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Lack or loss of tumor antigenicity represents one of the key mech-
anisms of immune escape and resistance to T cell–based immunother-
apies. Evidence suggests that activation of stimulator of interferon
genes (STING) signaling in tumor cells can augment their antigenicity
by triggering a type I IFN-mediated sequence of autocrine and para-
crine events. Although suppression of this pathway in melanoma and
other tumor types has been consistently reported, the mechanistic
basis remains unclear. In this study, we asked whether this suppres-
sion is, in part, epigenetically regulated and whether it is indeed a
driver of melanoma resistance to T cell–based immunotherapies. Us-
ing genome-wide DNAmethylation profiling, we show that promoter
hypermethylation of cGAS and STING genes mediates their coordi-
nated transcriptional silencing and contributes to the widespread im-
pairment of the STING signaling function in clinically-relevant human
melanomas and melanoma cell lines. This suppression is reversible
through pharmacologic inhibition of DNA methylation, which can re-
instate functional STING signaling in at least half of the examined cell
lines. Using a series of T cell recognition assays with HLA-matched
human melanoma tumor-infiltrating lymphocytes (TIL), we further
show that demethylation-mediated restoration of STING signaling
in STING-defective melanoma cell lines can improve their antigenicity
through the up-regulation of MHC class I molecules and thereby en-
hance their recognition and killing by cytotoxic T cells. These findings
not only elucidate the contribution of epigenetic processes and spe-
cifically DNA methylation in melanoma-intrinsic STING signaling im-
pairment but also highlight their functional significance in
mediating tumor-immune evasion and resistance to T cell–based
immunotherapies.
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Failure of the immune system in recognizing and eliminating
transformed cells leads to cancer development and tumor

progression. Although defective T cell function represents one of
the key mechanisms of tumor escape, through multiple genetic
and epigenetic alterations, tumor cells themselves can directly
evade T cell surveillance and destruction (1). Lack of antigenic
gene mutations, loss of tumor antigen expression, loss of major
histocompatibility complex (MHC) molecules, or other defects in
antigen processing machinery are common intrinsic alterations
within tumor cells that limit their recognition by immune T cells
(2, 3).
Loss of interferon pathway gene function in tumor cells is an-

other escape mechanism by which tumor cells can avoid T cell–
mediated immunity. Several studies have indicated that alterations
of genes encoding the interferon (IFN)-γ receptor signaling
components (IFNGR1, IFNGR2, JAK1, JAK2, and STAT1) in
tumor cells contribute to both primary and acquired resistance to
immune checkpoint inhibitor therapies in melanoma patients by
limiting tumor cell sensitivity to IFN-γ–induced up-regulation of
MHC class I and inhibition of growth arrest (4–7).

Type I IFNs also play an important role in the generation of
antitumor immunity by triggering a sequence of autocrine and
paracrine signaling events within tumor cells that result in the
augmentation of MHC class I expression and the induction of
CXCR3-binding chemokines CXCL9 and CXCL10 (8, 9).
Studies using both carcinogen-induced and transplantable tumor

models have indicated that endogenous induction of type I IFNs is
required for the generation of a spontaneous T cell response (10,
11). Therefore, defects in molecules involved in type I IFN-
dependent and type I IFN receptor (IFNAR)-transduced signal-
ing pathways in tumor cells may compromise their recognition and
elimination by immune T cells.
Among different upstream pathways that trigger type I IFN in-

duction, stimulator of interferon genes (STING) has been identified
as a major pathway for the generation of a spontaneous immune
response against certain tumors (12). Activation of this pathway
occurs through the detection of cytosolic DNA by the sensor cyclic
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GMP-AMP synthase (cGAS) and the generation of cyclic GMP-
AMP (cGAMP) that binds to and activates STING, leading to the
activation of the transcription factor IRF3 and induction of type I
IFNs (13, 14).
Although the involvement of innate immune components such as

