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The search for a scientific theory of consciousness should result in theories that are falsifiable. However, here we show that
falsification is especially problematic for theories of consciousness. We formally describe the standard experimental setup
for testing these theories. Based on a theory’s application to some physical system, such as the brain, testing requires com-
paring a theory’s predicted experience (given some internal observables of the system like brain imaging data) with an in-
ferred experience (using report or behavior). If there is a mismatch between inference and prediction, a theory is falsified.
We show that if inference and prediction are independent, it follows that any minimally informative theory of conscious-
ness is automatically falsified. This is deeply problematic since the field’s reliance on report or behavior to infer conscious
experiences implies such independence, so this fragility affects many contemporary theories of consciousness.
Furthermore, we show that if inference and prediction are strictly dependent, it follows that a theory is unfalsifiable. This
affects theories which claim consciousness to be determined by report or behavior. Finally, we explore possible ways out of

this dilemma.
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Successful scientific fields move from exploratory studies and
observations to the point where theories are proposed that can
offer precise predictions. Within neuroscience, the attempt to
understand consciousness has moved out of the exploratory
stage and there are now a number of theories of consciousness
capable of predictions that have been advanced by various
authors (Koch et al. 2016).

At this point in the field’s development, falsification has be-
come relevant. In general, scientific theories should strive to
make testable predictions (Popper 1968). In the search for a sci-
entific theory of consciousness, falsifiability must be considered
explicitly as it is commonly assumed that consciousness itself
cannot be directly observed, instead it can only be inferred
based off of report or behavior.

Contemporary neuroscientific theories of consciousness first
began to be proposed in the early 1990s (Crick 1994). Some have
been based directly on neurophysiological correlates, such as
proposing that consciousness is associated with neurons firing

at a particular frequency (Crick and Koch 1990) or activity in
some particular area of the brain like the claustrum (Crick and
Koch 2005). Other theories have focused more on the dynamics
of neural processing, such as the degree of recurrent neural con-
nectivity (Lamme 2006). Others yet have focused on the “global
workspace” of the brain, based on how signals are propagated
across different brain regions (Baars 1997). Specifically, Global
Neuronal Workspace (GNW) theory claims that consciousness
is the result of an “avalanche” or “ignition” of widespread neural
activity created by an interconnected but dispersed network of
neurons with long-range connections (Sergent and Dehaene
2004).

Another avenue of research strives to derive a theory of con-
sciousness from analysis of phenomenal experience. The most
promising example thereof is Integrated Information Theory
(IIT) (Tononi 2004, 2008; Oizumi et al. 2014). Historically, IIT is
the first well-formalized theory of consciousness. It was the
first (and arguably may still be the lone) theory that makes pre-
cise quantitative predictions about both the contents and level
of consciousness (Tononi 2004). Specifically, the theory takes
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the form of a function, the input of which is data derived from
some physical system’s internal observables, while the output
of this function is predictions about the contents of conscious-
ness (represented mathematically as an element of an experi-
ence space) and the level of consciousness (represented by a
scalar value ®).

Both GNW and IIT have gained widespread popularity,
sparked a general interest in consciousness, and have led to
dozens if not hundreds of new empirical studies (Massimini
et al. 2005; Del Cul et al. 2007; Dehaene and Changeux 2011;
Gosseries et al. 2014; Wenzel et al. 2019). Indeed, there are al-
ready significant resources being spent attempting to falsify ei-
ther GNW or IIT in the form of a global effort pre-registering
predictions from the two theories so that testing can be con-
ducted in controlled circumstances by researchers across the
world (Ball 2019; Reardon 2019). We therefore often refer to both
GNW and IIT as exemplar theories within consciousness re-
search and show how our results apply to both. However, our
results and reasoning apply to most contemporary theories, e.g.
(Lau and Rosenthal 2011; Chang et al. 2019), particularly in their
ideal forms. Note that we refer to both “theories” of conscious-
ness and also “models” of consciousness, and use these inter-
changeably (Seth 2007).

Due to IIT’s level of formalization as a theory, it has triggered
the most in-depth responses, expansions, and criticisms
(Cerullo 2015; Bayne 2018; Mediano et al. 2019; Kleiner and Tull
2020) since well-formalized theories are much easier to criticize
than nonformalized theories. Recently, one criticism levied
against IIT was based on how the theory predicts feedforward
neural networks have zero ® and recurrent neural networks
have nonzero ®. Since a given recurrent neural network can be
“unfolded” into a feedforward one while preserving its output
function, this has been argued to render IIT outside the realm of
science (Doerig et al. 2019). Replies have criticized the assump-
tions which underlie the derivation of this argument (Tsuchiya
et al. 2019; Kleiner 2020).

Here, we frame and expand concerns around testing and fal-
sification of theories by examining a more general question:
what are the conditions under which theories of consciousness
(beyond IIT alone) can be falsified? We outline a parsimonious
description of theory testing with minimal assumptions based
on first principles. In this agnostic setup, falsifying a theory of
consciousness is the result of finding a mismatch between the
inferred contents of consciousness (usually based on report or
behavior) and the contents of consciousness as predicted by the
theory (based on the internal observables of the system under
question).

This mismatch between prediction and inference is criti-
cal for an empirically meaningful scientific agenda, because
a theory’s prediction of the state and content of conscious-
ness on its own cannot be assessed. For instance, imagine a
theory that predicts (based on internal observables like brain
dynamics) that a subject is seeing an image of a cat.
Without any reference to report or outside information,
there can be no falsification of this theory, since it cannot
be assessed whether the subject was actually seeing a “dog”
rather than “cat.” Falsifying a theory of consciousness is
based on finding such mismatches between reported experi-
ences and predictions.

In the following work, we formalize this by describing the
prototypical experimental setup for testing a theory of con-
sciousness. We come to a surprising conclusion: a widespread
experimental assumption implies that most contemporary the-
ories of consciousness are already falsified.

The assumption in question is the independence of an experi-
menter’s inferences about consciousness from a theory’s pre-
dictions. To demonstrate the problems this independence
creates for contemporary theories, we introduce a “substitution
argument.” This argument is based on the fact that many sys-
tems are equivalent in their reports (e.g. their outputs are iden-
tical for the same inputs), and yet their internal observables
may differ greatly. This argument constitutes both a generaliza-
tion and correction of the “unfolding argument” against IIT pre-
sented in Doerig et al. (2019). Examples of such substitutions
may involve substituting a brain with a Turing machine or a cel-
lular automaton since both types of systems are capable of uni-
versal computation (Turing 1937; Wolfram 1984) and hence may
emulate the brain’s responses, or replacing a deep neural net-
work with a single-layer neural network, since both types of
networks can approximate any given function (Hornik et al.
1989; Schéfer and Zimmermann 2006).

Crucially, our results do not imply that falsifications are im-
possible. Rather, they show that the independence assumption
implies that whenever there is an experiment where a theory’s
predictions based on internal observables and a system’s
reports agree, there exists also an actual physical system that
falsifies the theory. One consequence is that the “unfolding
argument” concerning IIT (Doerig et al. 2019) is merely a small
subset of a much larger issue that affects all contemporary the-
ories which seek to make predictions about experience off of in-
ternal observables. Our conclusion shows that if independence
holds, all such theories come falsified a priori. Thus, instead of
putting the blame of this problem on individual theories of con-
sciousness, we show that it is due to issues of falsification in
the scientific study of consciousness, particularly the field’s
contemporary usage of report or behavior to infer conscious
experiences.

A simple response to avoid this problem is to claim that re-
port and inference are not independent. This is the case, e.g., in
behaviorist theories of consciousness, but arguably also in
Global Workspace Theory (Baars 2005), the “attention schema”
theory of consciousness (Graziano and Webb 2015) or “fame in
the brain” (Dennett 1991) proposals. We study this answer in de-
tail and find that making a theory’s predictions and an experi-
menter’s inferences strictly dependent leads to pathological
unfalsifiability.

