Skip to main content
. 2021 Apr 16;16:74. doi: 10.1186/s13014-021-01805-6

Table 4.

Results of machine learning models for predicting local lung fibrosis

Coxnet Gradient boost
Features number of features CCI train-set CCI cross-valid CCI test-set Number of features CCI train-set CCI cross-valid CCI test-set
Clinical/dosimetric 3§

0.71

p < 0.005

0.68 ± 0.11

0.65

p = 0.04*

3§

0.73

p < 0.005

0.64 ± 0.12

0.62

n.s

Radiomics 10

0.79

p < 0.005

0.64 ± 0.13

0.58

n.s

2

0.75

p < 0.005

0.72 ± 0.11

0.59

p = 0.02*

Combined 4 + 7

0.74

p < 0.005

0.67 ± 0.12

0.66

p = 0.03*

0 + 2

0.72

p < 0.005

0.72 ± 0.11

0.59

p = 0.02*

CCI concordance index, means ± standard deviation are shown, p-values: significance level of the model risk score in univariate Cox regression analysis

§Age/ GTVMeanDose/LungD1ml

wavelet_HLH_glcm_MCC/wavelet_HLL_glcm_MCC (= GrayLevelCo-occurrence matrix maximal correlation coefficient)