antigen-presenting cells (APCs) has been initially reported as a
major factor in STING-mediated antitumor immunity (12, 15), now
it is becoming more evident that STING activity in tumor cells can
also have a functional role in mediating the immune response (16,
17). In fact, we have recently discovered that activation of STING
signaling in human melanoma cell lines enhances both their anti-
genicity and susceptibility to lysis by human melanoma tumor-
infiltrating lymphocytes (TIL) through the augmentation of MHC
class I molecules (18). However, we have also found that STING
signaling is commonly suppressed and dysfunctional in a notable
subset of melanomas that limits their antigen presentation and
subsequently their sensitivity to T cell–mediated elimination (18,
19). This raises the question whether tumor cells have defects in the
components of the STING pathway as a mechanism of immune
escape and therefore become resistant to T-cell–based immuno-
therapies.
Multiple studies have reported the involvement of epigenetic

modifications in the suppression of immune-protective signature
genes including those of MHC Class I antigen presentation
pathway as well as CXCR3-binding chemokines in both preclinical
and clinical settings (20–22). Unlike genetic alterations, epigenetic
suppressions are potentially reversible by selective epigenetic
reprogramming (23).
On the basis of these observations and given the importance of

tumor cell–intrinsic STING signaling in antigen presentation and
induction of CXCR3-binding chemokines, we have now investi-
gated the extent of promoter hypermethylation-mediated cGAS
and STING silencing in clinically-relevant human melanomas
and melanoma cell lines and examined whether their therapeutic
targeting through pharmacological reprogramming can improve
their antigenicity and promote TIL functional activity.

Results and Discussion
Promoter Hypermethylation of STING and cGAS Correlates with Their
Silencing in Human Melanoma. We have previously reported that
STING and cGAS protein expression were down-regulated or lost
in a large subset of human melanoma cell lines (∼50% for STING
and ∼35% for cGAS) (18, 19). To determine the role of DNA
methylation in melanoma STING and cGAS silencing, we per-
formed genome-wide DNAmethylation profiling using the Illumina
MethylationEPIC BeadChip microarray platform across a panel of
16 human melanoma cell lines. We assessed methylation changes in
the 18 CpG probes for STING and presented them as β-values (SI
Appendix, Fig. S1A). In parallel, we performed immunoblot analysis
and quantified STING protein expression relative to β-actin for
each cell line and determined the degree of correlation between the
β-value in each probe and the STING protein expression. We ob-
served a negative correlation between STING protein expression
and DNA methylation in eleven CpG probes (5–15) located in the
5′-untranslated region (5′-UTR) and/or transcription start sites
TS1500 and TSS200 (SI Appendix, Fig. S1A). Subsequent correla-
tive analysis using the average β-value for these eleven CpG probes
confirmed an inverse association between hypermethylation of
STING and the amount of protein expression (Pearson’s r = −0.51)
(Fig. 1A). In addition, a β-value heat map of these CpG probes
identified three distinct sample subclasses based on their STING
protein expression (STINGabsent, STINGlow, and STINGnormal)
(Fig. 1B). Among STINGabsent cell lines, WM266-4, WM239A,
WM2032, and 888-MEL indicated a high degree of methylation.
We also found a high degree of methylation (β-value > 0.7) in two
CpG probes (cg16983159 and cg08321103) for WM1361A. Al-
though STING was only expressed in melanoma cell lines showing
no promoter methylation (WM3629, WM164, WM39, and WM9),

we found one STINGabsent (WM858) and one STINGlow (526-MEL)
melanoma cell line that did not indicate promoter hypermethylation.
Loss of STING in these cases might be mediated through additional
genetic and/or epigenetic alterations such as histone modifications or
factors involving microRNAs (24, 25).
To validate the clinical relevance of these observations, we

