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ABSTRACT

Objective To examine how and to what extent medical
devices using machine learning (ML) support clinician
decision making.

Methods We searched for medical devices that were (1)
approved by the US Food and Drug Administration (FDA)
up till February 2020; (2) intended for use by clinicians; (3)
in clinical tasks or decisions and (4) used ML. Descriptive
information about the clinical task, device task, device
input and output, and ML method were extracted. The
stage of human information processing automated by ML-
based devices and level of autonomy were assessed.
Results Of 137 candidates, 59 FDA approvals for 49
unique devices were included. Most approvals (n=51) were
since 2018. Devices commonly assisted with diagnostic
(n=35) and triage (n=10) tasks. Twenty-three devices were
assistive, providing decision support but left clinicians

to make important decisions including diagnosis. Twelve
automated the provision of information (autonomous
information), such as quantification of heart ejection
fraction, while 14 automatically provided task decisions
like triaging the reading of scans according to suspected
findings of stroke (autonomous decisions). Stages of
human information processing most automated by devices
were information analysis, (n=14) providing information

as an input into clinician decision making, and decision
selection (n=29), where devices provide a decision.
Conclusion Leveraging the benefits of ML algorithms to
support clinicians while mitigating risks, requires a solid
relationship between clinician and ML-based devices.
Such relationships must be carefully designed, considering
how algorithms are embedded in devices, the tasks
supported, information provided and clinicians’ interactions
with them.

INTRODUCTION

Artificial intelligence (Al), technologies
undertake recognition, reasoning or learning
tasks typically associated with human intelli-
gence,' such as detecting disease in an image,
diagnosis and recommending treatments,
have the potential to improve healthcare
delivery and patient outcomes.” Machine
learning (ML) refers more specifically to
AI methods that can learn from data.® The
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What is already known?

» Machine learning (ML)-based clinical decision sup-
port (CDS) operates within a human—technology
system.

» Clinician interaction with CDS influences how they
make decisions affecting care delivery and patient
safety.

» Little is known about how emerging ML-based CDS
supports clinician decision making.

What does this paper add?

» ML-based CDS approved by the FDA typically pro-
vide clinicians with decisions or information to sup-
port their decision making.

» Most demonstrate limited autonomy, requiring clini-
cians to confirm information provided by CDS and to
be responsible for decisions.

» We demonstrate methods to examine how ML-
based CDS are used by clinicians in the real world.

current resurgence in ML is largely driven
by developments in deep learning methods,
which are based on neural networks. Despite
the expanding research literature, relatively
little is known about how ML algorithms
are embedded in working clinical decision
support (CDS).

CDS that diagnoses or treats human disease
automate clinical tasks otherwise done by
clinicians.” Importantly, CDS operates within
a human-technology system,” and clinicians
can elect to ignore CDS advice and perform
those tasks manually. Clinician interaction
with ML-based CDS influences how they work
and make decisions which in turn affects care
quality and patient safety.

Alongside intended benefits, ML poses new
risks that require specific attention. A funda-
mental challenge is that ML-based CDS may
not generalise well beyond the data on which
they are trained. Even for restricted tasks
like image interpretation, ML algorithms
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can make erroneous diagnoses because of differences in
the training and real-world populations, including new
‘edge’ cases, as well as differences in image capture work-
flows.® Therefore, clinicians will need to use MIL-based
CDS within the bounds of their design, monitor perfor-
mance and intervene when it fails. Clinician interaction
with CDS is thus a critical point where the limitations of
ML algorithms are either mitigated or translated into
harmful patient safety events.””

One way to study the interaction between clinicians
and ML-based CDS is to consider medical devices. In the
USA, software, including CDS that is intended to diag-
nose, cure, mitigate, treat or prevent disease in humans,
are considered medical devices'” and subject to regu-
lation. Increasing numbers of devices that embody ML
algorithms are being approved by the US Food and Drug
Administration (FDA)."" ¥ Approval requires compliance
with standards, as well as evaluation of device safety and
efficacy.”” Regulators provide public access to approvals
and selected documentation. Therefore, medical devices
provide a useful sample for studying how ML algorithms
are embedded into CDS for clinical use and how manu-
facturers intend clinicians to interact with them.

