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•  Background and Aims  Much of our understanding of the ecology and evolution of seed dispersal in 
the Neotropics is founded on studies involving the animal-dispersed, hyperdiverse plant clade Miconia 
(Melastomataceae). Nonetheless, no formal attempt has been made to establish its relevance as a model system or 
indeed provide evidence of the role of frugivores as Miconia seed dispersers.
•  Methods  We built three Miconia databases (fruit phenology/diaspore traits, fruit–frugivore interactions and 
effects on seed germination after gut passage) to determine how Miconia fruiting phenology and fruit traits for 
>350 species interact with and shape patterns of frugivore selection. In addition, we conducted a meta-analysis 
evaluating the effects of animal gut passage/seed handling on Miconia germination.
•  Key Results  Miconia produce numerous small berries that enclose numerous tiny seeds within water- and 
sugar-rich pulps. In addition, coexisting species provide sequential, year long availability of fruits within com-
munities, with many species producing fruits in periods of resource scarcity. From 2396 pairwise interactions, 
we identified 646 animal frugivore species in five classes, 22 orders and 60 families, including birds, mammals, 
reptiles, fish and ants that consume Miconia fruits. Endozoochory is the main dispersal mechanism, but gut pas-
sage effects on germination were specific to animal clades; birds, monkeys and ants reduced seed germination 
percentages, while opossums increased it.
•  Conclusions  The sequential fruiting phenologies and wide taxonomic and functional diversity of animal vec-
tors associated with Miconia fruits underscore the likely keystone role that this plant clade plays in the Neotropics. 
By producing fruits morphologically and chemically accessible to a variety of animals, Miconia species ensure 
short- and long-distance seed dispersal and constitute reliable resources that sustain entire frugivore assemblages.
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‘… I made systematic observations for two years on the 
various species of melastomaceous trees and shrubs of the 
genus Miconia, which are a conspicuous element in the 
secondary vegetation and whose fruits bulk large in the 
diet of the smaller frugivorous birds such as manakins and 
tanagers [...] as well as some that are not normally con-
sidered to be fruit-eaters’.

D. W. Snow, 1965

INTRODUCTION

Frugivore-mediated seed dispersal constitutes ancient inter-
actions driving plant evolution and diversification worldwide 

(Lomáscolo et  al., 2010; Eriksson, 2016; Brodie, 2017; 
Onstein et al., 2017; Valenta and Nevo, 2020). These mutual-
istic interactions directly affect the dynamics of plant com-
munities and are a vital ecosystem function for biodiversity 
maintenance (García and Martínez, 2012; Valiente-Banuet 
et  al., 2015; Morán-López et  al., 2018). The consequences 
of seed dispersal range from seedling recruitment to carbon 
storage–release balance in tropical forests (Bello et al., 2015; 
Peres et al., 2016; Culot et al., 2017). Moreover, fruit–frugi-
vore interactions have direct applications in ecosystem man-
agement, and support more effective restoration practices 
(Cole et  al., 2010; Zahawi et  al., 2013; Peters et  al., 2016; 
González-Castro et  al., 2018). Frugivory and seed dispersal 
are recognized as important issues spanning ecology, evolu-
tion and conservation (Jordano et al., 2011). Nevertheless, the 
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seminal studies that have shaped the theoretical development 
of fruit–frugivore interactions date back to five decades ago, 
and were mostly catalysed by the groundbreaking studies of 
David W. Snow (e.g. Snow, 1965, 1971).

Snow’s landmark studies paved the way for the novel re-
search field of ecology and evolution of fruit–frugivore inter-
actions. His observations on sympatric Miconia species in the 
tropical forests of Trinidad showed little overlap in fruiting 
phenology, leading him to propose that the staggered fruiting 
pattern could have evolved as a strategy to reduce competi-
tion for avian seed dispersers (Snow, 1965). Staggered fruiting 
not only provides a competitive advantage for plants, but is 
also beneficial for frugivores, as the year-round fruit avail-
ability would allow maintenance of their populations (Snow, 
1971). The validity of Snow’s proposition regarding stag-
gered phenologies was subject to later debate by some who 
disputed his ideas because of failure to detect a non-random 
uniform fruiting sequence in other systems (e.g. Rathcke and 
Lacey, 1985; Wheelwright, 1985a; van Schaik et  al., 1993). 
However, his pioneering and influential studies highlighted 
the coevolutionary processes shaping the traits of both fruiting 
plants and their seed dispersers.

Snow’s ideas also stimulated the publication of seminal pa-
pers (e.g. McKey, 1975; Howe and Estabrook, 1977) which 
set the theoretical background for exploration of this topic in 
the next decades (Howe, 1993). McKey (1975) proposed that 
the evolution of plant strategies related to attraction and re-
ward of seed dispersers would fall along an ecological gradient 
of seed dispersal specialization, with specialist and gener-
alist species at the opposite ends of an adaptive continuum. 
Specialized plants such as Virola (Myristicaceae), Casearia 
(Salicaceae) and mistletoes, which produce large, lipid-rich 
rewards and one or a few large seeds, and have low fecundity 
and an extended fruiting season, are expected to rely on a 
small number of more specialized frugivore species acting as 
highly effective seed dispersers. At the other end of the con-
tinuum, Ficus (Moraceae), Cecropia (Urticaceae) and Miconia 
(Melastomataceae) species are examples of generalized seed 
dispersal systems, characterized by the production of fruit 
which are small in size with water- and sugar-rich fruit pulp 
enclosing many small seeds. These species produce much larger 
crops, albeit over a shorter fruiting season, and attract large as-
semblages of less specialized frugivores, with consequential 
lower seed dispersal effectiveness. The early postulates of the 
‘specialized vs. generalized paradigm’ were targets of much 
criticism due to conceptual problems and limited capacity to 
explain the observed patterns (Wheelwright and Orians, 1982; 
Jordano, 1987; Fleming et al., 1993). However, the ‘paradigm’ 
was important for recognizing that fruit traits and plant phen-
ology may determine the identity of the interacting partners. 
Why do some plants have a small set of frugivores dispersing 
their seeds, whereas fruits of other species are consumed by 
much broader animal assemblages within the same commu-
nity? This question would lead to the subsequent quest for key-
stone mutualists in tropical forests (Howe, 1993).

Terborgh (1986) was the first to suggest that a relatively small 
number of plant species have a disproportionally large role in 
the maintenance of frugivore communities in tropical forests. 
Species providing fruit resources during periods of scarcity, 
especially at the wet and dry season transitions, may sustain 

a higher diversity of seed dispersers and structure species-rich 
communities. Therefore, the notion of keystone plant species 
is linked to widespread resource use by fauna and their sig-
nificance for the stability of trophic interactions within com-
munities. Since Terborgh’s proposal, the concept of keystone 
plant resources (KPRs) has been widely discussed, especially 
regarding their underlying ecological attributes (Lambert and 
Marshall, 1991; Peres, 2000; Escribano-Avila et  al., 2018). 
Traits supporting identification of KPRs include (1) copious 
fruit production to sustain a large assemblage of frugivorous ani-
mals; (2) fruiting phenology extended through periods of rela-
tive food scarcity; (3) low redundancy with other food sources; 
and (4) small to medium fruit size enabling consumption by a 
wide diversity of frugivorous animals. The KPR concept is cur-
rently largely accepted, and many taxa have been recognized 
as keystones based on their widespread consumption by fauna; 
examples include palms (340 frugivore species associated with 
126 palm species; Terborgh, 1986; Zona and Henderson, 1989; 
Muñoz et al., 2019), Ficus trees (1274 bird and mammal fru-
givores associated with 260 Ficus species worldwide; Lambert 
and Marshall, 1991; Shanahan et al., 2001), Parkia pods (Peres, 
2000), mistletoes (associated frugivores include 66 families 
within 12 orders of birds and 30 families within ten orders of 
mammals worldwide; Watson, 2001), some Myrtaceae species 
(Staggemeier et  al., 2017; Escribano-Avila et  al., 2018) and 
melastome berries (Galetti and Stotz, 1996; Maruyama et al., 
2013; Escribano-Avila et al., 2018; Messeder et al., 2020).