next assessed promoter hypermethylation of STING in human
nevi, primary, and metastatic melanoma samples using three
independent and publicly available gene methylation datasets
from The Cancer Genome Atlas (TCGA) skin cutaneous melanoma
(SKCM) project and Gene Expression Omnibus (GEO) accessions
GSE86355 (24) and GSE120878 (25). While nevi samples consis-
tently displayed low levels of STING promoter hypermethylation, we
observed a notable increase in STING β-values both in primary and
metastatic samples (Fig. 1 C–E). Furthermore, correlative analysis
using TCGA RNA sequencing data indicated that hypermethylation
of STING promoter was associated with its transcriptional silencing
(Pearson’s r = −0.44) in primary and metastatic melanomas
(Fig. 1F). These findings collectively indicate that hypermethylation
of STING promoter occurs at the early stage of neoplasia and per-
sists as malignant transformation proceeds, suggesting a possible role
for STING silencing in enabling immune evasion in melanoma.
Using a similar genome-wide DNA methylation profiling ap-

proach described for STING, we next assessed methylation changes
in the eight CpG probes for cGAS and determined the degree of
correlation between the β-values and the cGAS protein expression
in 16 human melanoma cell lines (SI Appendix, Fig. S1B). We
observed a negative correlation between cGAS protein expression
and DNA methylation in probes 1 through 6. These hyper-
methylated CpG probes were located either in the first exon or in
the transcription start site TSS200. Using the average β-value for
these six CpG probes, we identified a strong inverse correlation
between hypermethylation of cGAS and the amount of protein
expression (Pearson’s r = −0.75) (Fig. 2A). Similarly, a β-value heat
map of these CpG probes clearly demarcated three sample sub-
classes based on their cGAS protein expression (cGASabsent,
cGASlow, and cGASnormal) (Fig. 2B). Notably, all cGASabsent cell
lines (526-MEL, A375, and WM39) exhibited high levels of
methylation in these CpG probes.
Consistent with these observations, our gene methylation analysis

in human nevi, primary, and metastatic melanoma samples con-
firmed a significant increase in hypermethylation of cGAS promoter
among primary and metastatic melanomas in three independent
datasets [GSE86355 (24), GSE120878 (25), and TCGA SKCM]
(Fig. 2 C–E). Additionally, using a correlative analysis by incorpo-
rating RNA-sequencing data from TCGA SKCM, we identified a
negative correlation between hypermethylation of cGAS and its
gene expression (Pearson’s r = −0.54) in primary and metastatic
melanomas (Fig. 2F). These findings not only reinforce the rele-
vance of promoter hypermethylation-mediated silencing of cGAS in
human melanomas but also suggest its involvement in immune
evasion mechanisms that facilitate the process of malignant
transformation.

Reconstitution of STING Expression through DNA Demethylation Can
Rescue STING Signaling in Human Melanoma Cell Lines. To assess
whether DNA demethylation could restore STING expression and
functional STING signaling, we next treated six STINGabsent mela-
noma cell lines that indicated STING promoter hypermethylation
(WM1361A,WM2032, WM239A, WM266-4, 888-MEL, and SBCL-
2) with a clinically available DNA methyltransferase (DNMT)
inhibitor, 5-aza-2’-deoxycytidine (5AZADC) (Fig. 3A). Using im-
munoblot analysis, we confirmed reconstitution of STING expres-
sion in all the cell lines following 5AZADC treatment, although to
varying degrees (Fig. 3B). We also observed a marked reduction of
DNMT1, DNMT3A, and DNMT3B following reconstitution of
STING (Fig. 3 B and C). Along similar lines, genetic depletion
of DNMT1 and DNMT3B using small interfering RNA (siRNA)
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transfection also resulted in re-expression of STING in WM1361A
cells (SI Appendix, Fig. S2), further suggesting their involvement in
melanoma-STING silencing.
To directly evaluate whether demethylation could restore func-

tional activation of STING signaling following 5AZADC treatment,
we next stimulated STINGabsent melanoma cell lines with the STING
agonist 2’3′-cGAMP (Fig. 3D). We observed phosphorylation of
IRF3, a critical downstream regulatory element for STING-
dependent type I IFN induction (26), in four of six 5AZADC-
pretreated melanoma cell lines (WM1361A, WM2032, WM239A,
and WM266-4) following their stimulation with 2’3′-cGAMP