Research has predominantly focused on the develop-
ment and validation of ML algorithms, and evaluation of
their performance,11 1416 (ith little focus on how ML is
integrated into clinical practice and the human factors
related to their use.'” In a recent systematic review of ML
in clinical medicine, only 2% of studies were prospective,
most were retrospective providing ‘proof of concept’ for
how ML might impact patient care, without comparison
to standard care.'®

While one recent study has described the general char-
acteristics of 64 ML-based medical devices approved by
the FDA," no previous study has examined how ML
algorithms are embedded to support clinician decision
making. Our analysis of ML medical devices thus seeks to
bridge the gap between ML algorithms and how they are
used in clinical practice.

Human information processing

In assessing human-machine interaction, it is useful to
consider how clinicians process information and make
decisions, and which stages of that process are automated
by ML devices. Automaton is the machine performance
of functions otherwise be done by humans.* Human
information processing has been broken down into four
distinct stages: (1) Sensing information in the environ-
ment, (2) Perceiving or interpreting what the infor-
mation means, (3) Deciding the appropriate response
and (4) Acting on decisions (figure 1)." For example,
the diagnosis of pneumonia requires clinicians to sense
information relevant to the provisional and differential
diagnoses of the patient’s condition from their medical
history, physical examination and diagnostic tests. Infor-
mation then needs to be interpreted: do chest X-rays
show evidence of inflammation? These analyses inform

Stages of Human Information Processing

i [
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Information w Information Decision Action
aquisition analysis selection implementation
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Figure 1 Stages of human information processing (top) and
their automation (bottom).®

decisions about diagnosis and treatment, which are then

enacted by ordering or referring for treatment.

ML devices can automate any or all stages of human
information processing: (1) Acquiring information, (2)
Analysing information, (3) Decision selection from avail-
able alternatives and (4) Implementation of the selected
decision (figure 1)." Later stages represent higher levels
of automation. For instance, an ML device assisting the
diagnosis of cardiac arrhythmias that report quantita-
tive measurements from ECGs, automates information
analysis, whereas devices that indicate the presence or
absence of atrial fibrillation automate decision selection.
Identifying the stage of human information processing
automated provides a useful framework for evaluating
how ML devices change clinicians’ work, especially the
division of labour between clinicians and ML devices.

Accordingly, we examined FDA-approved ML devices to
understand:

» Which ML devices have been approved for clinical
practice, their intended use, the diseases they diag-
nose, treat or prevent, and how manufacturers intend
for clinicians to interact with them?

» How ML devices might change clinician decision
making by exploring the stage of human information
processing automated.

» The extent to which ML devices function autono-
mously and how that impacts clinician-ML device
interaction.

METHOD

We examined FDA-approved medical devices that use ML
(online supplemental appendix A). Unable to directly
search FDA databases for ML devices, we used an internet
search to identify candidate devices that were:

1. FDA-approved medical devices.

2. Intended for use by clinicians.

3. Intended to support clinical tasks/decisions.

4. Using ML.

The search identified 137 candidate devices for which
130 FDA approvals were retrieved. Of these, 59 approvals
met the inclusion criteria covering 49 unique ML devices
(figure 2).

Data extraction and analysis

For each included approval, we extracted the approval
details (date, pathway, device risk class). For each unique
device, we then extracted type (software as a medical
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Figure 2 Process to search for and identify FDA Approved

ML devices. FDA, Food and Drug Administration; ML,
machine learning.

device or integrated into hardware); characteristics (indi-
cated disease, clinical task, device task, input, output); and
ML method used as described in the approval. Clinical
task, device input and output were identified from device
indications and descriptions, and grouped according to
natural categories emerging from the sample. The device
task was summarised from the indications and device
description in FDA approvals.

