
GTV-Dmax which is reported as a point dose from the 
Cyberknife system might have been biased upwards 
due to noise induced by the Monte Carlo algorithm, but 
showed a close correlation with the GTV-Dmean in both 
sets (Pearson correlation coefficient 0.98 and 0.89), 
indicating that this bias was small. The cohorts also 
contained 12(8) patients with local stage T1/2 tumors 
who had been successfully treated for oligo-metastatic 

disease, and who were free from tumor activity besides 
the primary tumor. Patient characteristics and treat-
ment parameters are shown in Table 1. All patients had 
the (3D) planning CT performed under breath-hold 
conditions which was used for both treatment planning 
and radiomics image analysis (Table 2).

Clinical and radiological follow-up including chest CT 
scans was scheduled at 3 and 6 months after radiotherapy 
and every 6  months thereafter. A local recurrence was 
assumed if the irradiated lesion showed a solid core that 

Table 1  Patient and treatment characteristics

*1 pt. > 5 cm
#  3 pts. > 5 cm
§  1 pt. 4 × 10 Gy

Training set Test set

(n = 110) (n = 71)

Age (median/range) 73y (50–94 year) 75y (48–88 year)

Gender (male/female) 58/52 (53%/47%) 47/24 (66%/34%)

Tumor diameter (median/range) 2.2 cm (0.8–6.6 cm)* 2.6 cm (1.1–6.0 cm)#

Tumor stage (UICC8), T1/T2 89/21 (81%/19%) 45/26 (63%/37%)

Pathological confirmation (Yes/No) 91/19 (83%/17%) 55/16 (77%/23%)

Mediastinal staging

 CT only 18 (16%) 5 (7%)

 CT + PET 52 (47%) 33 (47%)

 CT + EBUS 18 (16%) 16 (23%)

 CT + EBUS + PET 18 (16%) 17 (24%)

 CT + mediastinoscopy 3 (3%) –

 CT + PET + mediastinoscopy 1 (1%) –

Histology

 Adenocarcinoma 37 (34%) 23 (32%)

 Squamous cell 42 (38%) 28 (39%)

 Other 12 (11%) 4 ( 6%)

 Unknown 19 (17%) 16 (23%)

Fractionation scheme

Number of fractions Dose per fraction n Pat Dose per fraction n Pat

 1 25 Gy 5 (5%) 26–27 Gy 2 (3%)

 3 17 Gy 45 (41%) 13–18 Gy 65 (90%)§

 5 11 Gy 43 (39%) 10–11 Gy 3 (6%)

 8 7.5 Gy 17 (16%) 6.0 Gy 1 (1%)

Doses to GTV, PTV and lung (median/ range)