(Fig. 3 E and F). We also determined STING-dependent CXCL10
and IFN-β induction in cell culture supernatants. Three of six
5AZADC-pretreated melanoma cell lines (WM1361A, WM2032,
and WM239A) induced CXCL10 and IFN-β expression in response
to stimulation with 2’3′-cGAMP, which confirmed activation of
STING signaling (Fig. 3G). In contrast, we did not detect STING-
dependent induction of CXCL10 and IFN-β in three remaining
5AZADC-pretreated melanoma cell lines (WM266-4, 888-MEL,
and SBCL-2) (SI Appendix, Fig. S3), arguing the possibility that
additional defective elements downstream of STINGmay contribute
to the impairment of this pathway.
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We next examined whether demethylation-mediated rescue of
STING signaling in melanoma cells could enhance their antige-
nicity. To address this possibility, we performed coculture exper-
iments using 5AZADC-pretreated WM1361A [human leukocyte
antigen (HLA)-A1/A32] melanoma cell line with HLA-matched
human melanoma TIL (TIL 40; HLA-A2/32) in the presence or
absence of 2’3′-cGAMP and assessed TIL production of IFN-γ.
We also included experimental conditions in which WM1361A
cells were preincubated with an MHC class I blocking Ab (W6/32)
to determine whether IFN-γ release was mediated by CD8+ TIL
T cell receptor engagement with peptide/MHC class I. Indeed,

5AZADC-pretreated WM1361A melanoma cells triggered more
than an eightfold higher IFN-γ release by TIL 40 compared to
untreated controls in the presence of 2’3′-cGAMP (∼2,000 pg/mL,
P < 0.001) (Fig. 3H). We also observed blockade of IFN-γ release
in the presence of the MHC class I blocking Ab (W6/32), which
confirmed MHC class I–mediated CD8+ reactivity. We also found
increased IFN-β induction (P < 0.01) in 5AZADC-pretreated
WM1361A coculture groups in response to 2′3′-cGAMP stimula-
tion, which indicated reactivation of STING signaling. Taken to-
gether, these data show that reactivation of STING signaling through
epigenetic reprogramming enhances antigenicity of melanoma cells.
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DNA Demethylation Can Restore cGAS-Dependent STING Activation in
cGASabsent Melanoma Cell Lines. We next examined the effect of
DNA demethylation on re-expression of cGAS in three cGA-
Sabsent human melanoma cell lines. Reconstitution of cGAS ex-
pression was detected in A375 and WM39 but not in 526-MEL

following 5AZADC treatment (Fig. 4A). To evaluate cGAS-
dependent activation of STING signaling, we next stimulated
these melanoma cell lines with double stranded DNA (dsDNA)
following 5AZADC treatment. We observed phosphorylation of
IRF3 (Fig. 4B) and induction of IFN-β and CXCL10 (Fig. 4C)
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for 5AZADC-pretreated A375 and WM39 in response to stim-
ulation with dsDNA. As expected, 526-MEL for which 5AZADC
treatment failed to restore cGAS expression did not indicate
phosphorylation of IRF3 and induction of IFN-β following
dsDNA stimulation. Although our DNA methylation microarray
data indicated hypermethylation of cGAS promoter, low ex-
pression of DNMT1, DNMT3A, and DNMT3B in 526-MEL
(Fig. 4A) suggests the involvement of DNMT-independent reg-
ulators in its cGAS suppression. In addition, 526-MEL lacked