Our results show that if the independence of prediction and
inference holds true, as in contemporary cases where report
about experiences is relied upon, it is likely that no current the-
ory of consciousness is correct. Alternatively, if the assumption
of independence is rejected, theories rapidly become unfalsifi-
able. While this dilemma may seem like a highly negative con-
clusion, we take it to show that our understanding of testing
theories of consciousness may need to change to deal with
these issues.

Here, we provide a formal framework for experimentally testing
a particular class of theories of consciousness. The class we
consider makes predictions about the conscious experience of physi-
cal systems based on observations or measurements. This class
describes many contemporary theories, including leading theo-
ries such as IIT (Oizumi et al. 2014), GNW Theory (Dehaene and
Changeux 2004), Predictive Processing [when applied to account
for conscious experience (Hohwy 2012; Hobson et al. 2014; Seth
2014; Clark 2019; Dolega and Dewhurst 2020)], or Higher Order
Thought Theory (Rosenthal 2002). These theories may be



motivated in different ways, or contain different formal struc-
tures, such as e.g., the ones of category theory (Tsuchiya et al.
2016). In some cases, contemporary theories in this class may
lack the specificity to actually make precise predictions in their
current form. Therefore, the formalisms we introduce may
sometimes describe a more advanced form of a theory, one that
can actually make predictions.

In the following section, we introduce the necessary terms
to define how to falsify this class of theories: how the measure-
ment of a physical system’s observables results in datasets
(Experiments section), how a theory makes use of those data-
sets to offer predictions about consciousness (Predictions sec-
tion), how an experimenter makes inferences about a physical
system’s experiences (Inferences section), and finally how falsi-
fication of a theory occurs when there is a mismatch between a
theory’s prediction and an experimenter’'s inference
(Falsification section). In Summary section, we give a summary
of the introduced terms. In subsequent sections, we explore the
consequences of this setup, such as how all contemporary theo-
ries are already falsified if the data used by inferences and pre-
dictions are independent, and also how theories are
unfalsifiable if this is changed to a strict form of dependency.

Experiments

All experimental attempts to either falsify or confirm a member
of the class of theories we consider begin by examining some
particular physical system which has some specific physical
configuration, state, or dynamics, p. This physical system is
part of a class P of such systems which could have been real-
ized, in principle, in the experiment. For example, in IIT, the
class of systems P may be some Markov chains, set of logic
gates, or neurons in the brain, and every p € P denotes that sys-
tem being in a particular state at some time t. On the other
hand, for GNW, P might comprise the set of long-range cortical
connections that make up the global workspace of the brain,
with p being the activity of that global workspace at that time.

Testing a physical system necessitates experiments or
observations. For instance, neuroimaging tools like fMRI or
EEG have to be used in order to obtain information about the
brain. This information is used to create datasets such as func-
tional networks, wiring diagrams, models, or transition proba-
bility matrices. To formalize this process, we denote by O all
possible datasets that can result from observations of P. Each
0 € O is one particular dataset, the result of carrying out some
set of measurements on p. We denote the datasets that can re-
sult from measurements on p as obs(p). Formally:

obs : PO, (1)

where obs is a correspondence, which is a “generalized function”
that allows more than one element in the image obs(p) (func-
tions are a special case of correspondences). A correspondence
is necessary because, for a given p, various possible datasets
may arise, e.g., due to different measurement techniques such
as fMRI vs. EEG, or due to the stochastic behavior of the system,
or due to varying experimental parameters. In the real world,
data obtained from experiments may be incomplete or noisy, or
neuroscientific findings difficult to reproduce (Gilmore et al.
2017). Thus for every p € P, there is a whole class of datasets
which can result from the experiment.

Note that obs describes the experiment, the choice of
observables, and all conditions during an experiment that gen-
erates the dataset o necessary to apply the theory, which may

differ from theory to theory, such as interventions in the case of
IIT. In all realistic cases, the correspondence obs is likely quite
complicated since it describes the whole experimental setup.
For our argument, it simply suffices that this mapping exists,
even if it is not known in detail.

It is also worth noting here that all leading neuroscientific
theories of consciousness, from IIT to GNW, assume that expe-
riences are not observable or directly measurable when apply-
ing the theory to physical systems. That is, experiences
themselves are never identified or used in obs but are rather in-
ferred based on some dataset o that contains report or other be-
havioral indicators.

Next, we explore how the datasets in O are used to make
predictions about the experience of a physical system.

Predictions

A theory of consciousness makes predictions about the experi-
ence of some physical system in some configuration, state, or
dynamics, p, based on some dataset o. To this end, a theory car-
ries within its definition a set or space E whose elements corre-
spond to various different conscious experiences a system could
have. The interpretation of this set varies from theory to theory,
ranging from descriptions of the level of conscious experience
in early versions of IIT, descriptions of the level and content of
conscious experience in contemporary IIT (Kleiner and Tull
2020), or the description only of whether a presented stimuli is
experienced in GNW or HOT. We sometimes refer to elements e
of E simply as experiences.

Formally, this means that a prediction considers an experi-
mental dataset o € O (determined by obs) and specifies an ele-
ment of the experience space E. We denote this as pred, for
“prediction,” which is a map from O to E. The details of how in-
dividual datasets are being used to make predictions again do
not matter for the sake of our investigation. What matters is
that a procedure exists, and this is captured by pred. However,
we have to take into account that a single dataset 0 € O may not
predict only one single experience. In general, pred may only al-
low an experimenter to constrain experience of the system in
that it only specifies a subset of all experiences a theory models.
We denote this subset by pred(o). Thus, pred is also a corre-
spondence

pred: O—E.

Shown in Fig. 1 is the full set of terms needed to formally de-
fine how most contemporary theories of consciousness make
predictions about the experience. So far, what we have said is
very general. Indeed, the force and generalizability of our
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Figure 1. We assume that an experimental setup apt for a particular
model of consciousness has been chosen for some class of physical
systems P, wherein p € P represents the dynamics or configurations of
a particular physical system. O then denotes all datasets that can arise
from observations or measurements on P. Measuring the observables
of p maps to datasets o € O, which is denoted by the obs correspon-
dence. E represents the mathematical description of experience given
by the theory or model of consciousness under consideration. In the
simplest case, this is just a set whose elements indicate whether a
stimulus has been perceived consciously or not, but far more compli-
cated structures can arise (e.g. in IIT). The correspondence pred
describes the process of prediction as a map from O to E.



argument comes from the fact that we do not have to define
pred explicitly for the various models we consider. It suffices
that it exists, in some form or the other, for the models under
consideration.

It is crucial to note that predicting states of consciousness
alone does not suffice to test a model of consciousness. Some
have previously criticized theories of consciousness, IIT in par-
ticular, just based off of their counter-intuitive predictions. An
example is the criticism that relatively simply grid-like net-
works have high ® (Aaronson 2014; Tononi 2014). However,
debates about counter-intuitive predictions are not meaningful
by themselves, since pred alone does not contain enough infor-
mation to say whether a theory is true or false. The most a the-
ory could be criticized for is either not fitting our own
phenomenology or not being parsimonious enough, neither of
which are necessarily violated by counter-intuitive predictions.
For example, it may actually be parsimonious to assume that
many physical systems have consciousness (Goff 2017). That is,
speculation about acceptable predictions by theories of con-
sciousness must implicitly rely on a comparative reference to
be meaningful, and speculations that are not explicit about their
reference are uninformative.

Inferences

As discussed in the previous section, a theory is unfalsifiable
given just predictions alone, and so pred must be compared to
something else. Ideally, this would be the actual conscious ex-
perience of the system under investigation. However, as noted
previously, the class of theories we focus on here assumes that
experience itself is not part of the observables. For this reason,
the experience of a system must be inferred separately from a
theory’s prediction to create a basis of comparison. Most com-
monly, such inferences are based on reports. For instance, an in-
ference might be based on an experimental participant
reporting on the switching of some perceptually bistable image
(Blake et al. 2014) or on reports about seen vs. unseen images in
masking paradigms (Alais et al. 2010).