Decades before the proposal of the KPR concept, Land (1963) 
reported his pioneer observations on frugivory in the tropics 
and recognized the importance of Miconia trinervia fruits as a 
resource for birds in a Guatemalan rain forest. However, Galetti 
and Stotz (1996) were the first to suggest a Miconia species as a 
KPR, mostly based on observations of copious fruit production 
and widespread consumption by a primate and avian frugivores 
during periods of fruit scarcity in the Atlantic Forest. Later, 
Maruyama et  al. (2013) also highlighted M.  chamissois as a 
KPR in a savannah–swamp–forest habitat mosaic in Central 
Brazil, as it produced fruits consistently across years during 
periods of scarcity when most avian frugivores consumed its 
fruits. More recently, Escribano-Avila et al. (2018) emphasized 
the role of Miconia species as KPRs in Neotropical fruit–fru-
givore networks. Although experimental removal of plant spe-
cies to test their role as keystones are scarce (e.g. Watson and 
Herring, 2012), Messeder et al. (2020) recently developed an 
interaction network-based approach to identify KPRs over a 
broader ecological scale. By recognizing the most central plant 
species in 38 Neotropical fruit–frugivore interaction networks 
and by simulating their removal, they were able to compare dis-
tinct plant taxa for the effects of their removal on community 
stability descriptors derived from networks. They concluded 
that Miconia species were – by far – the top candidates as KPRs 
for Neotropical avian frugivores. However, no formal attempt 
has yet been made to address the importance of these plants as 
keystone resources for frugivores across animal clades.

Miconia belongs to the Melastomataceae, a pantropical 
family with >5000 species in nearly 150 genera (www.
melastomataceae.net), with the highest diversity in the 
Neotropics (approx. 3000 species; Renner et  al., 2001; 
Michelangeli et al., 2013). More than a third of its diversity 
is within the tribe Miconieae, the largest clade with >1900 
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species (Michelangeli et al., 2004; Goldenberg et al., 2008). 
Due to paraphyly in many lineages within the Miconieae 
(Michelangeli et al., 2019), recent taxonomic and nomencla-
tural changes recognized Miconia as the only genus within the 
tribe, making this the most diverse flowering plant genus exclu-
sively distributed in the Neotropics (Michelangeli et al., 2019). 
Miconia is not only a taxonomically hyperdiverse clade, but it 
is also a functionally diverse group with a variety of life forms, 
including lianas, herbs, epiphytes, shrubs, treelets and trees. 
Miconia is also recognized for producing berries with a var-
iety of shapes, sizes and colours (Fig. 1). The geographic dis-
tribution of Miconia spans the entire Neotropical realm, with 
species ranging from microendemics to those with widespread 
distribution. Miconia species are usually pioneers and can be 

abundant in several plant physiognomies, and occur from sea 
level to highlands mostly in the mainland and even on dis-
tant islands such as the Galapagos (Michelangeli et al., 2013; 
Silveira et  al., 2013a). Despite the historical importance of 
Miconia to our current understanding of the ecology of fruit–
frugivore mutualisms (Land, 1963; Snow, 1965), no study to 
date has summarized the major findings on the seed dispersal 
ecology of these plants.

In this study, we synthesize the published information on 
frugivory and seed dispersal of Miconia species in order to pro-
duce an integrative review that highlights the role of its fruits as 
KPRs for Neotropical fauna. Our study had three major goals. 
First, we aimed at compiling data on fruit traits and fruiting 
phenology of Miconia species relevant to their keystone role. 
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Fig. 1.  Diversity in shapes, sizes and colours of Miconia fruits. (A) M.  capilliflora; (B) M.  subciliata; (C) M.  blepharodes; (D) M.  macrosperma; (E) 
M.  loligomorpha; (F) Miconia sp.; (G) M.  calvescens; (H) M.  albicans; (I) M.  leacordifolia; (J) M.  affinis; (K) M.  gratissima; (L) M.  dolichostachya; (M) 
M. sellowiana; (N) M. ampla; (O) Miconia sp.; (P) M. candelabriforme; (Q) M. heliotropoides; (R) M.  impetiolaris; (S) M. rimalis; (T) M. minutiflora; (U) 

M. dasytricha; (V) M. oxymeris; (W) M. neourceolata; (X) Miconia sp. (All pictures were kindly provided by Renato Goldenberg.)
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Second, we integrated the scattered published information 
on frugivory of Miconia species to quantitatively assess the 
number of animal taxa consuming their fruits. The effectiveness 
of animals as seed dispersers is determined by their handling 
behaviour, ingestion and deposition patterns which directly af-
fect seedling establishment (Schupp et al., 2010). Because the 
quality of seed dispersal services is intimately associated with 
the capacity of handled or ingested seeds to germinate (Traveset 
et al., 2007), our third goal was to quantitatively evaluate the ef-
fects of consumption by different animal clades on the germin-
ation of Miconia species. Through a meta-analytical approach, 
we compared the consequences for Miconia seed germination 
of fruit manipulation by ants and vertebrate gut passage of 
seeds across a broad range of frugivore groups.

MATERIALS AND METHODS

Phenology and fruit and seed traits

To produce a comprehensive database of dispersal-relevant 
fruit and seed traits and phenological patterns of Miconia spe-
cies, we performed a systematic literature review of papers 
published from 1945 to 2017 in the Web of Science, Scopus and 
SciELO databases, using the following terms and their com-
binations in the title, abstract and keywords: ‘frugivory’, ‘fruit 
chemical content’, ‘fruit dispersal syndromes’, ‘fruit trait’, 
‘fruiting phenology’, ‘Neotropics’ and ‘seed dispersal’. In add-
ition, we checked for fruit/seed trait information on the Kew 
Seed Information Database (http://data.kew.org/sid/), TRY 
Plant Trait Database (Kattge et al., 2011; https://www.try-db.
org/TryWeb/Home.php), FRUBASE data set (Jordano, 1995) 
and the ATLANTIC-FRUGIVORY data set (Bello et al., 2017) 
to complement our database.

To be included in our database, studies must have reported at 
least one of the following traits – life form, duration of fruiting 
season (months with availability of ripe fruit), ripe fruit colour, 
fruit size (diameter in centimetres) and weight (fresh fruit mass 
in milligrams), fruit crop size (average number of fruit estimated 
for the individual), seed size (largest dimension in centimetres) 
and weight (in milligrams), number of seeds per fruit and fruit 
nutritional content (percentage of water, sugar, lipids and pro-
teins on a centesimal composition basis) – for any species cur-
rently recognized as Miconia (sensu Michelangeli et al., 2019). 
This included species previously distributed in 17 genera within 
the Miconieae (i.e. Anaectocalyx, Calycogonium, Catocoryne, 
Charianthus, Clidemia, Conostegia, Killipia, Leandra, Maieta, 
Mecranium, Necramium, Ossaea, Pachyanthus, Pleiochiton, 
Sagraea, Tetrazygia and Tococa; all species names were 
checked and updated using the MEL names database at http://
www.melastomataceae.net/ and Michelangeli et  al., 2019). 
We also gathered information on IUCN conservation status, 
if available (the target year for IUCN listing was 2017; http://
www.iucnredlist.org).

