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Abstract 

Multipotent mesenchymal stromal cells (MSCs) are promising cellular therapeutics for the treatment of inflamma‑
tory and degenerative disorders due to their anti-inflammatory, immunomodulatory and regenerative potentials. 
MSCs can be sourced from a variety of tissues within the body, but bone marrow is the most frequently used starting 
material for clinical use. The chemokine family contains many regulators of inflammation, cellular function and cellular 
migration–all critical factors in understanding the potential potency of a novel cellular therapeutic. In this review, 
we focus on expression of chemokine receptors and chemokine ligands by MSCs isolated from different tissues. We 
discuss the differential migratory, angiogenetic and immunomodulatory potential to understand the role that tissue 
source of MSC may play within a clinical context. Furthermore, this is strongly associated with leukocyte recruitment, 
immunomodulatory potential and T cell inhibition potential and we hypothesize that chemokine profiling can be 
used to predict the in vivo therapeutic potential of MSCs isolated from new sources and compare them to BM MSCs.
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Background
Mesenchymal Stromal Cells (MSCs) are a non-hemat-
opoietic multipotent adult progenitor population that 
were first named in 1976 by Alexander Friedenstein as 
colony-forming unit fibroblasts (CFU-Fs). These cells 
were spindle shaped, clonogenic in monolayer cul-
tures and could serve as feeders in the bone marrow for 
hematopoietic stem cells [1, 2]. The term “marrow stro-
mal stem cell” was first used by Maureen Owen in 1988 
because of their ability to self-renew (although this may 
be interpreted today as a high proliferative capacity) and 
the gene activation potential to differentiate into discrete 
connective tissue cells [3]. Although MSCs were first 
isolated from bone marrow, they can be isolated from a 

wide range of tissues around the body, including umbili-
cal cord, cord blood, placenta, dental pulp, periodontal 
ligament, adipose tissue and pancreatic islets [4]. MSC 
are now commonly referred to as Mesenchymal Stromal 
Cells [5, 6] rather than stem cells.

MSCs exert potent anti-inflammatory, immunoregula-
tory and pro-angiogenic effects through interactions with 
the immune system and the secretion of paracrine immu-
nomodulators. These characteristics, coupled with their 
ease of accessibility and expansion resulted in a growing 
interest in the therapeutic potential of these cells. How-
ever, the variety of tissue sources, coupled with different 
isolation and culture protocols and the intrinsic variabil-
ity of MSCs from donor to donor has led to wide vari-
ability regarding the description of MSC phenotypes and 
properties through the literature. To address this mat-
ter, the International Society of Cellular Therapy (ISCT) 
specified the criteria human cells had to reach in order to 
be defined as MSCs: plastic-adherence when maintained 
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in standard culture conditions and specific surface anti-
gen expression along with trilineage differentiation 
potential into osteoblasts, adipocytes and chondroblasts 
[5, 6]. MSCs must express CD105, CD73 and CD90; 
must lack the expression of hematopoietic antigens such 
as CD45, CD34, CD14 or CD11b, CD79α or CD19 and 
MHC Class II [6]. MSCs express MHC Class II upon 
stimulation with IFN-γ; under these circumstances, cells 
are still termed MSCs but must be qualified with adjec-
tives as ‘activated’, ‘licensed’ or ‘stimulated’ to explain that 
these cells are not in a resting state. MSCs also express 
variable levels of other markers including CD29, CD44, 
CD166, CD146 and CD271, which can allow the isolation 
of subsets of tissue specific MSCs; CD271, for example, 
allows the isolation of subpopulations of MSCs associ-
ated with bone surfaces and with increased osteogenic 
differentiation potential and enhanced cartilage repair 
potential [7, 8].

These criteria have helped to drive standardization in 
the manufacturing and identity of MSC for therapeutic 
use, but does not capture whether MSCs derived and 
cultured from different tissues have equivalent therapeu-
tic potential or potency. The chemokine family contains 
many regulators of inflammation, cellular function and 
cellular migration–all critical aspects in designing a novel 
cellular therapeutic and understanding potential potency. 
In this review, we focus on expression of chemokine 
receptors and chemokine ligands by MSCs isolated from 
different tissues.