Stage of human information processing automated by ML devices

The device task was examined using the stages of auto-

mation of human information processing framework."

We classified the highest stage of human information

processing (figure 1) automated by ML devices according

to the following criteria (from lowest to highest):

1. Information acquisition: Device automates data acqui-
sition and presentation for interpretation by clinicians.
Data are preserved in raw form, but the device may aid
presentation by sorting, or enhancing data.

2. Information analysis: Device automates data interpre-
tation, producing new information from raw data. Im-
portantly, interpretation contributes new information
that supports decision making, without providing the
decision. For example, the quantification of QRS du-
ration from electrocardiograms provides new infor-
mation from ECG tracings that may inform diagnosis
without being a diagnosis.

3. Decision selection: Device automates decision making,
providing an outcome for the clinical task. For exam-
ple, prompting and thereby drawing attention to ma-
lignant lesions on screening mammograms, indicates
a device decision about the presence of breast cancer.

4. Action implementation: Device automates implemen-
tation of the selected decision where action is required.

Autonomous
Decision

Autonomous
Information

Assistive

Task decision
Task decision

Task decision

o A

Figure 3 Level of autonomy showing the relationship
between clinician and device.

For example, an implantable cardioverter-defibrillator,
having decided defibrillation is required, acts by auto-
matically delivering treatment.

ML device autonomy

To understand the level of device autonomy, we exam-
ined the description and indications for use to determine
the extent to which the device performs automated tasks
independent of clinicians.'” For example, a device auto-
mating decision selection that requires clinician approval
is less autonomous than similar devices that do not require
approval. The approach is similar to existing levels of
autonomy for specific tasks, such as driving automation,
and computer-based automation,”’ which identify what
user and automation are responsible for in relation to
a defined task. Taking these models as a starting point,
we developed a three-level classification for ML device
autonomy based on how clinical tasks are divided between
clinician and ML device (lowest to highest; figure 3).

1. Assistive devices are characterised by overlap in what
clinician and device contribute to the task, but where clini-
cians provide the decision on the task. Such overlap or
duplication occurs when clinicians need to confirm or
approve device provided information or decisions.

2. Autonomous information is characterised by a sepa-
ration between what device and clinician contribute to
the task, where devices contribute information that clini-
cians can use to make decisions.

3. Autonomous decision is where device provides the
decision for the clinical task which can then be enacted
by clinicians or the device itself.

Conceptually, there is also a zero level, representing
the complete absence of automation where clinicians
perform tasks manually without any device assistance.

Two investigators independently assessed the stage of
automation and level of autonomy (DL and FM). Inter-
rater agreement was assessed using absolute agreement,
two-way mixed effects intraclass correlation coefficient
(ICC). Agreement for stage of automation was ICC=0.7
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(95% CI 0.53 to 0.82) indicating moderate to good agree-
ment and for level of autonomy was ICC=0.97 (95% CI
0.95 to 0.98) indicating excellent agreement.” Disagree-
ments were resolved by consensus. A narrative synthesis
then integrated findings into descriptive summaries for
each category of ML devices.

RESULTS

Fifty-nine FDA approvals for ML devices met the inclusion
criteria covering 49 unique devices (table 1). Six devices
had two approvals and two had three approvals.

FDA approvals

The earliest approval was in 2008 for IB Neuro® which
produces perfusion maps and quantification of blood
volume and flow from brain MRI. However, the majority
of approvals were observed in recent years (2016=3;
2017=5; 2018=22; 2019=27; 2020=2).

Most approvals (n=51) were via premarket notification
(PMN) for devices which are substantially equivalent to
existing and legally marketed devices. Only two were via
premarket approval (PMA), the most stringent pathway
involving regulatory and scientific review, including clin-
ical trials to evaluate safety and efficacy.'” The remaining
six approvals were De Novo classification; a less onerous
alternative to PMA for low to moderate risk devices where
there is no substantially equivalent predicate. All PMN
and De Novo approvals (n=57) were for class 2 devices,
while both pPMAs (n=2) were for class 3 devices, which are
classified as moderate and high levels of risk, respectively.