To envisage fruiting phenology patterns, we constructed 
phenological line plots for each sampled community where 
interactions among at least three sympatric fruiting Miconia 
species and frugivores were recorded. Production of berries is 
costly, requiring allocation of high amounts of nutrients and 
water for their development and maintenance (Coombe, 1976; 

Fenner, 1998; Jordano, 2014). Consequently, water availability 
is regarded as one of the main factors constraining the number 
of fruiting species and the length of the fruiting period in a com-
munity (van Schaik et al., 1993; Fenner, 1998; Mendonza et al., 
2017). For these reasons, the dry season is a period of food 
scarcity for frugivores (Terborgh, 1986; Peres, 2000; Jordano, 
2014), when a lower proportion of fleshy fruit is available to sus-
tain frugivores across different ecosystems (Hilty, 1980; Peres, 
2000; Batalha and Martins, 2004; Jordano, 2014; Brito et al., 
2017a; Staggemeier et al., 2017; Maruyama et al., 2019). To 
investigate whether Miconia species have phenological patterns 
related to seasonality, for each community we also retrieved 
its geographical location and average monthly historical pre-
cipitation (mm) from 1901 to 2018 (data obtained from Harris 
et al., 2020), which was plotted within the community phen-
ology plots to evaluate the relationship between precipitation 
and phenology. For each community, we also calculated the 
seasonality index (SI), as the sum of the absolute deviations of 
mean monthly rainfall from the overall monthly mean divided 
by the mean annual rainfall (for detailed information on the cal-
culation, see Walsh and Lawler, 1981). In theory, the SI can 
vary from 0 (precipitation equally distributed throughout the 
year) to 1.83 (precipitation restricted to a single month; Walsh 
and Lawler, 1981). We classified each community as seasonal 
or non-seasonal, and evaluated the number of fruiting species 
and their fruiting patterns.

In addition, to evaluate fruiting phenological patterns in 
Miconia at a large spatial scale, we performed circular ana-
lysis with the phenological data using the R package ‘Circular’ 
(Lund et al., 2017). We then calculated the circular standard de-
viation, the circular mean (µ) and the length of the mean vector 
(r) which informs how the data are clustered around the mean 
(with 0 meaning uniformly distributed and 1 meaning perfectly 
clustered). We then performed Rayleigh’s test of uniformity (at 
α = 0.05), which indicates unimodal distribution and significant 
seasonality in fruiting patterns (Morellato et al., 2010).

Fruit consumption by fauna

To produce a comprehensive database of frugivore inter-
actions with Miconia fruits, we performed a systematic literature 
review using ‘ecological networks’, ‘fruit diet’, ‘fruit–frugi-
vore’, ‘frugivore community’, ‘frugivory’, ‘Neotropics’, ‘plant 
seed disperser interaction’ and ‘seed dispersal’ as keywords 
in electronic databases. We also checked the Interaction Web 
Database (www.nceas.ucsb.edu/interactionweb/), the Web of 
Life Ecological Networks Database (http://www.web-of-life.
es/) and the ATLANTIC-FRUGIVORY data set (Bello et al., 
2017) to complement our database. Finally, we searched the ref-
erences listed in the studies surveyed to ensure that we did not 
miss any interactions between frugivores and Miconia fruits.

To be included in our database, studies must have reported 
at least one event of frugivory of any Miconia species. Our 
database consists of data generated by different methods to 
record the consumption of Miconia fruits, including focal 
plant observations, diet studies reporting seed presence in 
faecal samples, regurgitation samples and stomach contents, 
and direct foraging observations. We recorded taxonomy and 
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IUCN status for all animal species interacting with Miconia. 
For each interaction reported, we recorded geographical 
co-ordinates and elevation, and classified the ecoregion ac-
cording to Olson et  al. (2001). To estimate the richness of 
frugivores consuming Miconia fruits, we constructed rar-
efaction curves for animal species belonging to distinct 
taxonomic groups using Miconia species as samples in the 
R package ‘vegan’ (Oksanen et  al., 2019). To determine 
the average number of seed dispersers of Miconia species, 
we considered only focal plant studies (in our database this 
method was used only by studies dealing with avian seed 
dispersers). The same approach was used to determine the 
average number of ant species attracted to Miconia fruits in 
studies of fruit removal by ants. We also investigated whether 
different animal taxonomic groups have fruit colour prefer-
ences by partitioning their consumption records according to 
different fruit colours.

Meta-analysis assessing effects of gut passage on Miconia seed 
germination

Investigation of how fruit handling (i.e. manipulation by in-
vertebrates and vertebrate gut passage) by a wide range of taxa 
affects seed germination patterns is especially relevant for com-
paring the effect of services provided by different groups on 
the fate of dispersed seeds. We used a meta-analytical approach 
(Hillebrand and Gurevitch, 2014) to determine the overall mag-
nitude of the effect of animal manipulation/gut passage on the 
percentage and speed of seed germination. We then partitioned 
the magnitude of these effects by animal taxonomic group.

To build a germination database, we searched for the fol-
lowing terms and combinations: ‘ant seed germination’, ‘frugi-
vore gut effect’, ‘gut passage effect’, ‘Neotropics’, ‘vertebrate 
gut passage’, ‘seed fate’ and ‘seed germination’. We also 
checked the reference list of the studies surveyed to supplement 
our literature survey. To be included in our database, a study 
must have met the following criteria: (1) reported data as ger-
mination proportion (or percentage) of manipulated/gut-passed 
and control treatments (manually extracted seeds from fruits); 
and (2) reported a measure of germination kinetics (speed of 
or time to germination, which we converted to days whenever 
needed) for both treatment and control seeds. Whenever the 
data were unclear, or not clearly reported in the results or sup-
plementary materials, we contacted the corresponding author to 
ask for permission to use the original data. In some cases, we 
were not able to determine the exact sample sizes (the number 
of replicates and seeds set to germinate in each replicate), so we 
instead used the values given for total seed sample size. When 
data were available only in figures, we digitized them and ex-
tracted the data using ImageJ software (Abramoff et al., 2004).

First, we provided information on the overall percentage of 
seed germinated in different experimental groups (Samuels 
and Levey, 2005). We plotted the germination percentage of 
each plant species reported in each study according to control 
I  (seeds germinating within intact fruits), control II (manu-
ally extracted seeds from fruits) and treatment, according to 
handling by each animal group. For the four vertebrate orders 
(Aves, Primates, Didelphimorphia and Rodentia) included in 

our review, we considered gut passage as the treatment, while 
for ants (Formicidae) we considered seed cleaning (depulping) 
as the treatment. We then conducted separate meta-analyses for 
different aspects of germination performance: germination per-
centage, days to germination of the first seed and mean germin-
ation time for total germination (Traveset et al., 2007). As most 
of the studies did not consider seed germination within fruits 
(control I) as an additional control treatment, we only included 
manually extracted seeds from fruits (control II) as the con-
trol group (see Samuels and Levey, 2005). We investigated the 
total effect of animal fruit handling/gut passage on germination 
performance and moderated further analyses by taxonomic 
categories (class, order and family) to explore specific germin-
ation outcomes.