Use of MSCs in the clinic
The use of MSCs as cellular therapeutics is limited by the 
low frequency of these cells within tissues and the high 
doses required for medical use. The American Code of 
Federal Regulation of the Food and Drug Administration 
and the European Medicines Agency have established 
guidelines, generally known as “Good Manufactur-
ing Practice” (GMP), that cover cell culture procedures, 
reproducibility, efficiency, and safety. Most isolation and 
cell culture protocols are not optimal for GMP adap-
tion, which has limited the tissue sources used for MSC 
isolation driving clinical use into narrow corridors [9]. 
According to the ISCT, most facilities involved in MSC 
manufacturing isolate MSCs from a single source, more 
precisely, 93.3% of the facilities isolate MSCs from bone 
marrow, 26.7% from adipose or umbilical cord tissue, 
13.3% used umbilical cord blood and 6.7% used placental 
tissue as a source [10].

It is therefore well established that MSCs can be iso-
lated from most tissues within the body and that tis-
sue source of origin as well as the conditions used to 
expand the cells influence MSC secretome, and thus, 

their therapeutic potential [11–13]. For this reason, it is 
essential to understand the differences between MSCs 
isolated from different tissue sources to predict in vivo 
behavior and widen the use of MSCs in the clinic.

Tissue replacement and inflammatory modulation
Due to their differentiation potential, the initial clini-
cal use of MSC was aimed at tissue reconstruction or 
regeneration including musculoskeletal tissues, nerv-
ous system, liver and skin among others. However, this 
regeneration potential has only been clinically proven 
to be effective in MSC-based bone regeneration [14]. 
Even in this field, while all MSCs have osteogenic dif-
ferentiation potential in vitro, comparative studies eval-
uating this ability among MSCs isolated from different 
sources to regenerate bone are inconclusive. It is diffi-
cult to definitively separate the tissue-building capac-
ity of MSC from the ability to modulate inflammatory 
responses–actively re-building a tissue versus stopping 
inflammatory destruction of tissue. Tissue regenera-
tion may also be indirect as MSC have pro-angiogenic 
capacity. Increased angiogenic potential, which is vari-
able among tissue sources of isolation, promotes tissue 
reconstruction and thus, tissue source of MSC isolation 
might play an essential role within a clinical setting [12, 
15].

In response to their microenvironment, MSCs mod-
ulate innate and adaptive immune responses [12] as 
well as enhance angiogenesis via cell contact interac-
tion and paracrine effects [13, 15, 17]. MSCs secrete 
a plethora of angiogenic factors including vascular 
endothelial growth factor (VEGF), hepatocyte growth 
factor (HGF), transforming growth factor-beta (TGF-
β), matrix metalloproteinases (MMP) and chemokines, 
which stimulate angiogenesis in vitro and in vivo [16–
18]. Furthermore, the secretion of anti-inflammatory 
and immunomodulatory molecules, including interleu-
kin 10 (IL-10), tumor necrosis factor-inducible gene 6 
protein (TSG6), TGF-β, indoleamine 2, 3-dioxgenase 
(IDO) and CD274, avoids effector T cell proliferation 
and promotes a regulatory phenotype of leukocytes 
[19–23].