 GTV Dmax 84.6 (28.2–95.2) Gy 70.9 (41.5–84.6) Gy

 GTV Dmean 71.6 (26.2–84.0) Gy 62.7 (37.9–72.5) Gy

 GTV D95% 61.9 (21.8–75.9) Gy 53.8 (33.0–64.6) Gy

 PTV D95% 54.0 (19.0–67.1) Gy 45.3 (25.2–55.2) Gy

 Lung D1ml 65.6 (23.6–81.0) Gy 55.5 (37.7–71.6) Gy

 Lung D10ml 52.1 (15.8–78.9) Gy 47.5 (25.8–66.9) Gy

 Lung D50ml 31.3 (6.9–77.7) Gy 31.6 (11.2–51.9) Gy

 Lung D100ml 20.5 (4.5–77.0) Gy 20.5 (6.6–43.0) Gy

GTV-PTV margin 3–4 mm 3–5 mm

Tracking Mode (Fiducials/XSightLung) 15/95 (14%/86%) 6/65 (9%/91%)
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increased by at least 25% compared to the last follow-up 
and exhibited further growth. The first occurrence of dif-
fuse or patchy consolidation, diffuse or patchy ground 
glass opacity or modified or mass like consolidation in 
the lung tissue adjacent to the tumor was regarded as 
radiation induced lung injury (termed local fibrosis, LF, 
see Fig.  1) and recorded as an event with regard to the 
time interval to the date of first irradiation [41, 42]. Lung 
tissue changes smaller than the original tumor, scar-like 
patterns distant to the tumor and lung toxicities without 
clear spatial or temporal relation to radiotherapy (early 
acute pneumonia, late acute pneumonia, pneumonitis 
spatially not correlated to the PTV) were not consid-
ered. In cases where a growing lesion could not be dif-
ferentiated from local fibrosis, an FDG-PET-CT scan or 
a biopsy was performed in order to confirm or reject the 
diagnosis of a local recurrence.

Image processing and feature extraction
Image processing was performed using Python 3.6.7 
(Python Software Foundation, Beaverton, Oregon, USA). 
The original DICOM data containing manual delinea-
tions of the gross tumor volume (GTV) and anatomical 
image data were restored from the CyberknifeR archive 
and subsequently used to extract the target volumes for 
radiomic analysis. For all further image processing, the 
software package pyradiomics 2.0.1 [43] was used that 
allows the extraction of standardized features which were 
defined by the IBSI (Image Biomarker Standardization 
Initiative) [44]. Preprocessing included resampling of the 
CT images and masks to isotropic voxels of 1 mm3 by the 
standard procedures of pyradiomics (B-spline interpola-
tion for the CT images and nearest-neighbour interpola-
tion for the binary masks) and removal of all voxels with 
Hounsfield units (HU) below (− 400) HU and above 1000 
HU from the volume which were assumed to represent 
normal lung and bony tissue unintentionally included 
in the GTV by manual segmentation. Radiomic features 
were calculated based on the original image and after 

wavelet filtering, yielding eight additional image types 
based on the application of wavelet-based high-pass or 
low-pass filters to each of the three dimensions. In addi-
tion to 14 features descriptive of the target’s shape, 93 
features were calculated for each of the nine image types, 
resulting in a total of 851 radiomic features.

Model development and statistical analysis
All model development was performed on the training 
cohort and the model parameters were optimized using 
cross-validation schemes. First, the primary set of radi-
omics features was reduced by identifying and removing 
linearly correlated features with a Pearson correlation 
coefficient > 0.90. Out of the 851 extracted features, 652 
were found to be highly linearly correlated and removed 
from the analysis. The remaining 199 features were 
z-normalized and used to develop predictive models 
for each of the four endpoints: LC, OS, DFS and occur-
rence of local lung fibrosis (LF) after SBRT. Two different 
models implemented in the scikit-survival package for 
Python [45] were applied. The (linear) Cox Proportional 
Hazard model was used in conjunction with elastic net 
regularization of the feature coefficients (Coxnet, [46]) 
by means of a grid search for the optimal penalty param-
eter (alpha) with 10-times repeated fivefold random cross 
validation within the training set. Thus, the algorithm 
tries to reduce as many feature coefficients as possible to 
zero, and to achieve good predictions from the resulting 
smaller selection of features in the 10 × 5 validation data 
sets each comprising 20% of the training data. The model 
with the best cross-validated average training perfor-
mance was then re-evaluated both in the complete train-
ing and the test set, where the feature values of the test 
set were subjected to the z-transformation parameterized 
from the training set. In order to allow for complex non-
linear relationships between feature values and treatment 
outcome, a gradient-boosted ensemble of 100 regres-
sion trees (Gradient Boost, [47]) with the partial likeli-
hood loss of the Cox’s proportional hazards model used 

