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Cardiac Phase Space Analysis: Assessing Coronary Artery Disease
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The bridge of artificial intelligence to cardiovascular medicine has opened up new avenues for novel diagnostics that may
significantly enhance the cardiology care pathway. Cardiac phase space analysis is a noninvasive diagnostic platform that
combines advanced disciplines of mathematics and physics with machine learning. Thoracic orthogonal voltage gradient (OVG)
signals from an individual are evaluated by cardiac phase space analysis to quantify physiological and mathematical features
associated with coronary stenosis. The analysis is performed at the point of care without the need for a change in physiologic
status or radiation. This review will highlight some of the scientific principles behind the technology, provide a description of
the system and device, and discuss the study procedure, clinical data, and potential future applications.

1. Background

Cardiovascular disease is the leading cause of death world-
wide. Thus, accurate diagnosis in patients with suspected cor-
onary artery disease (CAD) is critical in clinical medicine. For
the majority of patients, standard of care assessment for CAD
begins with a functional stress test. In the United States alone,
millions of stress tests are performed on an annual basis to
evaluate patients with suspected CAD. However, this pathway
has been reported to have low diagnostic yield at the time of
invasive coronary angiography (ICA) [1]. Obstructive CAD
was noted in less than half of patients undergoing exercise
treadmill testing, stress echocardiography, single-photon
emission computed tomography (SPECT) imaging, and stress
cardiac magnetic resonance imaging at the time of their ICA
in a contemporary analysis from the National Cardiovascular
Data Registry (NCDR) of more than 385,000 patients from
>1,100 United States hospitals [2]. Noninvasive testing has
demonstrated similar prediction of obstructive CAD com-

pared to clinical factors [2]. Moreover, a recent study of over
15,000 patients found that among patients referred for ICA,
those with a positive stress test were less likely to have obstruc-
tive CAD and receive revascularization compared to those
either with a negative stress test or no testing at all [3].

The bridge of artificial intelligence to cardiovascular med-
icine has opened up new avenues for novel cardiovascular
diagnostics that may significantly enhance the care of patients
[4–6]. Unlike traditional imaging modalities to assess for
CAD, cardiac phase space analysis (cPSA) is a dynamic assess-
ment that captures data related to electrical signals over con-
secutive cardiac cycles which is unique to a given individual
[7]. The resultant thoracic phase signals are analyzed by cPSA
to quantify physiological andmathematical features associated
with coronary stenosis without the need for a change in phys-
iologic status such as stress-induced vasodilation.

cPSA is an easy-to-use, portable device utilized at the
point-of-care without radiation, contrast, or patient prepara-
tion. This review will highlight some of the scientific
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principles behind the technology, provide a description of the
system and device, and discuss the study procedure, clinical
data, and potential future applications.

2. Cardiac Phase Space Analysis

2.1. Signal Acquisition. Two sources of time series data are
simultaneously acquired from each subject: (i) orthogonal
voltage gradient (OVG) signals and (ii) photoplethysmogra-
phy (PPG) signals. These signals are collected with a sampling
rate of 8 kHz using a specialized instrument (both hardware
and firmware), shown in Figure 1. Signals are acquired for
3.5 minutes, resulting in a short overall procedure time, con-
ducive to an outpatient-based single visit clinical assessment.
Signal quality scores quantified nonbiological interference that
could affect the performance of subsequent analyses. The
OVG signal is assessed for powerline interference (60Hz
based on the main frequency in North America) and excessive
frequency content greater than 170Hz (high-frequency noise).
Additionally, the quality of the PPG signal is assessed through
quantifying the segments of the signal affected by jumps and
dropouts (abrupt jump noise) and epochs that do not have
dynamic variations reflecting the change in the blood flow vol-
ume changes (railing noise). Signals exceeding the threshold
for any of the described scores are excluded, and signals pass-
ing the quality assessment are preconditioned by removing
baseline wander and filtering the high-frequency noise and
powerline interference.

2.2. Photoplethysmography (PPG). PPG is used to optically
measure the variations of the volume of blood perfusing the
tissue. In this measurement modality, a specific wavelength
of light is emitted from an LED illuminating the tissue (e.g.,
skin, subcutaneous tissue, and fat); the intensity of this light
after passing through the tissue (in this case, fingertip) is then
registered by photodetectors. The amount of light absorbed
by the interrogated tissue depends on the volume of the
blood. This variation is observed in the PPG signals and
can provide valuable information with regard to, among
other things, to cardiac activity.

The PPG signals can be used for various purposes such as
monitoring the blood oxygen saturation level when two light
sources are used as well as for measuring and analyzing heart

rate variability. The PPG signals are recorded using a sensor
with red and near-infrared light sources. These PPG wave-
forms are then employed for analysis and feature extraction.

2.3. Orthogonal Voltage Gradient (OVG). The three-
dimensional OVG measures the electrical activity, the prod-
uct of the action potential generation, of the heart. There
are various configurations of the leads that can be used to
obtain such signals. With the signal acquisition device con-
figuration shown in Figure 1, seven leads are used which
result in three orthogonal channels, denoted X, Y , and Z.
These signals are measured in the patient’s coronal, sagittal,
and transverse planes, respectively.