The mechanisms of migration of MSC to defined 
in  vivo niches following systemic administration and 
persistence in these sites whether by homing or local 
administration remains largely unexplored. MSC 
migration and homing is hypothesized to be simi-
lar to leukocyte migration from the bloodstream and 
to involve adhesion molecules for rolling and trans-
endothelial migration [24, 25]; chemokines, cytokines 
and their receptors for chemotaxis [26, 27]; and matrix 
metalloproteinases for invasion [28].
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Chemokines and chemokine receptors: chemotaxis
Chemokines are a family of small heparin-binding 
homologous proteins involved in the regulation of cell 
migration under both inflammatory and physiologi-
cal conditions [29]. Chemokines are classified according 
to the presence of a conserved tetra cysteine motif. The 
relative position of the N-terminal first two consensus 
cysteine residues provides the basis for their classification 
[30, 31] (Fig. 1). XCL1 and XCL2 have a single cysteine 
residue near the amino terminus that enables the gen-
eration of a disulphide bond (A), while CC chemokines 
have two consecutive cysteine residues in the amino ter-
minal (B) and CXC chemokines have two cysteine resi-
dues separated by only one non-conserved amino acid 
residue “X” (C). Fractalkine (CX3CL1), the only known 
member of the CX3C chemokine family, has two cysteine 
residues separated by three amino acid residues “X” (D). 
CX3CL1 and CXCL16 contain a mucin-like domain 
linked to a hydrophobic, and therefore transmembrane, 
domain and an intracellular tail that allows them to be 
presented as cell surface bound chemokines. However, 
these chemokines can also be found in soluble forms too.

Chemokine nomenclature is based on their structural 
classification but can also be sorted out into functional 
categories; homeostatic, proinflammatory and multi-
functional according to the microenvironment. Inflam-
matory chemokines become upregulated in the presence 
of inflammation, promoting the recruitment of leuko-
cytes. As an example, all nucleated cells can upregulate 
the expression of CCL2 to induce the recruitment of 

leukocytes towards a site of injury or infection. Inflam-
matory chemokines and their receptors display complex 
interaction patterns; a single ligand has broad receptor 
selectivity and a single receptor has a broad number of 
agonists to enable a rapid immune response to protect 
the host [32]. Chemokines arose from gene duplication 
from an ancestral chemokine gene which was probably 
CXCL12, explaining why the most important inflamma-
tory CC and CXC chemokines are clustered in chromo-
some 17 and chromosome 4, respectively, in humans 
[33].

The expression of homeostatic chemokines is constitu-
tive and cell or tissue specific [28]. These chemokines are 
involved in the regulation of cells involved in acquired 
immunity to ensure proper tissue maintenance and devel-
opment [29]. CXCL12 is a useful exemplar as it regulates 
the migration of hematopoietic stem cells during embry-
onic development as well as regulating lymphocytic cir-
culation to promote immune surveillance post-natally 
[34]. Homeostatic chemokines are less promiscuous and 
in many cases have restrictive ligand-receptor relation-
ships, like CXCL12 and its receptor, CXCR4 [29].

Cell migration is induced upon interaction of 
chemokine ligands with their cognate receptors. 
Chemokine receptors are part of the γ subfamily rhodop-
sin-like seven-transmembrane receptors and, unlike their 
ligands, are well conserved among species. Chemokine 
receptors can be classified into G protein-coupled or 
classical chemokine receptors and atypical chemokine 
receptors (ACKRs) according to their dependency on G 

Fig. 1  Highly conserved molecular signature of the chemokine subfamilies. Chemokines are classified into 4 families according to the cysteine 
residues close to the amino terminus of the protein and the disulphide bonds originated due to these residues
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proteins for signaling and the atypical expression pat-
terns [35]. Classical chemokine receptors have a con-
served DRYLAIV motif (D: Aspartate; R: Arginine; Y: 
Tyrosine; L: Leucine, A: Alanine; I: Isoleucine; V: Valine), 
located on the second intracellular loop, which upon 
interaction with G proteins, enables the production of a 
calcium flux following the chemokine ligand-chemokine 
receptor interaction [36].

Chemokine mediated homing of MSCs
MSCs reside in specific tissue niches where their micro-
environment regulates the balance of proliferation and 
differentiation, as well as their secretome, which includes 
cytokines, chemokines, immunomodulatory molecules, 
and growth factors [37]. In this manner, upon tissue 
injury or inflammation, MSCs can regulate immune 
responses and promote tissue regeneration to maintain 
homeostasis. As examples, synovium-derived MSCs 
and BM MSCs have the potential to promote self-repair 
of the articular cartilage upon injury [38–40]; while BM 
MSCs can home to cutaneous wounds where they trans-
differentiate into multiple skin cell types and promote cell 
migration, angiogenesis, epithelialization and collagen 
production to assist regenerative wound healing [41–43].