Table 2  Imaging parameters

*No significant impact on GTV radiodensity

Training set Test set

CT scanner Aquilion LB-CT, Toshiba Brilliance 16, Philips

Slice thickness 1.0 mm 1.5 mm

Transversal resolution 0.93–1.37 mm 0.93–0.97 mm

Voltage 120KV 120KV

Current–time product 400mAs 400-450mAs

Image matrix 512 × 512 512 × 512

Reconstruction kernel FC17 B

Contrast agent None (84%), AccupaqueR 300 (16%)* None (100%)
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as the loss function was also chosen as a model. In the 
training set, the main parameters of the model (learning 
rate, dropout rate and subsampling rate) were optimized 
by a 10-times repeated fivefold grid search with cross-
validation. Thus, an intermediate model that returns a list 
of features and  their importance was generated. The list 
was then used to build models with increasing number of 
features, by starting with the one feature with the largest 
importance and successively adding the next important 
ones. At each step, the model was retrained and cross-
validated (10-times repeated fivefold cross validation) 
in the training set. Typically, the cross-validated perfor-
mance increased initially, but decreased by including 
more and more features due to overfitting. As before, the 

model with the optimal cross-validated performance was 
applied to the feature-normalized training and test sets.

In addition to the radiomics features, the following 
continuous clinical and dosimetric variables were ana-
lyzed in univariate Cox regression models with respect to 
their potential impact on any of the endpoints in order 
to select them as predictive features: GTV, PTV, GTV-
Dmax, GTV-Dmean, GTV-D95%, PTV-D95%, Lung-D1ml, 
Lung-D10ml, Lung-D50ml, Lung-D100ml, tumor diameter, 
age and Charlson Comorbidity Score. Categorical clini-
cal and treatment related factors were investigated using 
the Kaplan–Meier method and survival estimates were 
compared using two-sided log rank tests. These included: 

Fig. 1  Representative chest CT images of patients who did not (upper row) or did (lower row) develop local lung injury induced by robotic 
stereotactic body radiation therapy of early-stage non-small cell lung cancer
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gender, T-Stage (T1 vs. T2), histology (squamous cell/ 
adeno /other/ unknown) and fiducial tracking (no/ yes).

For prediction of radiation-induced lung injury, Coxnet 
and Gradient Boost models were computed using only 
clinical/dosimetric features, only imaging features or 
both types of features. In case of the default settings for 
the Coxnet model used here, a baseline survival func-
tion is not calculated and the predictions are risk scores 
of arbitrary scale, while the scores of the Gradient Boost 
models built with the partial likelihood loss of the Cox’s 
proportional hazards model used as the loss function can 
be interpreted as log hazard ratios. The performance of 
any model was evaluated in the test set by means of the 
concordance index and the significance level of the pre-
dicted risk score when used as a continuous variable in a 
univariate Cox regression (pCox). For purposes of illustra-
tion, the risk scores were dichotomized by their median 

and the Kaplan–Meier curves for the resulting low- and 
high risk groups were depicted. All statistical analyses 
were performed with the Lifelines python package (ver-
sion 0.25.10, https://​doi.​org/​10.​5281/​zenodo.​45794​31) 
and cross-checked by SPSS (vs. 24, Armonk, NY, USA). 
A p-value of < 0.05 was considered significant. The com-
plete workflow is depicted in Fig. 2.

Results
Clinical outcome
The outcome in terms of the analyzed clinical endpoints 
did not differ significantly between the two cohorts 
(Fig. 3). Overall survival at 36 months amounted to 56% 
versus 43%, p = 0.065), median DFS was 25 months versus 
23 months, p = 0.43 and local control rates at 36 months 
were 90% vs. 93%, p = 0.197). In the training set, none 
of the clinical and dosimetric factors had a significant 

Fig. 2  Workflow for generating and validating the developed models

https://doi.org/10.5281/zenodo.4579431
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influence on these endpoints. Local lung fibrosis devel-
oped in 33% vs. 35% of the patients (p = 0.75), all events 
were observed within 36 months after irradiation. Three 
dosimetric factors (GTVmean, PTV-D95%, Lung-D1ml) and 
the patient’s age had a significant impact (p < 0.05) on the 
development of local lung fibrosis with an increase in 
hazard of approximately 6% per Gy and per year of age.