It has been pointed out that report in a trial may interfere
with the actual isolation of consciousness, and there has re-
cently been the introduction of so-called “no-report paradigms”
(Tsuchiya et al. 2015). In these cases, report is first correlated to
some autonomous phenomenon like optokinetic nystagmus
(stereotyped eye movement), and then the experimenter can
use this instead of the subject’s direct reports to infer their
experiences. Indeed, there can even be simpler cases where re-
port is merely assumed: e.g., that in showing a red square, a
participant will experience a red square without necessarily
asking the participant since previously that participant has
proved compos mentis. Similarly, in cases of nonhumans inca-
pable of verbal report, “report” can be broadly construed as be-
havior or output.

All these cases can be broadly described as being a case of in-
ference off of some data. These data might be actual reports
(like a participant’s button pushes) or may be based off of physi-
ological reactions (like no-report paradigms) or may be the out-
puts of a neural network or set of logic gates, such as the results
of an image classification task (LeCun et al. 2015). Therefore, the
inference can be represented as a function, inf(o), between a
dataset o generated by observation or measurement of the
physical system, and the set of postulated experiences in the
model of consciousness, E:

inf:0—E.

Defining inf as a function means that we assume that for ev-
ery experimental dataset o, one single experience in E is inferred
during the experiment. Here, we use a function instead of a cor-
respondence for technical and formal ease, which does not af-
fect our results: if two correspondences to the same space are
given, one of them can be turned into a function. (If inf is a cor-
respondence, one defines a new space E’ by E' := {inf(0)|o € O}.
Every individual element of this space describes exactly what
can be inferred from one dataset o € O, so that inf : © - E' is a
function. The correspondence obs is then redefined, for every
¢ € E', by the requirement that e’ € obs’(0) iff e € obs(o) for some
e ¢ €') The inf function is flexible enough to encompass both di-
rect report, no-report, input/output analysis, and also assumed-
report cases. It is a mapping that describes the process of infer-
ring the conscious experience of a system from data recorded in
the experiments. Both inf and pred are depicted in Fig. 2.

It is worth noting that we have used here the same class O
as in the definition of the prediction mapping pred above. This
makes sense because the inference process also uses data
obtained in experimental trials, such as reports by a subject. So
both pred and inf can be described to operate on the same total
dataset measured, even though they usually use different parts
of this dataset (cf. below).

Falsification

We have now introduced all elements which are necessary to
formally say what a falsification of a theory of consciousness is.
To falsify, a theory of consciousness requires mismatch be-
tween an experimenter’s inference (generally based on report)
and the predicted consciousness of the subject. In order to de-
scribe this, we consider some particular experimental trial, as
well as inf and pred.

Definition 2.1. There is a falsification at o€ O if we have

inf(o0) ¢ pred(o). 2)

This definition can be spelled out in terms of individual com-
ponents of E. To this end, for any given dataset o € O, let e, :=
inf(o) denote the experience that is being inferred, and let ¢, €
obs(o) be one of the experiences that is predicted based off of
some dataset. Then (2) simply states that we have e, # e, for all
possible predictions e, € obs(0). None of the predicted states of
experience is equal to the inferred experience.

What does Equation (2) mean? There are two cases which
are possible. Either, the prediction based on the theory of con-
sciousness is correct, and the inferred experience is wrong. Or
the prediction is wrong, so that in this case the model would be
falsified. In short: either the prediction process or the inference
process is wrong.

pred

obs /\
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Figure 2. Two maps are necessary for a full experimental setup, one
that describes a theory’s predictions about experience (pred), another
that describes the experimenter’s inference about it (inf). Both map
from a dataset o € O collected in an experimental trail to some sub-
set of experiences described by the model, E.



We remark that if there is a dataset o on which the inference
procedure inf or the prediction procedure pred cannot be used,
then this dataset cannot be used in falsifying a model of con-
sciousness. Thus, when it comes to falsifications, we can re-
strict to datasets o for which both procedures are defined.

In order to understand in more detail what is going on if (2)
holds, we have to look into a single dataset o0 € O. This will be of
use later.

Generally, inf and obs will make use of different part of the
data obtained in an experimental trial. For example, in the con-
text of IIT or GNW, data about the internal structure and state of
the brain will be used for the prediction. These data can be
obtained from an fMRI scan or EEG measurement. The state of
consciousness on the other hand can be inferred from verbal
reports. Pictorially, we may represent this as in Fig. 3. We use
the following notation:

o; For a chosen dataset 0 € O, we denote the part of the
dataset which is used for the prediction process by o; (for
“internal” data). This can be thought of as data about the
internal workings of the system. We call o; the prediction
data in o.

o, For a chosen dataset o € O, we denote the part of the
dataset which is used for inferring the state of experience
by o, (for “report” data). We call it the inference data in o.

Note that in both cases, the subscript can be read similarly
as the notation for restricting a set. We remark that a dif-
ferent kind of prediction could be considered as well,
where one makes use of the inverse of pred. In Appendix
B, we prove that this is in fact equivalent to the case con-
sidered here, so that Definition 2.1 indeed covers the most
general situation.

Summary

In summary, for testing of a theory of consciousness we have
introduced the following notion:

P denotes a class of physical systems that could have been
tested, in principle, in the experiment under consideration,
each in various different configurations. In most cases, ev-
ery p € P thus describes a physical system in a particular
state, dynamical trajectory, or configuration.

0€(

@ )

obs is a correspondence which contains all details on how the
measurements are set up and what is measured. It
describes how measurement results (datasets) are deter-
mined by a system configuration under investigation. This
correspondence is given, though usually not explicitly
known, once a choice of measurement scheme has been
made.

o is the class of all possible datasets that can result from
observations or measurements of the systems in the class
P. Any single experimental trial results in a single dataset
o0 € O, whose data are used for making predictions based on
the theory of consciousness and for inference purposes.

pred  describes the process of making predictions by applying
some theory of consciousness to a dataset o. It is therefore
a mapping from O to E.

E denotes the space of possible experiences specified by the
theory under consideration. The result of the prediction is
a subset of this space, denoted as pred(o). Elements of this
subset are denoted by e and describe predicted
experiences.

inf  describes the process of inferring a state of experience
from some observed data, e.g., verbal reports, button
presses or using no-report paradigms. Inferred experiences
are denoted by e,.

Substitutions are changes of physical systems (i.e. the substitu-
tion of one for another) that leave the inference data invariant,
but may change the result of the prediction process. A specific
case of substitution, the unfolding of a reentrant neural network
to a feedforward one, was recently applied to IIT to argue that
IIT cannot explain consciousness (Doerig et al. 2019).

Here, we show that, in general, the contemporary notion of
falsification in the science of consciousness exhibits this funda-
mental flaw for almost all contemporary theories, rather than
being a problem for a particular theory. This flaw is based on
the independence between the data used for inferences about
consciousness (like reports) and the data used to make predic-
tions about consciousness. We discuss various responses to this
flaw in Objections section.

We begin by defining what a substitution is in Substitutions
section, show that it implies falsifications in Substitutions im-
ply falsifications section and analyze the particularly problem-
atic case of universal substitutions in Universal substitutions
imply complete falsification section. In When does a universal
substitution exist? section, we prove that universal

E

inf(o)

Fig. 3. This figure represents the same setup as Fig. 2. The left circle depicts one single dataset o. o; (orange) is the part of the dataset used for
prediction. o, (green) is the part of the dataset used for inferring the state of experience. Usually the green area comprises verbal reports or but-
ton presses, whereas the orange area comprises the data obtained from brain scans. The right circle depicts the experience space E of a theory
under consideration. e, denotes a predicted experience while e, denotes the inferred experience. Therefore, in total, to represent some specific
experimental trial we usep € P, 0 € O, e, € E and ¢, € E, where e, € pred(o).



substitutions exist if prediction and inference data are indepen-
dent and give some examples of already-known cases.

Substitutions

In order to define formally what a substitution is, we work with
the inference content o, of a dataset o as introduced in
Falsification section. We first denote the class of all physical
configurations which could have produced the inference con-
tent o, upon measurement by P, . Using the correspondence obs
which describes the relation between physical systems and
measurement results, this can be defined as

P,, := {p € Plo, € obs(p)}, 3)

where obs(p) denotes all possible datasets that can be measured
if the system p is under investigation and where o, € obs(p) is a
shorthand for o € obs(p) with inference content o,.