Inflammatory response to injury results in the secre-
tion of an array of chemokines in a temporally and 
spatially orchestrated manner that results in cell migra-
tion. The secretion of CXCL8 soon after injury results 
in the recruitment of neutrophils to the damaged or 
infected tissue. Neutrophils promote the recruitment 
of monocytes via the release of CCL2, while the secre-
tion of CCL3, CCL4 and CCL5 by macrophages results 
in B and T cell migration. MSCs express and respond to 
chemokines and to date, the CXCL12-CXCR4 axis is the 
best described axis in MSC homing to wounds.

The CXCL12‑CXCR4 axis
CXCL12 is a homeostatic chemokine and its cognate 
receptor is CXCR4. ACKR3 is also able to interact with 
CXCL12 but this interaction does not result in chemo-
taxis but it has been described to be important for 
endothelial cell proliferation [44, 45]. CXCL12 or CXCR4 
gene knockout in mice results in perinatal death due to 
defective cardiac ventricular septa, embryonic hemat-
opoiesis and neurogenesis due to the role of CXCL12 in 
stem cell, endothelial cells and leukocyte recruitment 
[46, 47]. This axis is not tissue specific and enables the 
migration of MSCs towards sites of injury in any tissue 
including brain, heart, skeletal muscle, kidney, liver and 
skin among others. Gain and loss of function experi-
ments modulating the expression of CXCL12 secretion 
at the wound or CXCR4 expression by MSCs has dem-
onstrated the role of MSC migration in wound healing. 

Overexpression of CXCL12 in diabetic and non-dia-
betic skin wounds accelerated re-epithelialization and 
wound healing [48, 49]; while inhibition of CXCL12 
reduces MSC migration and delays wound healing [50]. 
Similarly, blockade of CXCR4 on infused MSCs inhibits 
MSC recruitment towards the injured tissue and retards 
wound healing [50], while overexpression of CXCR4 
increased homing to wounds [51].

More importantly, pre-treatment of MSCs with 
CXCL12 increases their survival and proliferation 
potential, as well as enhancing their migration towards 
injured tissue and increasing the secretion of basic fibro-
blast growth factor and VEGF in  vitro [52]. Moreover, 
MSCs themselves secrete CXCL12 and thus, promote 
cell migration and angiogenesis. In fact, transduction of 
MSCs with a lentiviral vector expressing shRNA against 
CXCL12 resulted in reduced vascularization, re-epitheli-
alization and wound healing compared to control MSCs 
[53], showing the essential roles chemokines play in the 
therapeutic potential of MSCs. MSCs isolated from dif-
ferent tissues have a differential chemokine profile and 
secretion can be regulated by MSC pre-treatment. There-
fore, it is essential to fully understand the role of tissue 
of origin and pre-treatment in the expression and secre-
tion of chemokines as it could be a potent indicator of the 
outcome and efficacy of MSC therapy.

From the perspective of transplant clinicians or 
researchers, pre-treatment of cells and tissues is consid-
ered more than minimal manipulation and for commer-
cial use, it requires GMP methodologies to ensure that 
cells meet the requirements for safety, while maintaining 
the identity, quality and purity characteristics that the 
cells are represented to possess prior to ex vivo manipu-
lation [54]. For this aim, the laboratory and the protocols 
themselves must undergo a process of extensive valida-
tion to ensure adequate control of the aseptic processing 
as well as product and lot-release purity and potency cri-
teria to be released for clinical use [54].

Other chemokine mediated migration axes
MSCs express variable levels of chemokine ligands and 
receptors but migration of MSCs towards chemokines 
has only been described in a few cases.