We used the unweighted log response ratio (Hedges et al., 
1999) to summarize gut passage effects of vertebrate and ant 
manipulation on seed germination of Miconia species. We 
chose this metric because most data from the literature lacked 
the information needed to calculate standard deviations of in-
dividual effect size estimates. The 95 % confidence intervals 
(CIs) around the effect size were calculated, and estimates of 
the effect sizes were considered significant only when the CIs 
did not overlap zero (Hedges et al., 1999).

The response ratio is the ratio of some measured quantity 
in experimental vs. control treatments and is commonly used 
as a measure of experimental effects because it quantifies the 
proportional change that results from experimental manipula-
tion (Hedges et al., 1999). We calculated the natural log of the 
response ratio for each effect studied (Hedges et al., 1999) as

LR = ln
(
X · treatment

)
− ln

(
X · control

)
.

Effects were reported as the proportional change from control 
groups (seeds manually extracted from fruits). Negative per-
centage changes indicate decreases in seed germination per-
centage and/or germination time of ingested/manipulated seeds 
compared with control groups, and positive values indicate an 
increase in the effect measured due to passage through verte-
brate gut or ant manipulation (Rosenberg et al., 2000). To es-
timate the cumulative effect size (E++) for a sample of studies 
addressing the same effect, effect sizes were combined across 
studies using an unweighted randomization test (Rosenberg 
et  al., 2000). All analyses were conducted using Open MEE 
(Wallace et al., 2017).

By using meta-analysis, it is possible to split the variance 
within groups and to evaluate whether or not categorical groups 
(in our study taxonomic groups) are homogeneous by using 
heterogeneity analysis (Q; Gurevitch and Hedges, 1999). We 
calculated total heterogeneity (QT) and heterogeneity within 
(QW) and between groups (QB). We used a χ 2 distribution to 
assess whether or not the value of Q was significant. Fail-safe 
numbers were calculated for each effect tested, indicating how 
many non-significant, unpublished or missing studies would 
need to be added to the sample to change the results from sig-
nificant to non-significant (α = 0.05; Rosenberg et al., 2000). 
Studies that show large and significant effects are more likely 
to be published than studies that show weak or no effects 
(Rosenthal, 1979). As a rule of thumb, results are considered 
robust when the fail-safe number exceeds 5n + 10, where n is 
the number of comparisons (Møller and Jennions, 2001). To 
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evaluate publication bias, we used funnel plots as a graphical 
method, where a symmetrical funnel shape is obtained in the 
absence of bias when the effect size of each study is plotted 
against sample size.

RESULTS

Traits of Miconia diaspores

Our trait database included at least one trait datum for 357 spe-
cies derived from 126 papers (Supplementary data Appendix 
1). Data on life form were available for 68.3 % of the species, 
followed by fruit diameter (60.7 %), ripe fruit colour (51.8 %), 
fruiting season (46.7 %), seed size (35 %), seeds per fruit (24.3 
%) and seed weight (20.7 %). Other traits were less commonly 
reported (<12 %). The IUCN conservation status was available 
only for five species: M. robinsoniana and M. quadrangularis 
(both endangered) and M. amoena, M. paucidens and M. rimalis 
(least concern).

Miconia species showed a variety of life forms, with 
shrubs (160 species) dominating, followed by trees (49), 
shrubs/trees (16; dual life form depending on the habitat), 
treelets (16), lianas (4) and herbs (4). Most fruits were small 
berries [diameter 0.57 ± 0.01 cm (mean ±  s.e.), range 0.2–
1.76 cm] with many tiny seeds (seed size: 0.23 ± 0.02 cm, 
range 0.002–1.3  cm; seeds/fruit: 106.92  ±  19.01, range 
1.44–1005.2; Table 1; Supplementary data Appendix 5, Fig. 
S1A–C). Water was the predominant component in fruit 
pulp, with sugars (mainly glucose and fructose) figuring as 
the most important reward, followed by smaller amounts of 
lipids and proteins (Table  1). Ripe fruit colour in Miconia 
varied, but 72.3 % of the species exhibited black and purple 
berries (Fig. 2A). Other colours, in decreasing order of fre-
quency, were dark blue, blue, white, red, orange, green and 
yellow (Fig. 2A).

Fruit production and phenology

Average crop size ranged from 74.3 fruits per plant in M. 
auricoma to 168 696 fruits per plant in M. rubiginosa. However, 
56 % of the 41 species with estimated average crop size pro-
duced fruit very copiously, usually exceeding 1000 fruits per 
plant (Table 1; Supplementary data Appendix 5, Fig. S1D). Data 
on fruiting phenology were available for 167 Miconia species, 
and showed a large diversity of fruiting patterns. Most species 
fruited once a year, 11 species twice a year and M. rufescens 
three times a year (Supplementary data Appendix 4, Table S1). 
Average duration of the fruiting period was 6.5 ± 0.27 months, 
ranging from a single month to year-round fruit production (29 
species) (Supplementary data, Appendix 4, Table S1).

At the community level, sympatric Miconia species pro-
vided food for frugivores during virtually the whole year 
across several ecoregions, regardless of the rainfall regime, and 
exhibited a highly staggered fruiting pattern (Supplementary 
data Appendix 5, Fig. S2). According to the SI, 54 % of the 
communities (n  =  35) were classified as seasonal (SI  ≥0.4) 
(Supplementary data Appendix 4, Table S2). The seasonal 
communities had on average 4.5 ± 0.9 fruiting species, with 
around 50 % of these (2.33 ± 0.28 species) fruiting during or 
comprising the dry season, and 14 communities had on average 
1.5  ±  0.13 species with long fruiting periods (≥7  months). 
Only three communities had one species each with year-round 
fruit production (Supplementary data Appendix 4, Table S2). 
Non-seasonal communities, on the other hand, had on average 
6.6  ±  1.1 fruiting species, and all communities, except one, 
had on average 2.86 ± 0.57 species with long fruiting periods, 
and around half of them (1.45 ± 0.28 species) with year-round 
fruit production (Supplementary data Appendix 4, Table S2). 
Overall, the large-scale pattern of the Miconia fruiting season 
indicated no phenological peak during the year, with Miconia 
species fruiting every month in many ecoregions across the 
Neotropics (Supplementarydata Appendix 5, Fig. S3).

Table 1.  Fruit and seed traits and fleshy pulp nutritional contents of Miconia species. 