2.4. Machine Learning.Measurements of the signals are made
using Phase Space mathematics and other mathematical
approaches such as dynamical system analysis to create a set
of measurements or features. These features are then paired
with the corresponding “ground truth labels” (actual catheter-
ization results) to form the input to the machine learning
(ML) models. Many types of ML models can be applied to
these data (Random Forests, Neural Networks, Genetic Algo-
rithms, and Support Vector Machines), but the choice(s) of
ML method can drive specific settings of the data set and
parameters to be evaluated. A standard example of a ML cam-
paign: the data are split into training-validation and test sets
(usually 80% training 20% validation but this can be adjusted
from campaign to campaign). The training-validation set is
used to train and fine-tune several machine learning models
using 5-fold cross-validation. To find an optimal set of hyper-
parameters for each model, a grid search is performed over a
range of hyperparameters. Then, using the average AUC of
100 runs as the performance metric, the set of hyperpara-
meters that results in the highest validation AUC is selected
for each model. The models are ranked by performance on
the validation dataset. In the final step, the selected models
are trained on the entire train-validation set, and their AUC
performance on the held-out naïve test set is assessed.

2.5. System and Device Description (Figure 1). The cPSA Sys-
tem is a medical device system that uses novel features and
machine-learned algorithms to analyze phase signals and
assess the presence of significant epicardial CAD. The first

(a) (b)

Figure 1: Data acquisition setup: (a) signal acquisition device and (b) patient and electrodes/lead placement and PPG configurations.

2 BioMed Research International



element is the Phase Signal Acquisition (PSAQ) System. The
PSAQ includes the phase signal recorder (PSR) and the phase
signal data repository (PSDR). The PSR is a hand-held
instrument that acquires and transmits resting phase signals
along with additional patient-specific information such as
gender and age. The cloud-based PSDR accepts, stores, and
allows retrieval of the signals as well as patient-specific infor-
mation. The second element is a CAD analytical engine
(CAD AE). Utilizing machine-learned algorithms, the CAD
AE processes and evaluates the phase signals from approxi-
mately 10 million data points to assess the presence and sig-
nificance of CAD. The final element is the health care
provider (HCP) Web Portal that the clinician utilizes to
interpret images, review results, and generate a report. The
results are subsequently displayed as a phase space analysis
model, and the report can be saved as a record for inclusion
in the patient’s electronic medical record.

2.6. Study Procedure. Signals are acquired utilizing the hand-
held PSR device via seven sensors positioned on the chest and
back and a PPG sensor clipped to a finger. Phase signal data
are collected for approximately 3 minutes, and the data is
then transmitted wirelessly to the cloud based PSDR. An ana-
lytic engine, consisting of software based on the machine-
learned algorithms, analyzes the acquired data and generates
predictions of physiological status. The results are made
available through a secure web portal.

2.7. Clinical Data. The primary objective of the Coronary
Artery Disease Learning and Algorithm Development
(CADLAD) trial was designed to collect resting phase signals
from eligible subjects using the PSR prior to ICA to machine
learn and test an algorithm for detecting the presence of sig-
nificant CAD in symptomatic patients [7]. In addition,
machine-learned algorithms were developed and tested to

Table 1: Demographics of population.

Characteristics Development (n = 512) Verification (n = 94) p value

Mean age, years (range) 61:5 ± 10:7 59:0 ± 9:8 0.04

Male (%) 60.2% 69.1% 0.11

Female (%) 39.8% 30.9% 0.11

Mean BMI (range) 31:3 ± 7:0 32:5 ± 7:6 0.14

Diabetes mellitus (%) 31.4% 35.1% 0.47

Hypertension (%) 72.9% 75.5% 0.70

Hypercholesterolemia/hyperlipidemia (%) 71.3% 70.2% 0.90

Angiographic results = CADnegative (%) 69.1% 73.4% 0.46

Angiographic results = CADpositive (%) 30.9% 26.6% 0.46

Reproduced with permission (Stuckey TD, et al. PLOS ONE. 2018).

Table 2: Detecting flow-limiting CAD. Machine-learned predictor (cPSTA) compared to exercise SPECT [8] and exercise ECG [8, 9].

Test Sensitivity range Specificity range

Rest cPSTA (N = 94)∗ 92% (95% CI = 74% to 100%) 62% (95% CI = 51% to 74%)

Exercise SPECT 82-88% 70-88%

Exercise ECG 54-75% 64-75%

Reproduced with permission (Stuckey TD, et al. PLOS ONE. 2018).