Radiomics models for OS, DFS and local tumor control
As shown in Table  3, the Coxnet model failed to sub-
stantially reduce the optimal feature number for these 
endpoints. Although highly predictive models (CCI 0.77–
0.94, pCox < 0.005) were such found in the training set, 
these models showed poor cross-validation (CCI 0.52–
0.54) and test set (CCI 0.36–0.49) performance. By appli-
cation of the Gradient Boost model, a substantial feature 

Fig. 3  Kaplan-Meier curves for overall survival (OS), local control (LC), disease free survival (DFS) and occurrence of local lung fibrosis after SBRT for 
the training and testing cohort. No significant difference between the cohorts was measured for any endpoint

Table 3  Results of radiomics machine learning models for predicting overall survival, disease-free survival and local tumor control

CCI concordance index, means ± standard deviation are shown, p values: significance level of the model risk score in univariate Cox regression analysis.

Endpoint Coxnet Gradient boost

Number of 
features

CCI train-set CCI cross-valid CCI test-set Number of 
features

CCI train-set CCI cross-valid CCI test-set

Overall survival 191 0.80
p < 0.005

0.52 ± 0.15 0.46
n.s

22 0.99
p < 0.005

0.68 ± 0.13 0.45
n.s

Disease free SV 197 0.94
p < 0.005

0.54 ± 0.11 0.49
n.s

10 0.97
p < 0.005

0.76 ± 0.09 0.52
n.s

Local control 199 0.77
p < 0.005

0.54 ± 0.24 0.36
n.s

5 0.98
p < 0.005

0.89 ± 0.11 0.17
n.s
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set reduction to 5–22 features was achieved. However, 
despite reasonable cross-validation scores of 0.68–0.89, 
these models also failed to generalize to the test set. Due 
to the absence of any predictive models from clinical/
radiological and radiomics features, combined models 
were not evaluated for these endpoints.

Clinical/dosimetric, radiomics and combined models 
for development of lung fibrosis
Using the 4 identified clinical/dosimetric variables, both 
the Coxnet and Gradient Boost algorithms selected 3 of 
them (age, GTVmean and Lung-D1ml) for building pre-
dictive models from the training set (CCI 0.71/0.73) 
which in case of the Coxnet also achieved a CCI of 0.65 
(pCox = 0.04) in the test set (Table  4). Feature selection 
was also successful in both radiomics models where the 
Gradient Boost Model had a CCI of 0.59 (pCox = 0.02) 
using two features (Maximal Correlation Coefficient of 
the GLCM extracted from images filtered by two dif-
ferent wavelet kernels); this model could not be further 
improved by including any clinical/dosimetric variables. 
The best combined model resulted from the Coxnet that 
selected the 4 clinical/dosimetric variables and another 
7 radiomics features and had a CCI of 0.66 (pCox = 0.03) 
in the test set (Fig.  4). The two radiomics features with 
the largest coefficients in this model were the Large Area 
Emphasis from the wavelet-filtered gray-level size zone 
matrix (GLSZM) and, as in the radiomics Gradient Boost 
model, the GLCM Maximal Correlation Coefficient from 
the wavelet-filtered images.

Discussion
Summary of findings
In the present analysis, two cohorts of early-stage lung 
cancer patients treated with robotic stereotactic body 
radiotherapy at two different institutions were investi-
gated. Although slightly different fractionation sched-
ules were applied, oncologic outcome in terms of local 
tumor control, disease-free survival and overall survival 
were well comparable. Importantly, the frequency and 
time course of development of radiation-induced local 
lung injury was also similar in the two cohorts. Radi-
omics analysis based on a selected set of standardized 
features and state-of-the-art modelling in the training 
cohort resulted in models for prediction of radiation-
induced local lung injury that performed well also in 
the test cohort. The predictive ability of the radiomics 
models resembled that of a model from a selection of 
clinical/dosimetric variables, but the marginally best per-
formance was achieved in a model that combined a small 
number of clinical/dosimetric and radiomics features. 
However, the models for the endpoints of oncologic out-
come (OS, DFS, local control) failed to generalize to the 
test cohort.