Clinical tasks and diseases supported by ML devices
We identified five distinct clinical tasks supported by
ML devices. Most (n=35) assisted with diagnostic tasks
assisting with the detection, identification or assessment
of disease, or risk factors, such as breast density. The
second most common were triage tasks (n=10), where
devices assisted with prioritising cases for clinician review,
by flagging or notifying cases with suspected positive
findings of time-sensitive conditions, such as stoke. Less
common tasks were medical procedures (n=2), where
devices either assisted users performing diagnostic or
interventional procedures. Treatment tasks (n=1) where
devices provided CDS recommendations for changes to
therapy regimes. Monitoring tasks (n=1) involved devices
assisting clinicians to monitor patient trajectory over time.
Twenty-three devices were indicated for a specific
disease, and nine could be reasonably associated with a
disease. The most common diseases were cancers, espe-
cially of the breast, lung, liver and prostate (table 2).
Others were stroke (intracranial haemorrhage and large
vessel occlusion) and heart diseases. Two devices were
indicated for two separate diseases.”* * The remaining
17 devices were indicated for applications broader than
a specific disease.

Device inputs and outputs
The majority of devices used image data (n=42), these
included computed tomography (CT; n=15), magnetic

resonance imaging (MRI; n=10), X-ray (n=b), digital
breast tomosynthesis (n=3), digital mammography (n=3),
echocardiography (n=3), fluoroscopy (n=1), fundus
imaging (n=1), optical coherence tomography (n=1),
positron emission tomography (PET; n=1) and ultra-
sound (n=1).

The remaining seven used signal data. These included,
electrocardiography (n=3), phonocardiography (n=2),
polysomnography (n=1), blood glucose and insulin pump
data (n=1) and biometric data from wearables (n=1).

We identified nine common means by which ML devices
communicated results (table 3).

ML method

Manufacturers descriptions of ML method were varied.
Most described a family of techniques (ML=14; deep
learning=11), followed by generic descriptors (Al=15).
Specific ML techniques were the least frequently reported
(convolutional neural network=6; neural network=1; deep
neural network=1; deep convolution neural network=1).

Stage of decision-making automated or assisted by ml
devices

Most devices aided information analysis (n=14) and deci-
sion selection (n=29). ML devices also, but less commonly,
aided in information acquisition (n=4) and action imple-
mentation (n=2), the earliest and latest stages of decision
making, respectively.

Information acquisition

None of the devices acquired information, but instead
aided presentation by enhancing the quality of CT, MRI
and PET imalges%_29 thereby assisting clinician interpre-
tation. One representative device, SubtleMR* reduces
noise and increases image sharpness of head, neck, spine
and knee MRI scans. SubtleMR receives DICOM (Digital
Imaging and Communications in Medicine) image data
from and returns enhanced DICOM images to a PACS
(picture archiving and communication system) server.

Information analysis

Information analysis provides clinicians with new infor-
mation derived from processing raw inputs. Devices
provided analysis in the form of quantiﬁcationgo_37 or
automatic coding of features or events.”* ¥ For example,
IcoBrain®! provides volumetric quantification of brain
structures from MRI or CT scans, which can aid in the
assessment of dementia and traumatic brain injury, while
EnsoSleep™ automatically codes events in sleep studies
such as stages of sleep and obstructive apnoeas to assist
with the diagnosis of sleep disorders.