CCL27‑CCR10 axis
The CCL27-CCR10 axis has been shown to recruit 
CD34 + bone marrow derived multipotent cells towards 
the skin. CCR10 expression has been described in human 
and murine MSCs isolated from different sources [55, 56] 
and overexpression of CCR10 in MSCs has demonstrated 
that the CCL27-CCR10 axis results in MSC migration 
towards the skin [57]. Administration of a mixture of 
WT and CCR10 overexpressing MSCs into the dermis of 
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mice and intradermal injection of CCL27 at a site distal 
from administration resulted in progressive migration 
of CCR10 + MSCs towards CCL27, while WT MSCs 
remained at the administration site. Intravenous admin-
istration of CCR10 + MSCs and intradermal injection of 
CCL27 resulted in increased migration of MSCs towards 
the injection site of CCL27 when compared to mice 
administered with WT MSCs [57].

CCL19/CCL21‑CCR7 axis
CCR7 expression is widely described in MSCs and 
CCL19 and CCL21 are the only ligands for CCR7. High 
expression of CCL21 by secondary lymphoid organs has 
been described to be responsible for the non-specific 
distribution of infused MSCs [58]. However, intradermal 
injection of CCL21 into wounded mouse skin resulted in 
increased migration of the intravenously administered 
MSCs towards the injured site and accelerated wound 
repair compared to control, where MSC migration was 
not induced by CCL21 injection [41].

CCL5‑CCR5 axis
The CCL5-CCR5 axis is involved in the recruitment 
to wounds of endothelial progenitor cells in  vivo [59] 
and hematopoietic stem cells in  vitro [60]. This axis is 
important in MSC mediated tumor invasion and metas-
tasis due to the increased secretion of the inflammatory 
chemokine CCL5 by MSCs [61, 62]. However, the role 
of CCR5 expressed by MSCs remains unclear within a 
migratory context.

Chemokine receptors and enhanced therapeutic 
potential of MSCs
Within a clinical context, the optimal delivery method 
of MSCs should provide the highest regenerative ben-
efit with the lowest side effects. The most used routes of 
MSC administration, outside tissue-engineering-based 
methods, are direct injection into the tissue of interest 
and systemic infusion, both intra-venously (IV) or intra-
arterially. Direct injection should have the advantage of 
a much more precise localization of the cells; however, 
only 1 to 5% of delivered cells engraft within the target 
site regardless of the delivery route [63]. Unlike hemat-
opoietic stem cells, where engraftment and survival of 
CD34 + cells is essential for long-term and overall ther-
apeutic effect, it is not clear whether MSCs require to 
engraft and persist to exert their therapeutic roles [64].

MSCs exert their mechanism via the secretion of par-
acrine factors that interact with surrounding immune 
and stromal cells resulting in the generation of pro-toler-
ogenic, pro-regenerative and anti-inflammatory environ-
ments and thus, it is not clear if increased engraftment 
would result in increased therapeutic potential. Systemic 

infusion is much less invasive and enables easy access 
to oxygen and nutrients, which is why it is the preferred 
method for MSC delivery [65]. Systemic infusion of 
MSCs leads to engraftment of MSCs mostly in the lungs. 
In the presence of inflammation, MSCs can also be found 
in the spleen, liver, bone marrow, thymus, kidney and 
skin, seconds or minutes after IV injection, suggesting 
that chemotactic agents could be guiding infused MSCs 
specifically towards these organs [66].

Chemokines are master regulators in immune cell traf-
ficking under resting and inflammatory conditions. Spe-
cific chemokines have been shown attract immune cells 
expressing the cognate receptor to specific tissues: the 
expression of CCR1 in macrophages and neutrophils 
leads to kidney infiltration in renal ischemia–reperfusion 
injury [67]; CCR5 directs CD8 + T cells towards the brain 
[68]; CCR3, CCR4 and CCR10 are highly expressed by T 
cells in skin [69, 70]; CXCR3 mediates T cell recruitment 
into the kidney [71]; and CXCR6 is highly expressed by 
liver-infiltrating CD8 + T cells [72]. Furthermore, CCR7 
targets MSCs to secondary lymphoid organs [73, 74], 
CXCR3-deficient MSCs fail to infiltrate into the nephritic 
kidney [75] and CXCR4 receptor overexpression in MSCs 
improves treatment of acute lung injury [76]. Thus, spe-
cific chemokine receptors could have an essential role in 
MSC homing into specific tissues.