Any map of the form S : P, — P, takes a system configuration p
which can produce inference content o, to another system’s configu-
ration S(p) which can produce the same inference content. This
allows us to define what a substitution is formally. In what follows,
the O indicates the composition of the correspondences obs and
pred to give a correspondence from P to E, which could also be
denoted as pred(obs(p)) (That is, pred O obs(p)= {e € E|
e € pred(o) for someo € obs(p)}, it is the image under pred of the
set obs(0).), and N denotes the intersection of sets.

Definition 3.1.
mation S : P,, — P, such that at least for one p € P,

There is a o,-substitution if there is a transfor-

pred O obs(p) Npred O obs(S(p)) = . 4)

In words, a substitution requires there to be a transformation S
which keeps the inference data constant but changes the predic-
tion of the system. So much in fact that the prediction of the origi-
nal configuration p and of the transformed configuration S(p) are
fully incompatible, i.e. there is no single experience e which is con-
tained in both predictions. Given some inference data o,, an o,-sub-
stitution then requires this to be the case for at least one system
configuration p that gives this inference data. In other words, the
transformation S is such that for at least one p, the predictions
change completely, while the inference content o, is preserved.

A pictorial definition of substitutions is given in Fig. 4. We re-
mark that if pred and obs were functions, so that pred O obs(p)
only contained one element, Equation (4) would be equivalent
to pred(obs(p)) # pred(obs(S(p))).

We will find below that the really problematic case arises if
there is an o,-substitution for every possible inference content
o,. We refer to this case as a universal substitution.

Definition 3.2. There is a universal substitution if there is an
o,-substitution S, : P, — P, for every o,.

We recall that according to the notation introduced in
Falsification section, the inference content of any dataset o € O
is denoted by o, (adding the subscript r). Thus, the requirement
is that there is an o,-substitution S,, : P,, — P, for every infer-
ence data that can pertain in the experiment under consider-
ation (for every inference data that is listed in ©). The subscript
o, of Sy, indicates that the transformation S in Definition 3.1 can
be chosen differently for different o,. Definition 3.2 does not re-
quire there to be one single transformation that works for all o,.

Substitutions imply falsifications

The force of our argument comes from the fact that if there are
substitutions, then this necessarily leads to mismatches be-
tween inferences and predictions. This is shown by the follow-
ing lemma.

Lemma 3.3. If there is a o,-substitution, there is a falsification

at some o € O.

Proof. Let p be the physical system in Definition 3.1 and define
p' =S(p). Let o € obs(p) be a dataset of p which has inference
content o, and let o’ be a dataset of p’ which has the same infer-
ence content o,, guaranteed to exist by the definition of P,, in (3).
Equation (4) implies that

pred(o) Npred(d’) = & . (5)

Since, however, o, = 0;, we have inf(0) = inf(0o’). Thus we have
either inf(o) ¢ pred(o) or inf(0’) ¢ pred(o’), or both. Thus there is
either a falsification at o, a falsification at o/, or both. O

The last lemma shows that if there are substitutions, then
there are necessarily falsifications. This might, however, not be
considered too problematic, since it could always be the case
that the model is right whereas the inferred experience is
wrong. Inaccessible predictions are not unusual in science. A
fully problematic case only pertains for universal substitutions,
i.e,, if there is an o,-substitution for every inference content o,
that can arise in an experiment under consideration.

Universal substitutions imply complete falsification

In Falsification section, we have defined falsifications for indi-
vidual datasets o € 0. Using the “insight view” of single data-
sets, we can refine this definition somewhat by relating it to the
inference content only.

Definition 3.4. There is an o,-falsification if there is a falsifica-
tion for some o € O which has inference content o,.

This definition is weaker than the original definition, be-
cause among all datasets which have inference content o,, only
one needs to exhibit a falsification. Using this notion, the next
lemma specifies the exact relation between substitutions and
falsifications.
Lemma 3.5. If there is an o,-substitution, there is an o,
falsification.

Proof. This lemma follows directly from the proof of Lemma 3.3
because the datasets o and o’ used in that proof both have infer-
ence content o,. O

This finally allows us to show our first main result. It shows
that if a universal substitution exists, the theory of conscious-
ness under consideration is falsified. We explain the meaning
of this proposition after the proof.

Proposition 3.6. If there is a universal substitution, there is an
o,-falsification for all possible inference contents o,.

Proof. By definition of universal substitution, there is an o,-sub-
stitution for every o,. Thus, the claim follows directly from
Lemma 3.5. ]

In combination with Definition 3.4, this proposition states
that for every possible report (or any other type of inference pro-
cedure, cf. our use of terminology in Falsification section), there
is a dataset o which contains the report’s data and for which we
have

inf(o,) ¢ pred(o), (6)



pred(o’

inf(o)

Figure 4. This picture illustrates substitutions. Assume that some dataset o with inference content o, is given. A substitution is a transformation
S of physical systems which leaves the inference content o, invariant but which changes the result of the prediction process. Thus whereas p
and S(p) have the same inference content o,, the prediction content of experimental datasets is different; different in fact to such an extent
that the predictions of consciousness based on these datasets are incompatible (illustrated by the nonoverlapping gray circles on the right).
Here, we have used that by definition of P, , every p € P,, yields at least one dataset o’ with the same inference content as o and have identified

oand o in the drawing.

where we have slightly abused notation in writing inf(o,) in-
stead of inf(o) for clarity. This implies that one of two cases
needs to pertain: either at least one of the inferred experiences
inf(o,) is correct, in which case the corresponding prediction is
wrong and the theory needs to be considered falsified. The only
other option is that for all inference contents o,, the prediction
pred(o) is correct, which qua (6) implies that no single inference
inf(o,) points at the correct experience, so that the inference
procedure is completely wrong. This shows that Proposition 3.6
can equivalently be stated as follows.

Proposition 3.7. If there is a universal substitution, either every
single inference operation is wrong or the theory under consider-
ation is already falsified.

Next, we discuss under which circumstances a universal
substitution exists.

When does a universal substitution exist?

In the last section, we have seen that if a universal substitution
exists, this has strong consequences. In this section, we discuss
under what conditions universal substitutions exist.

Theories need to be minimally informative
We have taken great care above to make sure that our notion of
prediction is compatible with incomplete or noisy datasets. This
is the reason why pred is a correspondence, the most general
object one could consider. For the purpose of this section, we
add a gentle assumption which restricts pred slightly: we as-
sume that every prediction carries at least a minimal amount of
information. In our case, this means that for every prediction
pred(o), there is at least one other prediction pred(o’) which is
different from pred(o). Put in simple terms, this means that we
do not consider theories of consciousness which have only a
single prediction.

In order to take this into account, for every o € O, we define
5 := obs(obs™}(0)), which comprises exactly all those datasets
which can be generated by physical systems p that also gener-
ate o. When applying our previous definitions, this can be
fleshed out as

0 = {o'|Ipsuchthato € obs (p)and o’ € obs (p)}. (7)

Using this, we can state our minimal information assumption in
a way that is compatible with the general setup displayed in
Fig. 2:

We assume that the theories of consciousness under consid-
eration are minimally informative in that for every o € O, there
exists an o’ € O such that

pred(6) Npred(d’) = & . (8)

Inference and prediction data are independent

We have already noted, that in most experiments, the predic-
tion content o; and inference content o, consist of different parts
of a dataset. What is more, they are usually assumed to be inde-
pendent, in the sense that changes in o; are possible while keep-
ing o, constant. This is captured by the next definition.

Definition 3.8.
for any oy, o} and o,, there is a variation

Inference and prediction data are independent if

v:P—P 9)

such that o; € obs(p), 0} € obs(v(p)) but o, €obs(p) and o, €

obs(v(p)) for some p € P.