Decision selection

Decision selection provides a decision that is an outcome
for the clinical task, such as triage notiﬁcations,25 1048 case
level findings of disease,** % identification of features
indicative of disease,M_59 or clinical classifications or
gradings.ﬁo_64 One device providing triage notifications

. . 95 40 41 . . . . .
is Briefcase. Briefcase assists radiologists triage

4 Lyell D, et al. BMJ Health Care Inform 2021;28:100301. doi:10.1136/bmjhci-2020-100301



panuiuo)

'sainjonJis uleiq
a|gejuswbes Jo
ureiq uofyeonipuenb
OlI}9WIN|OA pue

‘uoljesijensia
‘Buljjege) 610¢C
uoljew.ou] SBA v uonesyiueno IHWN 7 1D ohewoiny sisouBeig ¢ JequiedeQ NN AN XH3owod| ureigos| 1c0€LCBIN
‘uolnoe.y 2I/emyos
uoiosle JeinoujuseA uonoe.4 uonoslg
19| JO uonewnse perewony
uolewiojul S9A NNO uonjeoyiuen welBolpseooyol pajewoiny sisoubelqg ¢ 8logaunp NN sqeT Aeg anoys3y 0c08LELIN
(1) s1opiosip
doals paiejas ‘se|pnis
Aiojesdsal Sjuane doals 21008 /102
pue des|g QAIISISSY SOA Iv Jo sainjes) Buipo)  AydesbouwosAiod Ajjeoirewoiny sisoubeiq z yosey NIAd Bleqgosuy das|gosug 6229291
‘anssi

uewny jo sainjyes}
abewi uowwoo Jo
Ae|dsip pesunojod

[STUEYE) AydeiBowol  yum uonesiensia 8102 |esipa\  walsAg Buibew|
uoljewioju| OoN 7a Jo sainjes) Buipo)  8ousiayod [eondo paoueyug sisouBeiq 2 JaquwanoN NINd JUIO4BUIN JAUOCISIAN 0919281
sisAjeue uonew.oyu|
‘Ayrenb
obew) asealoul 8102 [eoIpa\
uolewoju| S8A NNO  sebewl psoueyus 13d 0} 8sI0uU 8oNpaYy sisoubeiqg ¢ JequiesnoN NN apagns 13denans 629€E€C8IN
THIN

peay Joy sseudieys
obew| asealoul

10 YN 98Uy
pue ‘yoau ‘suids
‘peay Joj ssiou 6102 [edIpBIN
uoljewoul SOA NNO  sebew) psoueyus 14N abew| sonpey sisoubeiqg g Jequieides NI apans dHepRans 9288916

‘Apog sjoym pue
pesy 8y} jo sabewl
[BUOI}08S-SS0I0

aonpouid o} sebew uoloNJIISUooaY
JO UoloNJISUooal 6102 uedep abew|
uoljewoju] OoN NNQ  sebewi paoueyuy 10 Jeindwon sisoubeiq 2 Jequweoe( NWd @JedyyesH 35 Bujuies desq 120LLEB I
‘Apog ajoym
8y} JO sawn|oA
[euUOI109S-SS0.I0 Ele)\"
Buike|dsip Joy esiou sweishs  yum g'gA (g/ pue
aonpai pue Ayjenb [edIpaIN LYY0E-XS 1)
uoljewIou| ON NNDQ  sebewi paoueyu] 19 abewi anoidw| sisoubelq 2 e6LozAne NI uoue)) UOISIoBId UOl|INby 9z+-0628 1M

uonisinboe uonew.oyu|

(s)eseasiq Awouony guwes poydw A ndino ao1maq indui ao1neQg )se} 90In9Qg HSE)} [edIul|D  Sse|) ojeg  2wWaYOg Jainjoeynuep a91neQg ou |erosddy

(0202-8002) UolEAISILILIPY BniQ PUE POO4 SN 8y} Aq panoidde seoiAep [ealpal A JO SOIISLBIOBIEYD | JlqeL

Lyell D, et al. BMJ Health Care Inform 2021;28:6100301. doi:10.1136/bmjhci-2020-100301


https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K182901
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K193170
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K191688
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K182336
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K182616
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K162627
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K173780
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K192130

o
7
o
3]
3]
©
c
[
o

o

panuiuo)

(®)

J20Ue? 8je}sold

(1) 490UED
BunT ‘sbun|
8y} Jo aseasip

(1) seseasip
Jejnosenolpie)