Human and murine MSCs have been described to con-
stitutively express chemokines and their receptors, but 
the expression of these markers varies among reports in 
the literature due to tissue source of the cells, cell cul-
ture methods and passage number of the cells. Murine 
BM MSCs have been described to express CCR1, CCR2, 
CCR3, CCR4, CCR5, CCR6, CCR7, CCR9, CCR10, 
CXCR3, CXCR4 and CXCR7 and to have functional 
CCR3, CCR4, CCR5, CCR7, CCR10 and CXCR4 [56]. 
Adipose derived (Ad) MSCs have higher CXCR4 expres-
sion and migration capacity than bone marrow derived 
(BM) MSCs. More interestingly, the chemokine recep-
tor profile is sensitive to time in culture as the expression 
of chemokine receptors CCR1, CCR7, CXCR1, CXCR2, 
CXCR4 and CX3CR1 was decreased after passage [27]. In 
addition, expression of chemokine receptors and ligands 
can be upregulated by cytokine-mediated stimulation 
[77]. All this together suggests that the tissue source of 
origin of MSCs is associated with differential chemokine 
receptor expression and therefore, different homing 
potential to sites of inflammation, which could be of rel-
evance when used as cellular therapeutics.

MSC engineering to enhance MSC migration
There are several strategies to increase the expression 
of chemokine receptors and improve MSCs homing 
efficiency, including genetic modifications and surface 
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engineering. Viral transduction and mRNA transfection 
result in permanent or transient overexpression, respec-
tively, of specific chemokine receptors. Viral transduc-
tion of CXCR4 increases homing to the bone marrow 
in irradiated mice [78] and enhances homing and recov-
ery of ischemic myocardium [79] and damaged intes-
tinal mucosa [80]. Transient overexpression of CXCR4 
has resulted in contradictory results, where Ryser et al., 
showed increased migration in transwell assays while 
Wiehe et  al., demonstrated functionality of the overex-
pressed CXCR4 without improvement in cell migration 
[81, 82]. ACKR3 permanent overexpression improves 
migration and recovery in a rat model of acute lung injury 
[83]. Interestingly, ACKR3 overexpression results in a 
positive feedback loop where MSCs increase the expres-
sion of CXCL12, vascular cell adhesion protein 1 and 
the surface adhesion receptor CD44, further enhancing 
migration [84]. Similarly, CCR2 transduction increases 
migration to and retention within ischemic brain lesions 
and improved the neurological outcomes in an ischemic 
stroke rat model [85]. Cell surface engineering focuses on 
transiently modifying or conjugating desired ligands to 
existing surface proteins. Won et al., were able to conju-
gate recombinant CXCR4 to MSC membranes, improv-
ing migration towards a CXCL12 gradient in vitro [86].

While cell engineering helps improve understanding 
of the roles of different molecules expressed or secreted 
by MSCs, the design of good manufacturing practices for 
cell-engineering is challenging. For cell engineering, large 
quantities of concentrated vectors must be produced, and 
cells must be transduced in different areas to avoid con-
taminating the transduction area with concentrated vec-
tor from the production rooms. If the facility produces 
multiple vectors, separate aseptic rooms for vector pro-
duction are essential, as well as stringent decontamina-
tion processes and scrutinized personnel flow and use 
of shared equipment to avoid contaminating different 
areas within the facility. Cell transduction itself, presents 
different risks of cross-contamination regardless of the 
smaller quantities of vector required. If different vectors 
are being transduced for clinical trials or commercial 
use, it is essential to establish process control systems to 
ensure vector isolation when in use of common equip-
ment. Cell engineering requirements for commercial or 
Phase III clinical use in combination with GMP protocols 
requiring products to be infused fresh, shortly after pro-
cessing, result in the design of clinical laboratories that 
are not cost-effective.