STING expression, and consistent with our previous observation
that showed STING loss in this cell line is mediated through
DNA methylation–independent processes (Fig. 1B and SI Ap-
pendix, Fig. S1A), we did not find reconstitution of STING fol-
lowing 5AZADC treatment (Fig. 4A), further indicating
methylation-independent impairment of STING signaling in this
cell line.
In our next experiments, we sought to directly determine

whether dsDNA-induced IFN-β production in epigenetically
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reprogrammed melanoma cells is STING mediated (Fig. 4D). To
address this possibility, we stably transduced WM39 cells with a
lentiviral short hairpin RNA (shRNA) specific for STING
(sh-STING) or nontarget shRNA (sh-control). Despite similar
cGAS expression reconstitution following 5AZADC treatment
(Fig. 4E), unlike sh-control and WM39 cells, sh-STING cells did
not indicate phosphorylation of IRF3 (Fig. 4F) and failed to in-
duce IFN-β and CXCL10 (Fig. 4G) in response to stimulation with
dsDNA. These findings confirm that dsDNA-induced downstream
effects in 5AZADC-pretreated melanoma cells depend on acti-
vation of STING signaling and exclude the possibility of STING-
independent mechanisms.

Demethylation-Mediated Reversal of cGAS Silencing Enhances Antigenicity
and T Cell Recognition of Melanoma Cells. To examine whether
demethylation-mediated reconstitution of cGAS and subsequent
rescue of STING signaling in cGASabsent melanoma cells could
improve their antigenicity, we performed coculture experiments
using 5AZADC-pretreated WM39 melanoma cell line (HLA-A2)
and HLA-A2–restricted human melanoma TIL (TIL19) in the
presence or absence of dsDNA and assessed TIL production of
IFN-γ (Fig. 5A). We also included experimental conditions with
WM39 cells preincubated with W6/32 (MHC class I blocking Ab)
to confirm MHC class I–mediated CD8+ TIL reactivity. We also
measured IFN-β expression in coculture supernatants to confirm
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dsDNA-triggered cGAS-dependent activation of STING signal-
ing. We observed more than a fivefold higher IFN-γ release by
TIL 19 for 5AZADC-pretreated WM39 melanoma cells com-
pared to the untreated controls in the presence of dsDNA (P <
0.01) (Fig. 5B), suggesting that rescue of cGAS-dependent STING
signaling through epigenetic reprogramming could enhance their
antigenicity.
For our next epigenetically reprogramed cGAS-recovered

model, we selected A375, another HLA-A2–restricted cGA-
Sabsent melanoma cell line, and used it in coculture experiments
with HLA-A2–restricted TIL 19. Similarly, we found a marked
increase (P < 0.01) in IFN-γ secretion by TIL 19 in 5AZADC-
pretreated cocultures of A375 compared to the untreated controls
in the presence of dsDNA (Fig. 5B). Consistent with the
5AZADC-pretreated WM39 cocultures, we also observed higher
IFN-β induction (P < 0.01) for 5AZADC-pretreated cocultures
compared to their untreated controls in the presence of dsDNA
which indicated cGAS-dependent activation of STING signaling
(Fig. 5B).
Following our observation of enhanced antigenicity triggered by

the restoration of STING signaling, we next examined MHC class
I surface expression on melanoma cell lines with or without
5AZADC pretreatment and dsDNA stimulation. Indeed, we ob-
served increased MHC class I surface expression exclusively for
5AZADC-pretreated A375 and WM39 melanoma cell lines in
response to stimulation with dsDNA (Fig. 5 C and D). In contrast,
dsDNA stimulation did not change MHC class I surface expres-
sion for the 5AZADC-pretreated 526-MEL cell line (SI Appendix,
Fig. S4), which indicates intact activation of STING signaling is
required for dsDNA-induced up-regulation of MHC class I. Given
the importance of MHC class I in tumor antigen presentation and
T cell recognition, these findings suggest a functional role for
reactivation of melanoma-intrinsic STING signaling in mediating
effective antitumor T cell responses.
To better investigate the impact of demethylation-mediated