BAIISISSY SOA aa

QAIISISSY SOA N

QAIISISSY SOA aa

uolyeuLIoU| SOA TN

uoljeWIOjU]  SBA 1a

uolyewLIoU| SOA 1a

uoljeWIOU]  SBA N

uonEoyUEND

uonEoyUEND

uonEoyUEND

uoneoyUEND

uoieoyUEND

uolreoyUEND

uoieoyUEND

‘Buipodai

pue ‘uoljeosyizuenb
‘uoneluswbas

|4 e1elsoud oljewoiny

‘auljeskeq painseaw
J18y} wouj subis
[eHA sjualred oy}

ul sebueyo syo9|jal
yolym xapuj
s[eyAolg sales
awi} saye|nole)

SJOSUSS UJOM WO}
elep ouBwWoIq
snonupuoD

*S|9SSaA Jofew

SH pue pesy sy}

0] MOJ} poO|q 8y}

IHN 0 uonesuUEND

‘sainionJis

urelq a|geiuswbes

J0 uopeoniuenb
Ol}oWN|OA pue
‘uoljesiiensia

‘Buljjedel

10 ofjewony

*suo|s9|

Bun| payyoads

pue ‘saqgoj| bun|

pue sbun| jo

10 uoljeoyiueno

‘Syewpug| [eo1dAy

Je sJejowelp eUoe
wnuwixew pue

‘seliope A1euoiod

ul SWINJOA WINIo[ed
‘awn|oA pesy Jo

10 uolesyiueno

esad

0] sWwi| pue ‘swi]
lsueli| uesiy ‘Mo|q
poo|g [eigaie)

‘swin|oA poolg

[eigaie) anijeley

Jo sdew uoisnpiad
ouewesed

14N [DIIENETS)

sisoubeig

Buoyuon

sisoubelq

sisoubelq

sisoubeiq

sisoubelq

sisoubeiqg

61L0¢
2 JaquwanoN

6102
2 1snbny

yAN o4
2 Aenuep

9l0¢

2 Jequieoeq

¢ 6LozAine

6102
2 Jequeldes

¢ 800c Aen

NINd

NINd

NINd

NINd

NIAd

NINd

NN

XnAqyyesH

aiodebuig
siwinojolg

shiapy

papdez

VSN suoiinjog
[edIpaN
suswalg

VSN suoinjog
[eDIPSIN
suswalg

souwolg
Buibew

+IHN-ISH

suibug sonkjeuy
s[ejnolg

1@ olpseD skispy

101ldoD 10

(Areuowngd)
uojuedwon

pey-lv

(rejnosenoipie)
uojuedwo)
pPeY-IvY

oinaN g|

468L2 161

49C82E8 I

c6ES2EI I

0,2 LI

6ol L2EB I

+892€8 1M

52C92080

(s)esessiq

Awouony gwes poylew N

ndino aoinaq

ndui ad1n8Q

)se} 90Ine(Q HSE)} [edIul]D  SSe|D)

a1eq

awayosg

Jainjoegnuep

ERTTET]

ou |eaouddy

panuizuo)

L alqeL

Lyell D, et al. BMJ Health Care Inform 2021;28:100301. doi:10.1136/bmjhci-2020-100301


https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K080762
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K183268
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K183271
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K161322
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K163253
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K183282
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K191278

panuiuo)

"
»n
[}
o
o
©
c
Q

(1) Jnuunw pesH
‘seiwyiAyy
oBIpIED

(1) Jnuunw pesH

(1) Ayredounai
oneqelq

oAlSISSY  SOA NN

SAIISISSY SOA N

uoisioeq  S8A NND

anjsissy  SeA I

annsIssy  SeA I

ansissy  ON N

oseas|p Jo
Buipuly |oAs| aseD

903 ®
weJbolpiesouoyd

osess|p Jo

Buipuly [oAs] ese)  welBoipiecouoyd

aseas|p J0

Buipuly |oAs| aseD sebew) snpuny

uoneoyiueny)  weibolpiesoyoy

uoneouiuend k=1

uoneoniuend 14N

"IN puE uoieInp
SHO ‘erel Leay
sejenofe) "wyiky.
snujs [ewliou pue
‘uoie|IuqL [eLie
‘sinwunw pesy
psjoedsns sjoele(