Chemokine secretion and therapeutic outcome
ISCT stablished guidelines for the phenotypical iden-
tification of MSCs however, phenotype does not neces-
sarily equate with therapeutic potential. The mechanism 

behind the tissue-building and anti-inflammatory role of 
MSCs is not fully understood but are partially mediated 
by chemokine secretion. However, there are few studies 
aimed at understanding the differences between MSCs 
isolated from different sources as BM MSCs are the main 
source of MSCs used in the clinic.

Wharton’s jelly (WJ) of the umbilical cord holds huge 
potential as an MSC source, and comparative studies 
have shown that CXCL1, CXCL2, CXCL5, CXCL6 and 
CXCL8, strong angiogenic chemokines, are upregu-
lated in WJ MSC compared with BM MSC. In contrast, 
CXCL12 and CXCL13, which are also potent angiogenic 
factors, were found to be upregulated in BM MSCs [87].

Transcriptional profiling of identically cultured umbili-
cal cord (UC) derived MSCs and adipose derived MSCs 
showed that these MSCs differed widely in the expression 
of anti-inflammatory and angiogenic genes in response 
to inflammatory stimulation [13]. CXCL1, CXCL2, 
CXCL3, CXCL5, CXCL6 and CXCL8 were dramatically 
upregulated in UC MSCs compared with Ad MSCs, 
while the angiostatic chemokines CXCL10, CXCL9 and 
CXCL14 were upregulated in Ad MSCs. CCL20 was the 
only inflammatory chemokine transcribed at higher rate 
by UC MSCs, while CCL1, CCL3, CCL4, CCL5, CCL7, 
CCL11, CCL13, and CX3CL1 were transcribed at the 
highest rates by Ad MSCs.

Differential chemokine transcription levels resulted in 
a differential therapeutic potential in a diabetic mouse 
model, where islet co-transplantation with UC MSCs 
into diabetic mice resulted in a better glycemic regulation 
compared to islet co-transplantation with identically cul-
tured Ad MSCs [13].

Following a similar standardized approach, low purity 
islet (LPI) derived MSCs and BM MSCs were compared 
regarding their immunomodulatory, pro-angiogenic 
and chemotactic potential and it was observed that they 
expressed similar transcriptional patterns of chemoat-
tractant and inflammation-modulating molecules, with 
the exception of CX3CL1, which was transcribed at 
marginally higher levels by LPI MSCs. Comparison of 
the immunoregulatory potential of LPI and BM MSCs 
resulted in identical T cell suppression potential in vitro 
and no significant differences in the total number of 
immune cells migrating towards the MSCs when infused 
into an in vivo migration model [12].

Concluding remarks
The recruitment and homing of MSCs to sites of 
injury is essential to contribute to tissue repair, revas-
cularization and regeneration, as well as to dampen 
inflammation and avoid the activation of the immune 
system. MSCs isolated from different tissues express 
different chemokine receptors and thus, tissue source 
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of isolation could dictate MSCs migration potential 
(Fig.  2). Understanding the role of specific chemokine 
receptors in relation to migration towards specific 
anatomical locations could make MSCs isolated from 
some tissue sources more desirable than others for spe-
cific clinical settings, including autoimmune diseases 
like psoriasis and diabetes, transplantation, or acute 
injuries.

Analysis of chemokines at transcription and protein 
levels have shown that anti-inflammatory and pro-
angiogenic phenotypes correlated with positive out-
comes in a transplant model [13]. Chemokine profiling 
enables prediction of leukocyte recruitment, immu-
nomodulatory potential and T cell inhibition potential 
and thus, the therapeutic outcome [12] (Fig.  2). BM 
MSCs are the most used MSCs within the clinic but 
their frequency within the tissue is very low and their 
isolation represents a burden for the donor. Screening 
of anti-inflammatory and pro-angiogenic genes repre-
sents a new approach for identification of alternative 
MSC sources suitable for therapy and broadens the 
choices for MSC manufacturing. Thus, we conclude 
that chemokine profiling can be used to predict the 
in  vivo therapeutic potential of MSCs isolated from 
new sources and to compare them to the well-known 
BM MSCs.
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