rescue of STING signaling on antigen presentation and immune
T cell killing, following 5AZADC pretreatment and dsDNA
stimulation, we pulsed WM39 cells with MART-1 [a melanoma-
specific peptide recognized by HLA-A2–restricted TILs (26)] and
used them as target cells in a 51Cr release cytotoxicity assay
(Fig. 5E) with MART-1–reactive human melanoma TIL 123
(Fig. 5F) as effector cells. Despite their MART-1 pulsing, no sig-
nificant lysis of the control target cells (WM39, WM39+5AZADC,
and WM39+dsDNA) was found by TIL 123. However, 5AZADC
pretreatment and dsDNA stimulation of WM39 targets resulted in
more than a threefold increase (P < 0.05) in their specific lysis by
TIL 123 (Fig. 5G). These results highlight how methylation si-
lencing of cGAS in melanoma cells can limit tumor antigen pre-
sentation and thereby drive resistance to cytotoxic T cell killing.
In conclusion, we provide evidence that methylation silencing of

cGAS and STING is not only a notable mechanism of STING
signaling dysfunction in melanoma but also plays a role in tumor
antigen presentation and recognition by TIL. By using genome-
wide methylation profiling, we show that a strong correlation exists
between the loss of STING and cGAS expression and their gene
promoter DNA methylation in clinically-relevant human mela-
nomas and melanoma cell lines. Reversal of these repressions
using a DNMT inhibitor can restore STING activity and, subse-
quently, can improve antigenicity in a subset of melanoma cell
lines. In demethylation-mediated cGAS-restored melanoma cell
lines, activation of STING can augment MHC class I surface ex-
pression and improve tumor antigen presentation and tumor cell
destruction by immune T cells. Thus, epigenetic silencing of cGAS
and STING in melanoma can contribute to tumor immune evasion
and can mediate resistance to TIL-based immunotherapies. These
findings also have more general clinical implications. In particular,
the ability to target and restore these defects using epigenetic
modulators provides a rationale to further explore the development

of additional therapeutic solutions for patients who do not benefit
from current immunotherapeutic interventions, for example, those
that not only involve TIL-based adoptive transfers but also check-
point antibody blockade, among others.

Materials and Methods
Melanoma Cell Lines. Human melanoma cell lines 1205Lu, A375, SBCL2,
SK-MEL-28, WM1361A, WM164, WM2032, WM239A, WM266-4, WM35,
WM3629, WM39, WM858, WM9 (provided by Dr. Keiran Smalley, Moffitt
Cancer Center, Tampa, FL), and 526-MEL and 888-MEL (established at the
Surgery Branch, National Cancer Institute [NCI]/NIH, Bethesda, MD) were
maintained as monolayers in complete medium consisting of Roswell Park
Memorial Institute (RPMI) 1640 supplemented with 10% heat-inactivated
fetal bovine serum (FBS) and antibiotics. HLA typing of melanoma cell
lines was performed by the HLA Laboratory (American Red Cross, Dedham,
MA). A375, WM39, WM1361A, and 526-MEL were HLA-A typed as A01/02,
A01/02, A01/32, and A02/03, respectively. Genomic DNA for all cell lines was
extracted using the Blood & Cell Culture DNAMini Kit (Qiagen), according to
the manufacturer’s instructions for cultured cells. For siRNA transfection,
tumor cells were transfected with siRNA (20 nM) specific for DNMT1 (catalog
no. L-004605-00-0005), DNMT3B (catalog no. L-006395-00-0005) or control
siRNA (catalog no. D-001810-10-20) (Dharmacon) using Lipofectamine 2000
(Invitrogen) according to the manufacturer’s instructions. Cells were sub-
jected to further analyses following 48 h incubation at 37 °C. Knockdown of
STING in WM39 cells was achieved using lentiviral particles carrying a target
gene sequence for human STING (TMEM173) (catalog no. TL307876V) or
scrambled control (catalog no. TR30021V) (Origene Technologies). The tar-
geting sequence for STING was 5′-GCAACAGCATCTATGAGCTTCTGGAGAAC.
Transduced cells were selected by addition of puromycin (0.5 μg/mL) to the
medium 24 h after infection.