‘sinwunw
yeay [eoibojoyred
pue [eaibojoisAyd

‘ZS ‘1S Buipnjoul
‘spunos pesy
oly10ads jo sisAjeue
pajewony

‘sejeqelp

yum synpe ul
Ayredounai
onegelp pjiw
uey} aiow }0919p
Ajjeoirewoiny

*aWwiN|oA
Je|NOLUSA Yo pue
‘uresis [euipnibuoT]
[eqo|D ‘uonoe.ly
uonoa(3 Buipnioul
sJiojoweled oelpseo
pJepue]ls sainseaw
Ajjeairewoiny

‘ueLAN

10} saInjonils
ureiq a|gejuswbas
10 uopeonipuenb
OlI}dWN|OA pue
‘uoljesijensia
‘Bullieqe
onewony

PEINEN

MY 40 UOIEISHIONN
abejueApy 39 4o}
sainjonJis uleiq
a|gejuswbas jo
uofeoniuenb
OlI}9WIN|OA pue
‘uoljesijensin
‘Bullieqe
oljewoiny

0c0c

sisoubeig 4 Aenuep

sisoubeiqg Z 610z |udy

sisoubeiq Z 8Log |udy

610¢

sisoubeiq 2 JaquanoN

8L0¢

sisoubelq 2 Jeqwedeq

8L0c

sisoubelg 4 yosey

NAd ~ seoineq o33

NINd $Qe7 dso

onou eQq Xal

NN solwonin

NAd  ‘A'g qauend

NAd  ‘A'd qauend

2lemyos
sisAjeuy oy3

al Jnuunpe

dd-Xpl

2100 05007

aN anuenp

ureig gnueno

42700261

05886811

4 H0008LN3A
uonoales uoisiaqg

sehLLEBIM

5795281

46BEBELIM

(s)esessiq

Awouoiny gwes poylew N

ndino aoinaq ndui ad1n8Q

)se} 90IneQ HSE)} [edIul])  SSe|D

a1eq

awvydg Jainjoesnuep

ao1n8Qg

ou |eaouddy

panuizuo)

I SlqeL

Lyell D, et al. BMJ Health Care Inform 2021;28:6100301. doi:10.1136/bmjhci-2020-100301


https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K173939
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K182564
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K191171
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/denovo.cfm?ID=DEN180001
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K181988
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K192004

o
7
o
3]
3]
©
c
[
o

o

panuiuo)

(e) "s190UBD
Janl| pue Bun

(1) ssessip
Aispe Areuolo)

(®)

J20ue? jseaig

() seluyAyuy
oeIpIe)

(1) ®anyoeu) ISUM

(1) snuypeo8lso
oauy]

Buoos

OAISISSY  SOA 7@ 4o Buipesb [eoulD

Buoos

uoljeWIOjU]  SBA NND Jo Buipesb [eoiuin

Buloos

uoisioeq SOA N 4o Buipesb eoluln

asess|p Jo

oAllSISSY S8\ Buipuly [oAs| 8seD

<

asess|p Jo

OAlISISSY  SOA 7@ Buipuly |eas| ese)

asessip Jo

OAlISISSY  SOA N Buipuly [pAs] aseD

'Savy-I
pue savy-Bun
Ujim 8oueploooe

ul Buipodai
‘SUOISa| JOA|| pue
sajnpou Bun| jo

IHN /1D uofiediiiuend

‘Aioboreo

Ysu e Buipodai

saliepe A1euolod

8y} Ul uoiedyIoed

10 saluenp

‘uonipe

Uyl savyd-19 4oV

UHM JUS}SISUOD

-1 Jo AloBajen e

Buipinoid ‘sesiq

sIsayjuAsowo} Yoes Jo eale anssi}
ysealq [eybiq esuep ay} seshjeuy

‘sabueyo

1-1S [ewJouqe

pue ‘AydospadAy
Je[NOLIUBA

‘uonoseul

[elpJesoAw

‘selwyihylie se

yons ‘sejjjewlouqe
oBIpJED U0}

D108 903 sjeudisu]