Prediction of local radiation‑induced lung injury
To the best of our knowledge, this is the first report that 
aimed at generating machine-learning models for the 
development of local lung injury from the GTV after 
lung SBRT [36]. Radiation-induced local lung injury 
that finally develops into local lung fibrosis is a typical 
event after lung SBRT, although it remains asymptomatic 
in most cases. It is probably triggered by the release of 
inflammatory cytokines such as TGF-ß from the tumor 

Table 4  Results of machine learning models for predicting local lung fibrosis

CCI concordance index, means ± standard deviation are shown, p-values: significance level of the model risk score in univariate Cox regression analysis
§  Age/ GTVMeanDose/LungD1ml
†  wavelet_HLH_glcm_MCC/wavelet_HLL_glcm_MCC (= GrayLevelCo-occurrence matrix maximal correlation coefficient)

Coxnet Gradient boost

Features number of 
features

CCI train-set CCI cross-valid CCI test-set Number of 
features

CCI train-set CCI cross-valid CCI test-set

Clinical/dosimetric 3§ 0.71
p < 0.005

0.68 ± 0.11 0.65
p = 0.04*

3§ 0.73
p < 0.005

0.64 ± 0.12 0.62
n.s

Radiomics 10 0.79
p < 0.005

0.64 ± 0.13 0.58
n.s

2† 0.75
p < 0.005

0.72 ± 0.11 0.59
p = 0.02*

Combined 4 + 7 0.74
p < 0.005

0.67 ± 0.12 0.66
p = 0.03*

0 + 2† 0.72
p < 0.005

0.72 ± 0.11 0.59
p = 0.02*

Fig. 4  a Regularization and feature selection by repeated cross validation (CV) in a combined Coxnet model for development of lung fibrosis (LF) 
in the training set. The optimal model arose at an alpha-value of 0.5 × 10–2 where a mean concordance index (CCI) of 0.67 ± 0.12 was achieved. 
b Coefficients for the optimal Coxnet model that comprised 4 clinical/dosimetric and 7 radiomics features. c Kaplan–Meier curves displaying 
performance of the radiomics model in the training and test cohorts when stratifying patients into low and high risk groups by the respective 
medians of the model risk scores (train: 40.2, range 31.4–46.0; test: 42.4, range 25.0–60.4); pCox: Significance level for the model risk score used as a 
continuous variable in a univariate Cox regression analysis

(See figure on next page.)
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which subsequently initiate an immunological response 
[48, 49]. At first sight, it seems far from obvious how a 
texture pattern detectable by radiomics could predict for 
this event. However, an association between a pre-ther-
apeutic radiomics feature (LoG standard deviation) with 
the TGF-ß signaling pathway has recently been observed, 
and in the same report, a radiomics score was correlated 
with the amount of tumor infiltration by T-lymphocytes 
[50]. The view that image features correlate with the pres-
ence of immune-competent cells in lung tumor tissue is 
also supported by the observation that lung tumors char-
acterized by low CT intensity and high CT heterogeneity 
exhibited a high CD3 (T-lymphocyte) infiltration, sug-
gestive of an activated immune state [51]. Interestingly, 
the most predictive features found in the present analy-
sis were related to the heterogeneity of the lung tumor, 
as the GLSZM Large Area Emphasis is a measure of the 
distribution of large area size zones where a greater value 
is indicative of more larger size zones and more coarse 
textures, and the Maximal Correlation Coefficient of the 
GLCM is a measure of complexity of the texture resulting 
in values approaching unity for flat, homogenous regions.