Analysis of Methylation Data. All data preprocessing was performed within
the R (version 3.5.2) statistical programming language (27) and computing
environment using the minfi package (version 1.28.4) (28, 29), which is
available through the Bioconductor (version 3.8) project (30). Preprocessing
began with the reading and parsing of the intensity data (IDAT) files con-
taining the signal intensity data from the Infinium MethylationEPIC Bead-
Chip microarray (31). The probe-level detection P values were calculated
from the raw intensities using the minfi function detectionP. Utilizing the
preprocess FunNorm function, also provided by minfi, the signal intensities
were first subjected to dye normalization and background correction, using
the NOOB method (32), followed by functional normalization (FunNorm), a
between-array normalization (33). The resulting GenomicRationSet object
contained the β-values calculated from the corrected methylated (M) and
unmethylated (U) intensities using the following formula: β=M/(M+U). The
analysis of the normalized methylation data and creation of figures was
performed in MATLAB R2019B.

Database Analysis. Three additional melanoma datasets—The Cancer Ge-
nome Atlas (TCGA) skin cutaneous melanoma (SKCM) project, GSE120878
(25), and GSE86355 (24)— all assayed on the Illumina Infinium Human-
Methylation450 BeadChip, were also analyzed. IDAT files were available for
both SKCM and GSE120878. The raw, Level-1 files for SKCM were down-
loaded from the Genomic Data Commons (GDC) legacy archive on Septem-
ber 15, 2020 using TCGAbiolinks (34), an R package, while the GSE120878
IDAT files were accessed from the GEO website, also on September 15, 2020.
Preprocessing for these two datasets proceeded as described in the previous
section. For the GSE86355 dataset, the IDAT files were not available, but the
authors supplied beta values, derived from data preprocessed using “pre-
processIllumina” from the minfi package (28, 29), as well as the detection P
values. The detection P values and the beta values were extracted from the
SOFT formatted file, downloaded from the GEO website on September 16,
2020, with a python script, utilizing the regular expression capabilities of the
re package.

5AZADC Treatment. Humanmelanoma cell lines were treated with 0.1 to 1 μM
5AZADC (Sigma-Aldrich) dissolved in culture medium that was prepared and
replaced daily. At day 3, cells were washed and replenished with fresh cul-
ture medium (without 5AZADC) and rested for an additional 3 d before
assaying (day 6).

STING Agonist Stimulation. Human melanoma cell lines (4 × 105 cells/well in
24-well plates) were exposed to 2′3′-cGAMP (10 μg/mL) or dsDNA (10 μg/mL) in
the presence of Lipofectamine 2000 (Invitrogen) according to themanufacturer’s
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instructions as previously described (18). After 4 or 24 h of incubation at 37 °C in
a humidified CO2 incubator, the supernatants were collected for detection of
CXCL10 and IFN-β release using enzyme-linked immunosorbent (ELISA) assays
(Quantikine ELISA Kit, R&D Systems), and cells were scraped, washed, and lysed
for assessment of IRF3 phosphorylation by immunoblot.

Immunoblot Analysis. Proteins were extracted with radioimmunoprecipitation
assay (RIPA) buffer (Thermo Fisher Scientific) containing protease inhibitors
(Thermo Scientific). Equal amounts of proteins were resolved on sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gels (Bio-Rad)
and transferred topolyvinylidene fluoridemembranes (Bio-Rad). After blocking
with 5% nonfat dry milk, membranes were incubated with antibodies specific
for STING, cGAS, DNMT1, DNMT3A, DNMT3B, p-IRF3, IRF3, α-Tubulin (all from
Cell Signaling), and β-actin (Sigma-Aldrich). Following incubation with appro-
priate secondary antibodies, bands were visualized using an enhanced chem-
iluminescence detection system.