Here, we use the same shorthand as in (3). For example, the
requirement o; € obs(p) is a shorthand for there being an o e
obs(p) which has prediction content o;. The variation v in this
definition is a variation in P, which describes physical systems
which could, in principle, have been realized in an experiment
(cf. Summary section). We note that a weaker version of this
definition can be given which still implies our results below, cf.
Appendix A. Note that if inference and prediction data are not
independent, e.g., because they have a common cause, prob-
lems of tautologies loom large, cf. Objections section.
Throughout the text, we often refer to Definition 3.8 simply as
“independence.”

Universal substitutions exist
Combining the last two sections, we can now prove that univer-
sal substitutions exist.

Proposition 3.9. If inference and prediction data are indepen-

dent, universal substitutions exist.



Proof. To show that a universal substitution exists, we need to
show that for every o € O, an o,-substitution exists (Definition
3.1). Thus assume that an arbitrary o € O is given. The minimal
information assumption guarantees that there is an o’ such that
Equation (8) holds. As before, we denote the prediction content
of 0 and o’ by o; and o}, respectively, and the inference content of
obyo,.

Since inference and prediction data are independent, there
exists a pc P as well as a v: P — P such that o; € obs(p), o} €
obs(v(p)), o, € obs(p) and o, € obs(v(p)). By Definition (7), the
first two of these four conditions imply that obs(p) Co and
obs(v(p)) c o'. Thus, Equation (8) applies and allows us to con-
clude that

pred(obs(p)) N pred(obs(v(p)) = & .

Via Equation (3), the latter two of the four conditions imply
thatp € P,, and v(p) € P,,. Thus, we may restrict v to P,, to obtain
amap

S:P,, — P, ,

which in light of the first part of this proof exhibits at
least one p € P, which satisfies (4). Thus we have shown
that an o,-substitution exists. Since o was arbitrary, it fol-
lows that a universal substitution exists. O
The intuition behind this proof is very simple. In virtue of
our assumption that theories of consciousness need to be mini-
mally informative, for any dataset o, there is another dataset o’
which makes a nonoverlapping prediction. But in virtue of infer-
ence and prediction data being independent, we can find a vari-
ation that changes the prediction content as prescribed by o and
o' but keeps the inference content constant. This suffices to
show that there exists a transformation S as required by the
definition of a substitution.
Combining this result with Proposition 3.7, we finally can state
our main theorem.

Theorem 3.10. If inference and prediction data are independent,
either every single inference operation is wrong or the theory un-
der consideration is already falsified.

Proof. The theorem follows by combining Propositions 3.9 and
3.7. O

In the next section, we give several examples of universal
substitutions, before discussing various possible responses to
our result in Objections section.

Examples of data independence

Our main theorem shows that testing a theory of consciousness
will necessarily lead to its falsification if inference and predic-
tion data are independent (Definition 3.8), and if at least one
single inference can be trusted (Theorem 3.10). In this section,
we give several examples that illustrate the independence of in-
ference and prediction data. We take report to mean output, be-
havior, or verbal report itself and assume that prediction data
derives from internal measurements.

Artificial neural networks. ANNSs, particularly those trained us-
ing deep learning, have grown increasingly powerful and capa-
ble of human-like performance (LeCun et al. 2015; Bojarski et al.
2016). For any ANN, report (output) is a function of node states.
Crucially, this function is noninjective, i.e., some nodes are not
part of the output. For example, in deep learning, the report is

typically taken to consist of the last layer of the ANN, while the
hidden layers are not taken to be part of the output.
Correspondingly, for any given inference data, one can con-
struct a ANN with arbitrary prediction data by adding nodes,
changing connections and changing those nodes which are not
part of the output. Put differently, one can always substitute a
given ANN with another with different internal observables but
identical or near-identical reports. From a mathematical per-
spective, it is well-known that both feedforward ANNs and re-
current ANNs can approximate any given function (Hornik et al.
1989; Schifer and Zimmermann 2007). Since reports are just
some function, it follows that there are viable universal
substitutions.

A special case thereof is the unfolding transformation con-
sidered in Doerig et al. (2019) in the context of IIT. The argu-
ments in this article constitute a proof of the fact that for ANNs,
inference and prediction data are independent (Definition 3.8).
Crucially, our main theorem shows that this has implications
for all minimally informative theories of consciousness. A simi-
lar result (using a different characterization of theories of con-
sciousness than minimally informative) has been shown in
Kleiner (2020).

Universal computers. Turing machines are extremely different
in architecture than ANNSs. Since they are capable of universal
computation (Turing 1937), they should provide an ideal candi-
date for a universal substitution. Indeed, this is exactly the rea-
soning behind the Turing test of conversational artificial
intelligence (Turing 1950). Therefore, if one believes it is possi-
ble for a sufficiently fast Turing machine to pass the Turing test,
one needs to accept that substitutions exist. Notably, Turing
machines are just one example of universal computation, and
there are other instances of different parameter spaces or phys-
ical systems that are capable thereof, such as cellular automata
(Wolfram 1984).

Universal intelligences. There are models of universal intelli-
gence that allow for maximally intelligent behavior across any
set of tasks (Hutter 2003). For instance, consider the AIXI
model, the gold-standard for universal intelligence, which
operates via Solomonoff induction (Solomonoff 1964; Hutter
2004). The AIXI model generates an optimal decision making
over some class of problems, and methods linked to it have al-
ready been applied to a range of behaviors, such as creating
“Al physicists” (Wu and Tegmark 2019). Its universality indi-
cates it is a prime candidate for universal substitutions.
Notably, unlike a Turing machine, it avoids issues of precisely
how it is accomplishing universal substitution of report, since
the algorithm that governs the AIXI model behavior is well-
described and “relatively” simple.

The above are all real and viable classes of systems that are
used everyday in science and engineering which all provide dif-
ferent viable universal substitutions if inferences are based on
reports or outputs. They show that in normal experimental set-
ups such as the ones commonly used in neuroscientific re-
search into consciousness (Frith et al. 1999), inference and
prediction data are indeed independent, and dependency is not
investigated nor properly considered. It is always possible to
substitute the physical system under consideration with an-
other that has different internal observables, and therefore dif-
ferent predictions, but similar or identical reports. Indeed,
recent research in using the work introduced in this work shows
that even different spatiotemporal models of a system can be
substituted for one another, leading to falsification (Hanson and
Walker 2020). We have not considered possible but less reason-



able examples of universal substitutions, like astronomically
large look-up ledgers of reports.

As an example of our Main Theorem 3.10, we consider the
case of IIT. Since the theory is normally applied in Boolean net-
works, logic gates, or artificial neural networks, one usually
takes report to mean “output.” In this case, it has already been
proven that systems with different internal structures and
hence different predicted experiences, can have identical input/
output (and therefore identical reports or inferences about re-
port) (Albantakis and Tononi 2019). To take another case: within
IIT it has already been acknowledged that a Turing machine
may have a wildly different predicted contents of consciousness
for the same behavior or reports (Koch 2019). Therefore, data in-
dependence during testing has already been shown to apply to
IIT under its normal assumptions.

An immediate response to our main result showing that many
theories suffer from a priori falsification would be to claim that
it offers support of theories which define conscious experience
in terms of what is accessible to report. This is the case, e.g., for
behaviorist theories of consciousness but might arguably also
be the case for some interpretations of global workspace theory
or fame in the brain proposals. In this section, we show that
this response is not valid, as theories of this kind, where infer-
ence and prediction data are strictly dependent, are
unfalsifiable.

In order to analyze this case, we first need to specifically out-
line how theories can be pathologically unfalsifiable. Clearly,
the goal of the scientific study as a whole is to find, eventually,
a theory of consciousness that are empirically adequate and
therefore corroborated by all experimental evidence. Therefore,
not being falsified in experiments is a necessary condition
(though not sufficient) any purportedly “true” theory of con-
sciousness needs to satisfy. Therefore, not being falsifiable by
the set of possible experiments per se is not a bad thing. We
seek to distinguish this from cases of unfasifiability due to path-
ological assumptions that underlie a theory of consciousness,
assumptions which render an experimental investigation
meaningless. Specifically, a pathological dependence between
inferences and predictions leads to theories which are
unfalsifiable.