In the present report, one of the radiomics models 
slightly improved the pure clinical/ dosimetric model 
(Coxnet) for the development of local lung fibrosis while 
the other radiomics model (Gradient Boost) did not ben-
efit from the potential inclusion of the clinical/dosimetric 
features. In a comparable approach that has been applied 
for prediction of radiation pneumonitis from features of 
the total lung tissue in lung cancer patients treated with 
intensity-modulated radiotherapy (IMRT), the radiom-
ics features also  only slightly improved the predictive 
value of the model when added to clinical and dosimet-
ric factors [47]. Interestingly, the inhomogeneous dose 
distribution usually generated by robotic radiosurgery 
and volumetric arc therapy has itself been analyzed with 
respect to dose distribution patterns (“dosiomics”) which 
in turn have been found to predict the incidence of radia-
tion pneumonitis [52]. Thus, a more comprehensive 
model of radiation-induced lung injury could probably be 
built from incorporating texture analysis of the tumor, a 
shell [53, 54] comprising the adjacent lung tissue and the 
dose distribution.

Prediction of local control, disease‑free survival and overall 
survival
Although the two cohorts resembled each other in terms 
of oncologic outcome, the radiomics models did not gen-
eralize from the training to the test cohort with respect to 
these endpoints. In case of the Coxnet model that utilizes 
a simple, linear combination of features values, a substan-
tial reduction of the feature space was not possible even 

during cross-validation within the training set itself. This 
is probably due to the fact that in the present cohort of 
inoperable patients with small lung tumors, local control 
could be achieved in most such that only a small num-
ber of events was available for training, and DFS and OS 
were largely independent from single radiomic properties 
of the tumors and confounded by other factors. Such, the 
predictive models for these endpoints were only found 
by chance and due to overfitting by using almost all fea-
tures available. The Coxnet model used an ensemble of 
regression trees that can account for complicated, non-
linear relationships between features and time to survival 
or other endpoints. Much higher cross-validation scores 
were found from a lower number of features, but the 
principle obstacles of relating confounded or low event-
populated endpoints to a small set of radiomic features 
in an independent test set remained. As discussed above, 
the relation between selected radiomic tumor features, 
dose distribution and development of local lung fibro-
sis seemed be much stronger such that the type of the 
applied model became less important.

A compilation of recent studies on the impact of radi-
omics features on oncologic outcome for lung cancer 
patients after SBRT is presented in Table 5. Most of the 
studies applied single institution cross-validation or vali-
dation by test sets from the same institution and were 
able to predict local tumor recurrence, regional/nodal 
recurrence, distant failures and overall survival with a 
moderate accuracy. Of note, one report failed to observe 
features predictive of local recurrence [24]. Only in a 
minority of series were the results validated in test sets 
from independent institutions. In a large study from the 
Cleveland Clinic (Ohio, USA), a convolutional neural 
network (CNN) was trained to predict local recurrence 
in a group of > 900 lung cancer patients treated by SBRT. 
The stratification resulted in two groups with highly sig-
nificant different risk for recurrence in both the training 
and test set [55]. Also in another study where a CNN 
was applied to both CT and PET images, a highly accu-
rate classification of survival probability was achieved in 
an independent data set [21]. These results suggest that 
the application of CNN’s that learn the relevant features 
for time-dependent oncologic predictions may be more 
effective than training models on predefined features [56, 
57].

Limitations of the present study
The present study, although based on the results of two 
independent cohorts, probably still lacks a sufficient 
number of patients and events needed for an informative 
analysis of the interaction between dosimetric param-
eters and radiologic tissue characteristics for prediction 
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of local events (recurrence, local lung fibrosis) after SBRT 
of NSCLC. Also, the classification of local lung injury and 
tumor control is purely image-based and remains some-
what ambiguous, as tissue specimens are rarely available 
following SBRT. Differences in therapeutic strategies for 
detecting and treating metastases may have prevented 
the creation of a general radiomics-based model for pre-
diction of DFS and OS.

Conclusion
The present analysis provides evidence that radiomics 
analysis can, in principle, be used for prediction of local 
lung injury after SBRT of NSCLC in independent data 
sets and as such complements existing results on the suc-
cessful prediction of other oncologic endpoints in this 
setting.
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