Mean Median s.e. Range n

Morphological     
Fruit diameter (cm) 0.57 0.54 0.01 0.2–1.76 217
Fruit weight (mg) 166.15 100 35.36 10–1300 39
Seed size (cm) 0.23 0.1 0.02 0.002–1.3 125
Seed weight (mg) 4.89 0.093 2.37 0.002–150 74
Seeds per fruit 106.92 33.4 19.01 1.44–1005.2 87
Fruit crop size 11 817.09 1358 5099.24 74.3–168 696 41
Fleshy pulp chemical composition (%)    
Water 80.93 79.86 2.01 70.05–93.7 12
Lipids 1.43 0.65 0.46 0.04–5.98 14
Protein 2.34 1.55 0.59 0.045–8 14
Total non-structural carbohydrates 13.04 8.74 2.58 0.67–59.22 28
Sugar composition      
Fructose (%) 44.25 46 4.43 1–62 12
Glucose (%) 48.54 48 1.97 37–56 11
Sucrose (%) 7.25 3 4.01 1–51 12

Values for chemical composition were obtained in a centesimal composition basis (s.e. = standard error, n = sample size).
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Fruit consumption by fauna

Our literature survey found 182 studies reporting Miconia 
fruit consumption and handling by animals, including both ver-
tebrates and ants (Supplementary data Appendix 2), that yielded 
a total of 2396 pairwise interactions. A  third of the pairwise 
interaction records came from community-wide studies, 29 % 
from species-focused studies and 28 % from dietary studies 
(other type of studies accounted for <7 % of the recorded inter-
actions).We recorded frugivory events for 243 Miconia spe-
cies, 78 (32 %) of which were not fully identified to the species 
level. Fruit–frugivore interactions were found in 47 ecoregions 
across latitudinal and elevational gradients, with elevation ran-
ging from zero to 4200 m a.s.l., and extending from 19°31′N to 
26°15′S (Supplementary data Appendix 5, Fig. S4; Appendix 
4, Table S3).

Pairwise interactions were recorded between 243 Miconia 
species and 646 animal species distributed across five taxo-
nomic classes: Aves, Mammalia, Actinopterygii, Reptilia and 
Insecta (Fig.  3; Supplementary data Appendix 4, Table S4). 
The shape and steepness of the rarefaction curves indicated that 
the diversity of frugivores associated with Miconia fruits was 

underestimated (Fig. 3). Birds were the most diverse group con-
suming Miconia fruits, representing 73 % of total animal inter-
actions. Within Aves, frugivore diversity was distributed across 
ten orders and 37 families, with the Passeriformes standing out 
as the most diverse order (384 species representing >80 % of 
the within-Aves diversity) and the Thraupidae as the most di-
verse family (117 species) (Supplementary data Appendix 4, 
Table S4). Ants were ranked second for species interacting with 
Miconia fruits, with 99 species unevenly distributed amongst 
six subfamilies, with the Myrmicinae representing 75 % of total 
diversity (Supplementary dataAppendix 4, Table S4). Sixty-one 
species of mammals consumed Miconia fruits; these were dis-
tributed in seven orders and 13 families, including Primates 
(41.3 %), Chiroptera (17.5 %), Didelphimorphia (17.5 %), 
Rodentia (14.3 %), Carnivora (4.8 %), Perissodactyla (3.17 %) 
and Cetartiodactyla (1.6 %) (Supplementary data Appendix 4, 
Table S4).

We also found reports of 13 fish species in five families con-
suming Miconia fruits (Supplementary data Appendix 4, Table 
S4). Reptiles were represented by only five species from the 
families Iguanidae and Teiidae (Squamata) and Geoemydidae 
and Testudinidae (Testudines) (Supplementary data Appendix 
4, Table S4). IUCN conservation status information was avail-
able for nearly 78 % of animal species consuming Miconia 
fruits, with 36 species (distributed within three classes, 11 or-
ders and 20 families) listed as threatened with extinction to 
some extent (Supplementary data Appendix 4, Table S5).

According to 21 plant-focal studies assessing frugivory, each 
Miconia species had an average of 16.5 ± 1.4 avian seed dis-
persers (n  =  37). According to ant fruit removal studies (14 
studies), Miconia fruits attracted on average 6 ± 1 ant species 
(n = 28). Miconia albicans attracted the most diverse assem-
blage of frugivores, with records of consumption by at least 122 
animal species (Fig. 4A). The passerine bird Catharus ustulatus 
(Turdidae) consumed the highest number of Miconia species 
(32 species; Fig. 4B). In the case of plant life form, shrubs were 
associated with the highest number of frugivore species (401 
species), followed by trees (328).

Birds and mammals consumed Miconia fruits regardless of 
their colour, except for yellow fruits, which were consumed 
exclusively by ants (Fig. 2B). Reptiles only consumed purple 
fruits, although this group accounted for a small proportion of 
total fruit consumption (Fig. 2B).

Effects of vertebrate gut passage and ant manipulation on seed 
germination

Our literature survey found 25 published studies addressing 
the effect of vertebrate gut passage or ant manipulation on seed 
germination that met our inclusion criteria (Supplementary data 
Appendix 3). Germination data were reported for 35 Miconia 
species and generated 207 outcomes: 121 for germination per-
centage, 78 for germination time and 8 for days until first ger-
mination. With the exception of ants, most animal groups seem 
to substantially increase germination percentage relative to 
seeds germinating within fruits (control I), with no apparent 
differences compared with manually extracted seeds (control 
II; Fig. 5).
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Overall, we found a non-significant effect of gut passage 
on germination percentage (E++ = –0.06, 95 % CI = –0.1435 
to 0.0217), days to first seed germination (E++  =  0.10, 95 
% CI  =  –0.2270 to 0.4198) and mean germination time 
(E++ = 0.05, 95 % CI = –0.0071 to 0.1169; Fig. 6). However, 
when effects were moderated by taxonomic class (QB = 60.63, 
P ≤ 0.001), gut passage had significant effects on Miconia seed 
germination.

Unexpectedly, passage through the gut of bird species signifi-
cantly reduced germination percentage by 15 % (E++ = –0.15, 
95 % CI  =  –0.2618 to –0.0504) and diaspore handling by 
ants reduced seed germination by 90 % (E++ = –0.90, 95 % 
CI  =  –1.2369 to –0.5669; Fig.  6). Conversely, gut passage 
in mammals significantly increased germination percentage 
by 26 % (E++ = 0.26, 95 % CI = 0.1288 to 0.3956; Fig. 6). 
Birds (E++  =  0.07, 95 % CI  =  –0.0017 to 0.1542), mam-
mals (E++  =  0.07, 95 % CI  =  –0.0450 to 0.1917) and ants 
(E++ = –0.34, 95 % CI = –0.7899 to 0.1084) had no significant 
effect on germination time. We could not compare the effects 
between different animal classes on days to first seed germin-
ation due to small sample sizes.

Among birds, gut passage in the Passeriformes resulted in 
a significant reduction in germination percentage by 20 % 
(E++  =  –0.20, 95 % CI  =  –0.2761 to –0.1279), whereas it 
was non-significant for the Galliformes (E++  =  1.32, 95 % 
CI = –1.6024 to 4.2404). To evaluate the gut passage effect of 
passerine birds on germination percentage, we partitioned the 
variance among bird families (Supplementary data Appendix 
4, Table S5). The overall trend was a reduction in germin-
ation percentage. Species within the Turdidae and Thraupidae 
caused a significant reduction of 27 % (E++ = –0.27, 95 % 
CI  =  –0.4209 to –0.1173) and 17 % (E++  =  –0.17, 95 % 
CI = –0.2895 to –0.0494), respectively (Supplementary data 
Appendix 4, Table S6).

For mammals, we found contrasting within-class effects of 
gut passage on seed germination. Primates significantly re-
duced germination percentage by 28 % (E++  =  –0.28, 95 % 
CI = –0.4879 to –0.0799), whereas other non-flying mammals 
(i.e. Didelphimorphia and Rodentia grouped together) signifi-
cantly increased it by 45 % (E++ = 0.45, 95 % CI = 0.3406 
to 0.5595). Both primates (E++  =  0.19, 95 % CI  =  –0.0321 
to 0.4103) and non-flying mammals (E++  =  –0.00, 95 % 
CI = –0.1659 to 0.1648) had no significant effect on mean ger-
mination time. Gut passage in didelphimorphs increased ger-
mination percentage by 50 % (E++ = 0.50, 95 % CI = 0.3889 
to 0.6102), but the effects were not significant for rodents 
(E++ = –0.02, 95 % CI = –0.7512 to 0.6939; Fig. 6).