Such unfalsifiable theories can be identified neatly in our
formalism. To see how, recall that O denotes the class of all
datasets that can result from an experiment investigating the
physical systems in the class P. Put differently, it contains all
datasets that could, in principle, appear when probed in the ex-
periment. This is not the class of all possible datasets of type O
one can think of. Many datasets which are of the same form as
elements of O might simply not arise in the experiment under
consideration. We denote the class of all possible datasets as:

O : All possible data sets of type O.

Intuitively, in terms of possible worlds semantics, O
describes the datasets which could appear, for the type of ex-
periment under consideration, in the actual world. O, in con-
trast, describes the datasets which could appear in this type of
experiment in any possible world. For example, O contains
datasets which can only occur if consciousness attaches to the

physical in a different way than it actually does in the actual
word.

By construction, O is a subset of O, which describes which
among the possible datasets actually arises across experimental
trials. Hence, O also determines which theory of consciousness
is compatible with (i.e. not falsified by) experimental investiga-
tion. However, O defines all possible datasets independent of
any constraint by real empirical results, i.e., all possible imagin-
able datasets.

Introduction of O allows us to distinguish the pathological
cases of unfalsifiability mentioned above. Whereas any purport-
edly true theory should only fail to be falsified with respect to
the experimental data O, a pathological unfalsifiability pertains
if a theory cannot be falsified at all, i.e. over O. This is captured
by the following definition.

Definition 4.1. A theory of consciousness which does not have
a falsification over O is empirically unfalsifiable.

Here, we use the term “empirically unfalsifiable” to highlight
and refer to the pathological notion of unfalsifiability. Intuitively
speaking, a theory which satisfies this definition appears to be
true independently of any experimental investigation, and with-
out the need for any such investigation. Using O, we can also de-
fine the notion of strict dependence in a useful way.

Definition 4.2. Inference and prediction data are strictly dependent
if there is a function f such that for any o € O, we have o; = f(0r).

This definition says that there exists a function f which for
every possible inference data o, allows to deduce the prediction
data o;. We remark that the definition refers to ©® and not O, as
the dependence of inference and prediction considered here
holds by assumption and is not simply asserting a contingency
in nature.

The definition is satisfied, e.g., if inference data is equal to
prediction data, i.e., if 0; = o,, where f is simply the identity. This
is the case, e.g., for behaviorist theories (Skinner 1938) of con-
sciousness, where consciousness is equated directly with report
or behavior, or for precursors of functionalist theories of con-
sciousness that are based on behavior or input/output (Putnam
1960). The definition is also satisfied in the case where predic-
tion data are always a subset of the inference data:

0; Coy. (10)

Here, f is simply the restriction function. This arguably applies
to global workspace theory (Baars 2005), the “attention schema”
theory of consciousness (Graziano and Webb 2015) or “fame in
the brain” (Dennett 1991) proposals.

In all these cases, consciousness is generated by—and hence
needs to be predicted via—what is accessible to report or out-
put. In terms of Block’s distinction between phenomenal con-
sciousness and access consciousness (Block 1996), Equation (10)
holds true whenever a theory of consciousness is under investi-
gation where access consciousness determines phenomenal
consciousness.

Our second main theorem is the following.

Theorem 4.3. If a theory of consciousness implies that inference
and prediction data are strictly dependent, then it is either al-
ready falsified or empirically unfalsifiable.

Proof. To prove the theorem, it is useful to consider the infer-
ence and prediction content of datasets explicitly. The possible
pairings that can occur in an experiment are given by



Oexp = {(0,0r) [0 € O}, (11)

where we have again used our notation that o; denotes the pre-
diction data of o, and similar for o,. To define the possible pair-
ings that can occur in O, we let O; denote the class of all
prediction contents that arise in O, and O, denote the class of
all inference contents that arise in O. The set of all conceivable
pairings is then given by

Oan :={(01,0;) |0 € O, 0" € O} (12)
= {(0;,0}) |0 € 01, 0, € O} . (13)

Crucially, here, o; and o, do not have to be part of the same data-
set 0. Combined with Definition 2.1, we conclude that there is a
falsification over O if for some (0;,0,) € Oy, we have
inf(o) ¢ pred(0’), and there is a falsification over O if for some
(0,0r) € Oexp, we have inf(o) ¢ pred(o).

Next we show that if inference and prediction data are strictly
dependent, then O = Oeyxp holds. We start with the set Oy as
defined in (12). Expanding this definition in words, it reads

Oan = {(di,dr) | Jo € O such that d, = o, and 36 € O such that d; = 0;},
(14)

where we have symbols d; and d, to denote prediction and
inference data independently of any dataset o.

Assume that the first condition in this expression, d, = o,
holds for some o € O. Since inference and prediction data are
strictly dependent, we have d; =f(d,). Furthermore, for the
same reason, the prediction content o; of the dataset o satisfies
o; = f(or). Applying the function f to both sides of the first condi-
tion gives f(d,) = f(or), which thus in turn implies o; = d;. This
means that the o that satisfies the first condition in (14) auto-
matically also satisfies the second condition. Therefore, due to
inference and prediction data being strictly dependent, (14) is
equivalent to

Oan = {(d;,dr) | 3o € O such that d, = o, and d; = o;} . (15)

This, however, is exactly Oexp as defined in (11). Thus we con-
clude that if inference and prediction data are strictly depen-
dent, O, = Oexp necessarily holds.

Returning to the characterization of falsification in terms of
Oexp and Oy above, what we have just found implies that there
is a falsification over O if and only if there is a falsification over
O. Thus either there is a falsification over ©, in which case the
theory is already falsified or there is no falsification over O, in
which case the theory under consideration is empirically unfal-
sifiable. O

The gist of this proof is that if inference and prediction data
are strictly dependent, then as far as the inference and predic-
tion contents go, O and O are the same. That is, the experiment
does not add anything to the evaluation of the theory. It is suffi-
cient to know only all possible datasets to decide whether there
is a falsification. In practise, this would mean that knowledge of
the experimental design (which reports are to be collected, on
the one hand, which possible data a measurement device can
produce, one the other) is sufficient to evaluate the theory,
which is clearly at odds with the role of empirical evidence re-
quired in any scientific investigation. Thus, such theories are
empirically unfalsifiable.

To give an intuitive example of the theorem, let us examine a
theory that uses the information accessible to report in a sys-
tem to predict conscious experience (perhaps this information
is “famous” in the brain or is within some accessible global
workspace). In terms of our notation, we can assume that o,
denotes everything that is accessible to report, and o; denotes
that part which is used by the theory to predict conscious expe-
rience. Thus, in this case we have o; C o,. Since the predicted
contents are always part of what can be reported, there can
never be any mismatch between reports and predictions.
However, this is not only the case for Oeyp but also, in virtue of
the theory’s definition, for all possible datasets, i.e., Og.
Therefore, such theories are empirically unfalsifiable.
Experiments add no information to whether the theory is true
or not, and such theories are empirically uninformative or
tautological.

In this section, we discuss a number of possible objections to
our results.

Restricting inferences to humans only

The examples given in section 3.4.4 show that data indepen-
dence holds during the usual testing setups. This is because
prima facie it seems reasonable to base inferences either on re-
port capability or intelligent behavior in a manner agnostic of
the actual physical makeup of the system. Yet this entails inde-
pendence, so in these cases our conclusions apply.

One response to our results might be to restrict all testing of
theories of consciousness solely to humans. In our formalisms,
this is equivalent to making the strength of inferences based
not on reports themselves but on an underlying biological ho-
mology. Such an inf function may still pick out specific experi-
ences via reports, but the weight of the inference is carried by
homology rather than report or behavior. This would mean that
the substitution argument does not significantly affect con-
sciousness research, as reports of nonhuman systems would
simply not count. Theories of consciousness, so this idea goes,
would be supported by abductive reasoning from testing in
humans alone.