CAD negativeCAD positive

3D phase space residue projection

Different projections
of the phase space
residue of above

Figure 2: Phase Space (PS) Residues from a CAD positive subject and CAD negative subject. The PS Residues are 3D computation objects
generated from the difference of the actual signal from the modelled signal in three dimensions. These objects can be evaluated geometrically
to produce features (such as surface area or volume). The coloring can represent another measurable dimension. Here, the images are colored
by where in the depolarization/repolarization cycle the point difference comes from. The top image is a single projection of the 3D PS Residue
image. The 6 smaller projections are different views of the larger object.
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identify the location of significant CAD. Demographics and
patient characteristics for the studied population are shown
in Table 1. With the aim of a generalized machine-learned
algorithm in mind, a broad cross section of clinical practices
at twelve enrolling centers throughout the United States,
representing a diverse array of facilities providing care to
patients with heart disease, were utilizedas investigational
sites. First, OVG signals were paired with clinical outcomes
data to develop machine-learned algorithms for the assess-
ment of significant CAD. Subsequently, a blinded paired
comparison of the machine-learned algorithm was performed
against the “gold standard” (ICA) for assessment of CAD. Sig-
nificant CAD was defined as a diameter reduction ≥ 70% or at
least one lesion with reduced fractional flow reserve (FFR) of
≤0.80 at the time of ICA. Initial results from the CADLAD
trial included 606 participants. The machine-learned algo-
rithm cohort consisted of phase signals from 512 patients with
94 patients serving as the verification cohort. Blindly testing
the cPSA System in the naïve verification cohort demonstrated
a sensitivity of 92% (95% CI: 74%-100%) and specificity of
62% (95% CI: 51%-74%) for the assessment of significant
CAD, which is comparable to commonly performed standard
of care functional testing (Table 2) [7–9]. The negative predic-
tive value (NPV) was 96% (95% CI: 85%-100%), and the PPV
was 46% (95% CI: 33%-62%) [7]. In order not to miss signifi-
cant CAD in clinical practice, the system was optimized
(threshold chosen using the AUC-ROC curve) to maximize
safety and therefore sensitivity. The specificity of 62% remains
comparable to other functional tests [7]. Figure 2 presents
cases of patients with and without CAD.

Conventional diagnostic pathways for detecting CAD are
less accurate in women than men. Preliminary data from the
CADLAD trial revealed that the diagnostic performance of
cPSA for women compared to men was equivalent if not
superior demonstrating an overall area under the receiver-
operator characteristic curve (AUC) (0.82 (0.60-0.96) vs.
0.76 (0.62-0.86)), sensitivity (100% (100%-100%) vs. 83%
(56%-95%)), specificity (73% (42%-92%) vs. 64% (49%-
76%)), and NPV (100% (100%-100%) vs. 91% (76%-97%)),
respectively (p = ns for all).

When stratified by age, initial data from the CADLAD
trial demonstrates comparable diagnostic performance of
cPSA for those <65 years of age and≥65 years of age with an
overall AUC (0.79 (0.66-0.88) vs. 0.72 (0.50-0.88)), sensitivity
(100% (100%-100%) vs. 86% (56%-100%)), specificity (63%
(49%-75%) vs. 67% (40%-88%)), and NPV (100% (100%-
100%) vs. 83% (50%-100%)), respectively (p = ns for all).

In addition, those with obesity (bodymass index ≥ 30 kg/
m2) had similar diagnostic performance with cPSA compared
to subjects without obesity (bodymass index < 30 kg/m2)
demonstrating an overall AUC (0.78 (0.64-0.88) vs. 0.80
(0.62-0.92)), sensitivity (83% (46%-100%) vs. 92% (50%-
100%)), specificity (67% (51%-79%) vs. 67% (44%-84%)),
and NPV (94% (79%-100%) vs. 94% (68%-100%)), respec-
tively (p = ns for all).

SPECT is the most ubiquitous functional stress test per-
formed in the United States. In the CADLAD trial, SPECT
was performed in a subgroup of 607 subjects prior to their
ICA. Positive SPECT results were compared to the

machine-learned cPSA algorithm using ICA as the reference
standard. Overall sensitivity (86% (81%-91%) vs. 92% (86%-
96%)), specificity (23% (19%-27%) vs. 33% (27%-39%)), PPV
(36% (32%-41%) vs. 42% (36%-48%)), and NPV (77% (68%-
84%) vs. 89% (81%-95%)) were comparable between SPECT
and cPSA, respectively (p = ns for all).

2.8. Future Directions. The bridge of AI utilizing cPSA and
cardiovascular medicine has a very bright future. The same
principles and methods developed for assessment of CAD
can be utilized for other cardiovascular conditions. Ongoing
clinical research with cPSA in pulmonary hypertension and
left ventricular end diastolic pressure are underway. As a
society, we need to assure these algorithms and others devel-
oped are used wisely. Thus, larger and more heterogeneous
data sets are required in order to limit bias and increase the
generalizability in patient populations such as women and
minority groups [10–12].

3. Conclusion

Features extracted from thoracic phase signals can be
employed in machine learning to develop final mathematical
predictors that assess the presence of significant CAD. Per-
formance of the cPSA appears comparable to the most com-
monly employed functional stress tests without the need for
ionizing radiation, contrast media, or stress (exercise or
pharmacological) and requires minimal patient time.
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