Fail-safe numbers for the effects of vertebrate gut passage 
and ant fruit manipulation on seed germination percentage and 
mean germination time were small relative to the number of out-
comes included in the meta-analysis, indicating that our results 
should be interpreted with caution and we should avoid gener-
alizations. The scatter plots of effect size against sample sizes 
of pooled data showed a classical funnel shape (Supplementary 
data Appendix 5, Fig. S5), indicating that studies with small 
sample sizes had a larger dispersion of effect size around the 
true effect, whereas studies with large sample sizes had an 
effect size closer to the true value.

DISCUSSION

Our results support the idea of Miconia species as KPRs 
(Escribano-Avila et al., 2018; Messeder et al., 2020) for most 
fruit-eating vertebrates and ant lineages. We showed that 
Miconia frugivory and seed dispersal involve a functionally 
diverse range of animals, including mostly terrestrial but also 
aquatic species, varying in morphology, body size, behaviour 
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and habitat use. As we reported, Miconia produces large fruit 
crops year round, especially at times of resource scarcity, and 
sustain frugivore assemblages, including threatened species, in 
both forest and non-forest ecosystems.

Diaspore traits and fruiting phenology in Miconia

Most Miconia fruits are blackish/purplish small-sized ber-
ries, enclosing numerous small seeds within water- and sugar-
rich fleshy pulp – traits typical of ornithochoric species (Snow, 
1981; Wheelwright et  al., 1984; Stiles and Rosselli, 1993). 
However, we showed that a much broader spectrum of verte-
brates acts as primary seed dispersers of Miconia. The suite 

of traits of Miconia fruits may largely explain the widespread 
consumption by Neotropical fauna. Small fruits and seeds 
are key traits that drive patterns of interaction in fruit–frugi-
vore networks (Burns, 2013; González-Castro et  al., 2015; 
Sebastián-González et al., 2017). Large fruits containing large 
seeds constrain interactions with small frugivores, whereas 
plants producing small-sized fruits and seeds allow consump-
tion by animal species with a much wider range of gape sizes, 
encompassing frugivores across different sizes and taxonomic 
groups (Wheelwright, 1985b; Levey, 1987; Jordano, 2014; 
Fuzessy et al., 2018).

Likewise, the high sugar content of the fruit pulp of Miconia 
berries also contributes to consumption by fauna (Wheelwright 
et al., 1984; Jordano, 1995; Baker et al., 1998; Galetti et al., 2011).  
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Although lipid-rich fruits are supposedly more rewarding in 
energetic terms, their digestion is costly, with longer reten-
tion times, because lipids need to be emulsified, hydrolysed, 
absorbed and then metabolized (Witmer and van Soest, 1998; 
Levey and Martinez-del-Rio, 2001). In contrast, digestion of 
soluble monosaccharides (Wheelwright et  al., 1984; Baker 
et  al., 1998) is much simpler and entails faster absorption 
favouring greater net energy gains (Karasov and Diamond, 
1988; Worthington, 1989; Witmer and van Soest, 1998; 

Lepczyk et al., 2000). Therefore, it is reasonable to expect that 
most frugivores are able to digest fruits, such as Miconia, pri-
marily containing non-structural carbohydrates (Baker et  al., 
1998; Maruyama et al., 2019).

Fruit production and phenology also help to explain the 
widespread consumption of Miconia fruits. First, we found that 
even small shrubs or treelets usually produce copious fruits, 
with crop sizes often exceeding thousands of fruits per plant 
(Levey, 1990; Blendinger et al., 2008; Christianini and Oliveira, 
2009; Kessler-Rios and Kattan, 2012; Guerra et  al., 2017; 
Santos et al., 2017), but large trees produce up to 160 000 fruits 
(Christianini and Oliveira, 2009). Second, Miconia species are 
abundant in plant communities, leading to high fruit density 
in habitat patches where they occur (Levey, 1990; Blendinger 
et al., 2008; Christianini and Oliveira, 2009; Maruyama et al., 
2013; Guerra et al., 2017). Third, as we have shown, the fruiting 
phenology of most Miconia species extends on average over 
6  months, with year-round fruiting patterns common in spe-
cies in non-seasonal habitats (Levey, 1988; Poulin et al., 1999) 
where water is less limited (Morellato et al., 2000).

Our investigation shows that Miconia species commonly 
produce fruits during the dry season in several seasonal habi-
tats, making them a reliable food source during periods of food 
scarcity (Rathcke and Lacey, 1985; Terborgh, 1986; Peres, 
2000; Jordano, 2014; Mendonza et al., 2017; Maruyama et al., 
2019). Year-round fruit availability at the community level en-
tails a higher probability of interaction (Jordano et al., 2003; 
Olesen et al., 2011), for both resident and migratory species, 
ensures seed dispersal services and helps to maintain biodiver-
sity (Messeder et al., 2020).

Current evidence also indicates that Miconia species pro-
duce fruits consistently between years (Christianini and 
Oliveira, 2009; Kessler-Rios and Kattan, 2012; Maruyama 
et al., 2013; Brito et al., 2017a). With the phenological patterns 
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identified in our study, we emphasize the role of Miconia in 
providing consistent and reliable food resources to frugivores 
over the years, as well as being one of the plant taxa most likely 
to sustain many animal species during periods of food scar-
city in seasonal ecosystems throughout the Neotropics. The 
combination of fruit traits and fruiting phenology is similar 
to those identified for other KPRs such as Ficus and Cecropia 
(Terborgh, 1986; Lambert and Marshall, 1991; Shanahan et al., 
2001), and largely explains the relevance of Miconia species to 
Neotropical frugivores (Messeder et al., 2020).

Frugivores associated with Miconia fruits

Miconia fruits are consumed by taxonomically and func-
tionally highly diverse vertebrates across all lineages, except 
amphibians (Table  2; Supplementary data Appendix 4, Table 
S4). Remarkably, bird species accounted for >70 % of recorded 
interactions, with >460 species, encompassing a wide range 
of lineages, body sizes and functional groups. Although our 
study represents <10 % of Miconia diversity, we have shown 
that Miconia fruits are indeed a significant food source for 13 
% of all Neotropical bird species and for >70 % of the species 
classified as primarily frugivorous (Kissling et al., 2009, 2012).

Frugivory has emerged independently several times in the 
evolutionary history of birds (Fleming and Kress, 2011), with 
the Passeriformes standing out as the most species-rich order 
with the highest proportion of frugivorous species (Kissling 
et al., 2009). Accordingly, we have demonstrated the relevance 
of Miconia fruits to small-sized passerines, especially tanagers 
(Thraupidae), flycatchers (Tyrannidae), thrushes (Turdidae) and 
manakins (Pipridae; Table 2; Supplementary data Appendix 4, 
Table S4). Thus, coevolution with highly frugivorous passerine 
bird clades may be a major force driving changes in Miconia 
fruit traits towards smaller size and purplish pulp rich in water 
and sugar (Table 2). However, studies on coevolution between 
fruiting plants and frugivores remain scarce and inconclusive, 
and it is a topic worthy of future investigation (Valenta and 
Nevo, 2020).