Overall, there are strong reasons to reject this restriction of
inferences. One significant issue is that this objection is equiva-
lent to saying that reports or behavior in nonhumans carry no
information about consciousness, an incredibly strong claim.
Indeed, this is highly problematic for consciousness research
which often uses nonhuman animal models (Boly et al. 2013).
For instance, cephalopods are among the most intelligent ani-
mals yet are quite distant on the tree of life from humans and
have a distinct neuroanatomy, and still are used for conscious-
ness research (Mather 2008). Even in artificial intelligence re-
search, there is increasing evidence that deep neural networks
produced brain-like structures such as grid cells, shape tuning,
and visual illusions, and many others (Richards et al. 2019).
Given these similarities, it becomes questionable why the
strength of inferences should be based on homology instead of
capability of report or intelligence.

What is more, restricting inferences to humans alone is un-
likely to be sufficient to avoid our results. Depending on the the-
ory under consideration, data independence might exist just in
human brains alone. That is, it is probable that there are



transformations (as in Equation (9)) available within the brain
wherein o, is fixed but o; varies. This is particularly true once
one allows for interventions on the human brain by experi-
menters, such as perturbations like transcranial magnetic stim-
ulation, which is already used in consciousness research
(Rounis et al. 2010; Napolitani et al. 2014).

For these reasons this objection does not appear viable. At
minimum, it is clear that if the objection were taken seriously, it
would imply significant changes to consciousness research
which would make the field extremely restricted with strong a
priori assumptions.

Reductio ad absurdum

Another hypothetical objection to our results is to argue that
they could just as well be applied to scientific theories in other
fields. If this turned out to be true, this would not imply our ar-
gument is necessarily incorrect. But, the fact that other scien-
tific theories do not seem especially problematic with regard to
falsification would generate the question of whether some as-
sumption is illegitimately strong. In order to address this, we
explain which of our assumptions is specific to theories of con-
sciousness and would not hold when applied to other scientific
theories. Subsequently, we give an example to illustrate this
point.

The assumption in question is that O, the class of all data-
sets that can result from observations or measurements of a
system, is determined by the physical configurations in P alone.
That is, every single dataset o, including both its prediction con-
tent o; and its inference content o,, is determined by p, and not
by a conscious experience in E. In Fig. 2, this is reflected in the
fact that there is an arrow from P to O, but no arrow from E to O.

This assumption expresses the standard paradigm of testing
theories of consciousness in neuroscience, according to which
both the data used to predict a state of consciousness and the
reports of a system are determined by its physical configuration
alone. This, in turn, may be traced back to consciousness’ as-
sumed subjective and private nature, which implies that any
empirical access to states of consciousness in scientific investi-
gations is necessarily mediated by a subject’s reports, and to
general physicalist assumptions.

This is different from experiments in other natural sciences.
If there are two quantities of interest whose relation is to be
modeled by a scientific theory, then in all reasonable cases
there are two independent means of collecting information rele-
vant to a test of the theory, one providing a dataset that is deter-
mined by the first quantity, and one providing a dataset that is
determined by the second quantity.

Consider, as an example, the case of temperature T and its
relation to microphysical states. To apply our argument, the
temperature T would replace the experience space E and p
would denote a microphysical configuration. In order to test
any particular theory about how temperature is determined by
microphysical states, one would make use of two different
measurements. The first measurement would access the micro-
physical states and would allow measurement of, say, the mean
kinetic energy (if that’s what the theory under consideration
utilizes). This first measurement would provide a dataset oy,
that replaces the prediction data o; above. For the second mea-
surement, one would use a thermometer or some other measur-
ing device to obtain a dataset o, that replaces our inference data
o, above. Comparison of the inferred temperature with the tem-
perature that is predicted based on o, would allow testing of
the theory under consideration. These independent means

provide independent access to each of the two datasets in ques-
tion. Combining o, and o; in one dataset o, the diagrammatic
representation is

P—-0O<T,

which differs from the case of theories of consciousness consid-
ered here, wherein the physical system determines both
datasets.

Theories could be based on phenomenology

Another response to the issue of independence/dependence
identified here is to propose that a theory of consciousness may
not have to be falsified but can be judged by other characteris-
tics. This is reminiscent of ideas put forward in connection with
String Theory, which some have argued can be judged by ele-
gance or parsimony alone (Carroll 2018).

In addition to elegance and parsimony, in consciousness sci-
ence, one could in particular consider a theory’s fit with phe-
nomenology, i.e., how well a theory describes the general
structure of conscious experience. Examples of theories that are
constructed based on a fit with phenomenology are recent ver-
sions of IIT (Oizumi et al. 2014) or any view that proposes devel-
oping theories based on isomorphisms between the structure of
experiences and the structure of physical systems or processes
(Tsuchiya et al. 2019).

It might be suggested that phenomenological theories might
be immune to aspects of the issues we outline in our results
(Negro 2020). We emphasize that in order to avoid our results,
and indeed the need for any experimental testing at all, a theory
constructed from phenomenology has to be uniquely derivable
from conscious experience. However, to date, no such deriva-
tion exists, as phenomenology seems to generally underdeter-
mine the postulates of IIT (Bayne 2018; Barrett and Mediano
2019), and because it is unknown what the scope and nature of
nonhuman experience is. Therefore, theories based on phe-
nomenology can only confidently identify systems with
human-like conscious experiences and cannot currently do so
uniquely. Thus they cannot avoid the need for testing.

As long as no unique and correct derivation exists across the
space of possible conscious experiences, the use of experimen-
tal tests to assess theories of consciousness, and hence our
results, cannot be avoided.

Rejecting falsifiability

Another response to our findings might be to deny the impor-
tance of falsifications within the scientific methodology. Such
responses may reference a Lakatosian conception of science,
according to which science does not proceed by discarding theo-
ries immediately upon falsification, but instead consists of re-
search programs built around a family of theories (Lakatos 1980).
These research programs have a protective belt which consists of
nonessential assumptions that are required to make predic-
tions, and which can easily be modified in response to falsifica-
tions, as well as a hard core that is immune to falsifications.
Within the Lakatosian conception of science research programs
are either progressive or degenerating based on whether they
can “anticipate theoretically novel facts in its growth” or not
(Lakatos 1980).

It is important to note, however, that Lakatos does not actu-
ally break with falsificationism. This is why Lakatos description
of science is often called “refined falsificationism” in philosophy



of science (Radnitzky 1991). Thus cases of testing theories’ pre-
dictions remain relevant in a Lakatosian view in order to distin-
guish between progressive and degenerating research
programs. Therefore, our results generally translate into this
view of scientific progress. In particular, Theorem 3.10 shows
that for every single inference procedure that is taken to be
valid, there exists a system for which the theory makes a wrong
prediction. This implies necessarily that a research program is
degenerating. That is, independence implies that there is al-
ways an available substitution that can falsify any particular
prediction coming from the research program.

In this article, we have subjected the usual scheme for testing
theories of consciousness to a thorough formal analysis. We
have shown that there appear to be deep problems inherent in
this scheme which need to be addressed.

Crucially, in contrast to other similar results (Doerig et al. 2019),
we do not put the blame on individual theories of consciousness,
but rather show that a key assumption that is usually being made
is responsible for the problems: an experimenter’s inference about
consciousness and a theory’s predictions are generally implicitly
assumed to be independent during testing across contemporary
theories. As we formally prove, if this independence holds, substi-
tutions or changes to physical systems are possible that falsify any
given contemporary theory. Whenever there is an experimental
test of a theory of consciousness on some physical system which
does not lead to a falsification, there necessary exists another
physical system which, if it had been tested, would have produced
a falsification of that theory. We emphasize that this problem
does not only affect one particular type of theory, e.g., those based
on causal interactions like IIT; theorems apply to all contemporary
neuroscientific theories of consciousness if independence holds.

In the second part of our results, we examine the case where
independence does not hold. We show that if an experimenter’s
inferences about consciousness and a theory’s predictions are
instead considered to be strictly dependent, empirical unfalsifi-
ability follows, which renders any type of experiment to test a
theory uninformative. This affects all theories wherein con-
sciousness is predicted off of reports or behavior (such as be-
haviorism), theories based off of input/output functions, and
also theories that equate consciousness with on accessible or
reportable information.