Preparation of TIL. Melanoma TIL were established as described previously
(35). Briefly, melanomas were minced into 1 to 2 mm3 fragments and plated
in 24-well plates with 2 mL TIL culture medium (TIL-CM) containing 6,000 IU/
mL IL-2 (Proleukin) per well. The TIL-CM consisted of RPMI 1640, 2.05 mM
L-glutamine (HyClone, Thermo Fisher Scientific), 10% heat-inactivated hu-
man AB serum (Omega Scientific), 55 μM 2-mercaptoethanol (Invitrogen),
50 μg/mL gentamicin (Invitogen), 100 IU/mL penicillin, 100 μg/mL strepto-
mycin, and 10 mM Hepes Buffer (Mediatech). Half of the medium was
replaced every 2 to 3 d or cells were split when 90% confluent. TIL were
expanded for 3 to 5 wk. HLA typing of TIL was performed by the HLA
Laboratory (American Red Cross, Dedham, MA). TIL 40, TIL 19, and TIL 123
were HLA-A typed as A02/32, A02/26, and A02/11 respectively.

Coculture Assay. As previously described (18), 1 × 105 of melanoma cells were
cultured with TIL at a 1:1 ratio with or without 2′3′-cGAMP (10 μg/mL) in
96-well round-bottom plates. After 24 h of incubation at 37 °C in a humidified
CO2 incubator, the supernatant was harvested for detection of IFN-γ release
using enzyme-linked immunosorbent assay (Human IFN-γ Quantikine ELISA
Kit, R&D Systems). For the MHC class I blocking assay, melanoma cells were
incubated with W6/32 (anti-HLA-A,B,C monoclonal antibody, BioLegend) at a
final concentration of 50 μg/mL for 1 h at 37 °C prior to the addition of TIL.

51Cr-Release Assay. Lysis of melanoma cell targets by their HLA-matched TIL
cultures was measured in a standard 5lCr release assay, as previously described
(36). Briefly, 1 × 106 melanoma cells were labeled with 100 μCi of 51Cr
(Amersham Corp) for 2 h at 37 °C. Following three washes with Hanks’ bal-
anced salt solution (HBSS), labeled target cells were resuspended in TIL CM at a
concentration of 5 × 104 tumor cells/mL and added to the effector cells at
different effector-to-target cell ratios in a 96-well plate and incubated at 37 °C.
In addition, two control conditions were included in this assay: a minimum
release control containing just the target cells and a maximum release control
in which target cells were lysed by Triton X-100. After 4 h, supernatant was
harvested and measured in TriLux (PerkinElmer). Each point represented the
average of quadruplicate wells and percentage of specific lysis was calculated
by the following: (experimental release − minimum release) / (maximum
release − minimum release) × 100.

Flow Cytometry. Cells were resuspended in staining buffer [phosphate-buffered
saline (PBS) containing 10% FBS and 0.5 M ethylenediaminetetraacetic acid
(EDTA) (Ambion)] and stained with HLA-A.B.C–PE antibody (BioLegend, clone
W6/32) for 30 min at 4 °C in the dark. Staining of MART-1–specific T cells was
performed using MART-1-tetramer-PE (MBL), for 20 min at 37 °C. Following a
washing step, cells were stained with CD8-FITC antibody (BioLegend, clone
HIT8a) for 30 min at 4 °C in the dark. 4’,6-diamidino-2-phenylindole (DAPI)
(Sigma-Aldrich) was used as a viability dye. Sample acquisition was performed on
an LSR II flow cytometer (BD Biosciences), and the data were analyzed using
FlowJo software (Tree Star).

Statistical Methods. Statistical analyseswere performed using GraphPad Prism7
software as previously described (18). All data are presented as mean ± SD.
Means for all data were compared by one-way ANOVA or unpaired t test as
described in the figure legends. P values of statistical significance are repre-
sented as *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

Data Availability.All study data are included in the article and/or SI Appendix.
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