Although mostly overlooked, the reports gathered here also 
emphasize the importance of Miconia fruits for a function-
ally diverse group of mammals, ranging from large terrestrial 
to small volant and non-volant species. Frugivory is well dis-
tributed along mammalian lineages, having evolved independ-
ently numerous times (Fleming and Kress, 2011). The major 
families of Neotropical frugivorous mammals are the Atelidae, 
Cebidae, Pitheciidae and Aotidae (Primates), Phyllostomidae 
(Chiroptera), and Echimyidae and Dasyproctidae (Rodentia; 
Fleming and Kress, 2011). However, we document a much 
broader diversity of mammals relying on Miconia fruits as a 
food resource, including some threatened species (Table  2; 
Supplementary data Appendix 4, Tables S4 and S5).

Primates are by far the most frugivorous clade of mam-
mals, and accordingly are the most diverse group of mammals 
consuming Miconia. Mutualistic interactions with fruits have 
played an important role in promoting primate diversification, 
especially in the Neotropics (Gómez and Verdú, 2012), where 
most species depend greatly on fruit as part of their overall diet 
(Hawes and Peres, 2014b). These large-bodied vertebrates are 

considered generalist frugivores, due to their capacity for con-
suming a wide variety of fruit, ranging from very small to very 
large seeded (Fuzessy et al., 2018). We emphasize the import-
ance of the small-seeded Miconia fruits as food resources for 
many primate species, which rely heavily on fruits of several 
different Miconia species, especially during periods of resource 
scarcity (Pavelka and Knopff, 2004; Lapenta et  al., 2008; 
Canale et al., 2016).

Although less common, Miconia fruit consumption by fishes 
and reptiles is underestimated. We found at least 13 species of 
fish that consume Miconia fruits (Kubitzki and Ziburski, 1994; 
Hawes and Peres, 2014a; Correa et al., 2016; Weiss et al., 2016) 
in the Amazon forest (Supplementary data 4, Table S4) where, 
once a year, seasonal flooding allows aquatic fauna to access 
forest interiors and consume diaspores that fall into the water 
(Kubitzki and Ziburski, 1994). Miconia fruits are also con-
sumed by reptiles, including tortoises (Moll and Jansen, 1995; 
Guzmán and Stevenson, 2008) and lizards (Swanson, 1950; 
Magnusson and Sanaiotti, 1987; Guerra et al., 2018). Although 
documented infrequently, consumption of Miconia fruits by 
fishes and reptiles is not necessarily rare, simply because diet 
studies sampling stomach contents rarely provide precise taxo-
nomic identification of plant items.

Despite the scarcity of studies (17 studies) providing data 
on interactions with Miconia (19 species), ants were ranked 
as the second most diverse group of consumers of the genus 
(Supplementary data Appendix 4, Table S4). In fact, the shape 
of the species accumulation curve indicates that the diver-
sity of ants interacting with Miconia fruits could match that 
of birds. Miconia species are primarily vertebrate dispersed 
and lack specialized structures, such as elaiosomes, to mediate 
ant interactions. Ants are, therefore, important secondary seed 
dispersers that use both fruit pulp and seeds as food resources 
(Kaspari, 1993; Christianini et  al., 2007; Christianini and 
Oliveira, 2009; Lima et al., 2013; Guerra et al., 2018). Miconia 
fruits are consumed by fungi-growing ants (Leal and Oliveira, 
1998; Dalling and Wirth, 1998), opportunistic exploiters of 
fruit pulp (Christianini et al., 2007; Christianini and Oliveira, 
2009; Lima et al., 2013) and granivores (Kaspari, 1993; Levey 
and Byrne, 1993; Guerra et al., 2018). Therefore, our results 
highlight the overlooked relevance of Miconia fruits and seeds 
as food resources for Neotropical ants.

Effects of gut passage on germination of Miconia seeds

Endozoochory is the main mechanism of Miconia seed dis-
persal. Germination of Miconia seeds is light dependent and 
rarely occurs within fleshy pulp (Silveira et al., 2013a; Santos 
et al., 2017). Miconia fruits have germination inhibitors; there-
fore, release of seeds from fleshy pulp is a key service provided 
by dispersers (Silveira et al., 2013a, b; Ribeiro et al., 2016). 
Although our results showed that some animal groups caused 
an overall decrease in seed germination when compared with 
hand extraction, fruit consumption and seed handling allow a 
much higher likelihood of germination than situations when 
seed cleaning does not take place.

Our meta-analysis highlighted that vertebrates and ants may 
affect Miconia seed germination, but also revealed that the out-
comes of gut passage are clade specific. Fruit-eating birds are 

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcaa189#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcaa189#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcaa189#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcaa189#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcaa189#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcaa189#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcaa189#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcaa189#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcaa189#supplementary-data
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recognized to enhance seed germination, as passage through 
their guts generally increases germination by up to 40 % and 
reduces germination time (Traveset et al., 2001; Traveset and 
Verdú, 2002; Lehouck et  al., 2011). Contrary to this expect-
ation, we found that birds negatively affected seed germination. 
Passage through the avian gut may reduce resistance to breakage 
(Traveset et al., 2008) in some Miconia species (Ribeiro et al., 
2016). The reduced germination of gut-passed seeds may be 
related to their small size and thinner coats, which could be 
damaged during passage through muscular gizzards, or because 
some species produce physiologically dormant seeds (Silveira 
et al., 2012a).

Seed germination outcomes were far from general, showing 
very specific results strongly dependent on frugivore identity. 
Studies with specialized frugivores have shown positive or 
neutral influences on Miconia seed germination (Ellison et al., 
1993; Gomes et al., 2008; Acosta-Rojas et al., 2012; Silveira 
et  al., 2012b). However, most of the studies in our database 
evaluated omnivorous birds that included both fruit and insects 
in their diets (Alves et al., 2008; Gomes et al., 2008; Silveira 
et  al., 2012b). Generalist birds often possess more muscular 
gizzards, leading to longer retention times and mechanical and 
chemical abrasion of seeds, consequently decreasing the like-
lihood of germination (Traveset et al., 2008; Jordano, 2014). 
However, the frequency of Miconia seeds in faecal samples of 
some passerines may reach >90 % (Stiles and Rosselli, 1993), 
whereas the average number of seeds in bird droppings can reach 
hundreds in some cases (Loiselle and Blake, 1999). Therefore, 
even with <50 % of seeds germinating after gut passage, birds 
could still effectively disperse many viable seeds, successfully 
contributing to Miconia seedling establishment (Ellison et al., 
1993; Krijger et al., 1997; Blendinger et al., 2011).

Our meta-analysis showed that diaspore handling by ants 
considerably reduced germination of Miconia seeds. However, 
it is important to acknowledge that seeds handled by ants are 
those that have fallen under mother plants, after being mashed 
or defecated by birds (Kaspari, 1993; Christianini and Oliveira, 
2009; Lima et al., 2013; Guerra et al., 2018). Therefore, most 
seeds collected and transported by ants have already suf-
fered – to some degree – from pre-dispersal predation and 
mandibulation, and/or ingestion by primary dispersers. Despite 
their apparent negative effects on seed germination, several 
ant species present behaviours that allow their recognition as 
legitimate dispersers of Miconia seeds, including depulping 
and transporting intact seeds to sites favourable to establish-
ment (Dalling and Wirth, 1998; Christianini and Oliveira, 2009; 
Lima et al., 2013). Some ants seem to be attracted mostly to 
fruit pulp rewards, and transport seeds unintentionally while 
carrying fruit pulp (Christianini and Oliveira, 2009; Lima et al., 
2013; Guerra et al., 2018). Although ants may harm Miconia 
seeds during handling and reduce their germination potential, 
their contribution to short-distance seed dispersal must be ac-
knowledged (Christianini and Oliveira, 2009; Lima et al., 2013; 
Guerra et al., 2018).