Thus, theories of consciousness seem caught between Scylla
and Charybdis, requiring delicate navigation. In our opinion,
there may only be two possible paths forward to avoid these
dilemmas, which we briefly outline below. Each requires a revi-
sion of the current scheme of testing or developing theories of
consciousness.

Lenient dependency

When combined, our main theorems show that both indepen-
dence and strict dependence of inference and prediction data
are problematic and thus neither can be assumed in an experi-
mental investigation. This raises the question of whether there
are reasonable cases where inference and prediction are depen-
dent, but not strictly dependent.

A priori, in the space of possible relationships between infer-
ence and prediction data, there seems to be room for relation-
ships that are neither independent (The substitution argument
section) nor strictly dependent (Inference and prediction data
are strictly dependent section). We define this relationships of

this kind as cases of lenient dependency. No current theory or test-
ing paradigm that we know of satisfies this definition. Yet cases
of lenient dependency cannot be excluded to exist. Such cases
would technically not be beholden to either Theorem 3.10 or
Theorem 4.3.

There seems to be two general possibilities of how lenient
dependencies could be built. On the one hand, one could hope
to find novel forms of inference that allow to surpass the prob-
lems we have identified here. This would likely constitute a ma-
jor change in the methodologies of experimental testing of
theories of consciousness. On the other hand, another possibil-
ity to attain lenient dependence would be to construct theories
of consciousness which yield prediction functions that are
designed to explicitly have a leniently dependent link to infer-
ence functions. This would likely constitute a major change in
constructing theories of consciousness.

Physics is not causally closed

Another way to avoid our conclusion is to only consider theories
of consciousness which do not describe the physical as causally
closed (Kim 1998). That is, the presence or absence of a particu-
lar experience itself would have to make a difference to the con-
figuration, dynamics, or states of physical systems above and
beyond what would be predicted with just information about
the physical system itself. If a theory of consciousness does not
describe the physical as closed, a whole other range of predic-
tions are possible: predictions which concern the physical do-
main itself, e.g., changes in the dynamics of the system which
depend on the dynamics of conscious experience. These predic-
tions are not considered in our setup and may serve to test a
theory of consciousness without the problems we have ex-
plored here.

(A) Weak Independence

In this section, we show how Definition 3.8 can be substantially
relaxed while still ensuring our results to hold. To this end, we
need to introduce another bit of formalism: We assume that
predictions can be compared to establish how different they
are. This is the case, e.g, in IIT where predictions map to the
space of maximally irreducible conceptual structures (MICS),
sometimes also called the space of Q-shapes, which carries a
distance function analogous to a metric (Kleiner and Tull, 2020).
We assume that for any given prediction, one can determine
which of all those predictions that do not overlap with the given
one is most similar to the latter, or equivalently which is least dif-
ferent. We calls this a minimally differing prediction and use it to in-
duce a notion of minimally differing datasets below. Uniqueness is
not required.

Let an arbitrary dataset o € O be given. The minimal infor-
mation assumption from Theories need to be minimally infor-
mative section ensures that there is at least one dataset o’ such
that Equation (8) holds. For what follows, let o+ denote the set of
all datasets which satisfy Equation (8) with respect to o,

ot :={0 € O|pred(®) Nnpred(®)=F}. (16)

Thus o' contains all datasets whose prediction completely
differs from the prediction of o.

Definition A.1.
whose prediction is least different from the prediction of o.

We denote by min(o) those datasets in o+



In many cases min(o) will only contain one dataset, but here
we treat the general case where this is not so. We emphasize
that the minimal information assumption guarantees that
min(o) exists. We can now specify a much weaker version of
Definition 3.8.

DefinitionA.2. Inference and prediction data are indepen-
dent if for any 0 € O and o' € min(o), there is a variation

v:P—P (17)

such that o; € obs(p), o] € obs(v(p)) but oy €obs(p) and o, €
obs(v(p)) for some p € P.

The difference between Definitions A.2 and 3.8 is that for a
given o € O, the latter requires the transformation v to exist for
any o’ € O, wheres the former only requires it to exist for mini-
mally different datasets o’ € min(o). The corresponding proposi-

tion is the following.

Proposition A.3. If inference and prediction data are weakly in-
dependent, universal substitutions exist.

Proof. To show that a universal substitution exists, we need to
show that for every o € O, an o,-substitution exists (Definition
3.1). Thus assume that an arbitrary o € O is given and pick an
0’ € min(o). As before, we denote the prediction content of o and
o’ by o; and o}, respectively, and the inference content of o by o,.

Since inference and prediction data are weakly independent,
there exists a peP as well as a v:P—P such that o; €
obs(p), o] € obs(v(p)), o, € obs(p) and o, € obs(v(p)). By Definition
(7), the first two of these four conditions imply that obs(p) C 0
and obs(v(p)) C 0. Since o is in particular an element of o*,
Equation (8) applies and allows us to conclude that

pred(obs(p)) N pred(obs(v(p)) = & .

Via Equation (3), the latter two of the four conditions imply that
p € P, and v(p) € P,,. Thus we may restrict v to P, to obtain a
map

S:P,, — P, ,

which in light of the first part of this proof exhibits at
least one p € P, which satisfies (4). Thus we have shown
that an o,-substitution exists. Since o was arbitrary, it fol-
lows that a universal substitution exists. O
The following theorem shows that Definition A.2 is sufficient to
establish the claim of Theorem 3.10.

Theorem A.4. If inference and prediction data are weakly inde-
pendent, either every single inference operation is wrong or the
theory under consideration is already falsified.

Proof. The theorem follows by combining Propositions A.3 and
3.7. O

(B) Inverse Predictions

When defining falsification, we have considered predictions
that take as input data about the physical configuration of a sys-
tem and yield as output a state of consciousness. An alternative
would be to consider the inverse procedure: a prediction which
takes as input a reported stated of consciousness and yields as
output some constraint on the physical configuration of the

obs /—\

inf

Fig. 5. The case of an inverse prediction. Rather than comparing the
inferred and predicted state of consciousness, one predicts the phys-
ical configuration of a system based on the system’s report and com-
pares this with measurement results.

system that is having the conscious experience. In this section,
we discuss the second case in detail.

As before, we assume that some dataset o has been mea-
sured in an experimental trail, which contains both the infer-
ence data o, (which includes report and behavioral indicators of
consciousness used in the experiment under consideration) as
well as some data o; that provides information about the physi-
cal configuration of the system under investigation. For simplic-
ity, we will also call this prediction data here. Also as before, we
take into account that the state of consciousness of the system
has to be inferred from o,, and again denote this inference pro-
cedure by inf.

The theory under consideration provides a correspondence
pred : O—E which describes the process of predicting states of
consciousness mentioned above. If we ask which physical con-
figurations are compatible with a given state e of consciousness,
this is simply the preimage pred*(e) of e under pred, defined as

pred~*(e) = {0 € Ole € pred(0)} . (18)

Accordingly, the class of all prediction data which is compat-
ible with the inferred experience inf(o) is

pred(inf(0)), (19)

depicted in Fig. 5, and a falsification occurs in case the observed
o has a prediction content o; which is not in this set. Referring to
the previous definition of falsification as type-1 (Definition 2.1),
we define this new form of falsification as type-2.

DefinitionB.1. There is a type-2 falsification at o € O if we have

o ¢ pred(inf(0)). (20)

In terms of the notion introduced in Summary section,
Equation  (20) could equivalently be  written as
o; ¢ pred *(inf(o,));. The following lemma shows that there is a
type-2 falsification if and only if there is a type-1 falsification.
Hence all of our previous results apply as well to type-2
falsifications.

Lemma B.2. There is a type-2 falsification at o if and only
if there is a type-1 falsification at o.

Proof. Equation (18) implies that o ¢ pred *(e) if and only if
e ¢ pred(o). Applied to e = inf(0), this implies:

o ¢ pred }(inf(0)) if and only if inf(o) ¢ pred(o).
The former is the definition of a type-2 falsification. The latter
is Equation (2) in the definition of a type-1 falsification. Hence
the claim follows. O
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