Previous meta-analytical studies investigating the gut pas-
sage effect on seed germination across a wide variety of ani-
mals and plant taxa (Traveset, 1998; Traveset and Verdú, 2002; 
Traveset et al., 2008; Torres et al., 2020) showed that non-flying 
small mammals caused the lowest positive effect on seeds 

(approx. 5 % increase in germination percentage). However, 
there is emerging evidence that rodents and opossums can play 
important roles as seed dispersers, with seeds showing positive 
germination responses after fruit ingestion, especially in small-
seeded species (Grenha et al., 2010; Lessa et al., 2013, 2019; 
Lessa and Geise, 2014; Sahley et  al., 2015; Genrich et  al., 
2017). Our results support the view that small mammals, es-
pecially opossums, are important dispersers of Miconia seeds, 
considerably increasing germination percentages.

The germination percentage of seeds of Miconia fruit con-
sumed by primates decreased by 28 % when compared with 
that of hand-extracted seeds. Despite this reduction, germin-
ation of primate gut-passed seeds was greater than that of seeds 
enclosed in fruits, suggesting that seed depulping is an im-
portant service also provided by primates. Although primates 
seem to have a restricted direct role in Miconia seed dispersal, 
they may complement the mostly short-distance services pro-
vided by birds and ants (Christianini and Oliveira, 2009; Guerra 
et al., 2018). The longer transit times and wider home ranges of 
primarily frugivorous primates could lead to long-distance dis-
persal of some Miconia seeds (Fuzessy et al., 2017). Although 
the results of our meta-analysis were highly informative, they 
must be interpreted with caution. Future experimental germin-
ation studies with Miconia species should investigate gut pas-
sage effects across a broader range of frugivores.

CONCLUSIONS AND PERSPECTIVES FOR 
FUTURE STUDIES

Although studies of Miconia species and their dispersers cata-
lysed the early debate on coevolution between frugivores and 
their plants (Snow, 1971; Stiles and Rosselli, 1993), the role 
of fruit–frugivore interactions as drivers of diversification and 
geographic range in this hyperdiverse genus stands as a major 
knowledge gap (Reginato et al., 2020). Indeed, the evolution 
and diversification of Miconia fruits remain an enigma, as 
fleshy fruits have not been found to be a key innovation within 
the Melastomataceae (Reginato et al., 2020). Therefore, several 
aspects of the evolutionary ecology of Miconia fruits remain un-
explored. Data gathered in our integrative review strongly sup-
port previous studies (Escribano-Avila et al., 2018; Messeder 
et al., 2020) emphasizing the relevance of Miconia species as 
keystone resources for other animals in addition to birds. By 
producing large crops of small fruits year round, especially at 
times of resource scarcity, Miconia species are able to entirely 
sustain a wide diversity of frugivore assemblages.

Current evidence indicates that selection by frugivores may 
drive evolution of fruit and seed traits, including size, colour 
and nutrient content (Janson, 1983; Jordano, 1995; Galetti 
et al., 2013; Brodie, 2017; Nevo et al., 2018). Nevertheless, 
studies addressing phenotypic selection of Miconia fruits 
and seeds by dispersers remain scarce (Camargo et  al., 
2015), with available information indicating that avian fru-
givores may select for individual plants with larger crop 
sizes (Blendinger et  al., 2008; Christianini and Oliveira, 
2009; Guerra et  al., 2017). We argue that the diverse suite 
of traits exhibited by Miconia fruits and their exposure to 
different selective pressures exerted by different frugivore 
functional groups can be a suitable model system for testing 
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coevolutionary hypotheses (Table 2). Although consumption 
of Miconia fruits by frugivores seems diffuse with no clearly 
apparent coevolutionary patterns at this time (Table 2), future 
studies with proper experimental designs may be valuable. 
For instance, studies combining observational, experimental 
and phylogenetic comparative approaches should investigate 
the role of frugivore clades in shaping the evolution and di-
versification of Miconia species. Can species dispersed by 
different frugivore clades evolve specific traits? We hypothe-
size that, given the germination outcomes specific to animal 
clades, fruit and seed traits could be positively shaped ac-
cording to the disperser functional group.

While many frugivory and seed dispersal studies have 
highlighted the importance of Miconia species for sustaining 
and structuring frugivore assemblages, their broader role 
at higher organizational levels (e.g. community, ecosystem 
and landscape) remains overlooked. Miconia species can 
be highly diverse and abundant across many communities 
throughout the Neotropics; thus, their contribution to the 
structure and function of forest and non-forest ecosystems 
probably extends far beyond the maintenance of fruit–fru-
givore interactions. Of note, Miconia flowers are an im-
portant resource for pollen-collecting bees, wasps, beetles, 
flies, moths and hummingbirds (Kriebel and Zumbado, 2014; 
Brito et  al., 2016, 2017b). Moreover, Miconia species are 
known as hosts of many specialized herbivores, including 
leaf-chewing lepidopteran larvae (Badenes-Pérez et  al., 
2010; Scherrer et  al., 2010), twig girdler beetles (Paulino-
Neto et  al., 2005; Paro et  al., 2014), seed-feeding carabid 
beetles (Paarmann et  al., 2002), sap-sucking treehoppers 
(Lopes, 1996; Chacón-Madrigal et al., 2012; Swing, 2012; 
Alfaro-Alpízar et al., 2020), fruit-galling insects (Centrella 
and Shaw, 2010, and leaf-galling nematodes (Santos et al., 
2012; Viana et al., 2013), among others. Therefore, we high-
light the need for further studies addressing their importance 
for primary consumers other than frugivores, as well as their 
role in maintaining biodiversity and ecosystem functioning, 
while facilitating habitat connectivity and providing eco-
system services across Neotropical ecoregions.

Finally, the recognition of Miconia as a keystone plant taxon 
for Neotropical frugivores is the first step towards applying this 
knowledge to better conservation and management practices 
(Peters et al., 2016). Birds are the most common frugivores 
attending Miconia plants, and also the main group delivering 
diaspores into sites targeted for restoration (Wunderle, 1997; 
Cole et al., 2010; Zahawi et al., 2013, Bechara et al., 2016; 
González-Castro et al., 2018). As a result, planting of Miconia 
species could intensify the attraction of avian frugivorous 
species to areas targeted for restoration and increase both the 
amount and diversity of seed rain. Since we have shown their 
broad use and dispersal by fauna, we hypothesize that the re-
turn of frugivore assemblages and their ecosystem functions 
can be facilitated by Miconia species. Furthermore, Miconia 
species are recognized as pioneers present in early succes-
sional stages, forest borders and gaps (Levey, 1990; Ellison 
et al., 1993; Silveira et al., 2013a). Therefore, we suggest that 
prioritizing the planting of Miconia species selected from re-
gional pools could maximize natural regeneration in increas-
ingly fragmented landscapes.
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