*SISUM }npe

0 sydeiboipe.
|eJaje| pue JoLsjue
-Jjoudysod jo
MaIAal 8y} Buunp
salnjoel} snipeJ
[e3stp 61ybIy

Aes-x pue Ajuep|

‘sebew|

Kei-x @8u dv/vd
uo SI}IYHEe0a1so
10 9ouasaud Jo}
slojeoipul pue
yipim aoeds

ol sy} Jo
SjuswaINSeaW

Aes-x oLBIN

810¢

sisoubelq 4 Aenuep

sisouBeiq ¢ glogaunre

sisoubelq 2 8log ludy

810¢
sisoubelg 2 JequienoN

sisoubeiq

2 8lozfen

610C
sisoubelq 2 JequwanoN

onou aq

NIAd shiepy

UoISIA
NI [EOIPSIA 1087

NINd ped!

SOIUOJ}08|]
[[lemaIe)
NN usyzuays

sa|bojouyos|
uabew|

NN qeT gl

1a
ABojoouQ shispy

SOOulesH

2lemyos

jusuwissessy

Ausueq
3oolemod

wiiogeld ©903-Iv

108}18Q081SO

VIVOM

26CVSELIM

10€862L I

0052 HO8 I

£sCEV08 M

2s90008IN3A

1801261

(s)esessiq

Awouoiny gwes poulaw N indino aoineq

ndui ad1n8Q

)se} 90Ine(Q HSE)} [edIul|)  SSe|) a1eq

awaydg Jainjoejnuepy

aoIneQ

ou |eaouddy

panuizuo)

L alqeL

Lyell D, et al. BMJ Health Care Inform 2021;28:100301. doi:10.1136/bmjhci-2020-100301


https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K192109
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/denovo.cfm?ID=DEN180005
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K180432
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K180125
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K172983
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K173542

panuiiuo)

(®)

sJeoued BunT

(®

Jaoued jsealig

(®

J2due isealg

(1) 490uUeD 15BBIg

(1) selwyihyuy
oelpJe)

(1) 490UED JSBAIg

(®

J20ued jseaig

QAIISISSY

oAIISISSY

QAIISISSY

oAIISISSY

QAIISISSY

oAlISISSY

QAlISISSY

SOA

SOA

SOA

ON

SOA

SOA

SOA

N

1a

1a

N

[\

oseasIp
10 sainjes} Aylpuep|

oseasIp
10 sainjes} Aylpuep|

aseasip
10 sainjes} Ayipusp|

aseasIp
Jo sainjesy Ayusp|

aseas|p
1O sainesy Ayusp|

Bunoos
Jo Buipelb [eoiuln

Buoos
Jo Buipelb [eoiuln

10

[N

sIsayluAsowol
isealq [eybiq

sIsayluAsowol
isealq [eybiq

903

punosesn

AydesBowwew
[exbiq

'se|npou
Areuownd jo
uopos1ep 8y; ul
ple 0} }saiaiul Jo
suolBal Buiiew
‘sabew) Bun|
passaiddns
|ossoA Alepuodes
sojelausn)

uinay
punoib umouy| e

YIM suoIsa| Jejiwis

yum uosedwod
Buipirosd
‘suolbal pajos|es
10 sisAleuy

‘sebewl jseaiq
eo
pue sanisusp
anssi} Yos
jueubijew 30839

‘sisoubelp

pue Bujusaios
}sealq Joj }salejul
10 suolbai
jueAs|as Ajjeolulo
J0 uonedyuUSP|

"SWiyIAys oeipIed
[ewJoude Buijeqge)
pue uoneouusp|

‘salio0ba1ed
paubile-savy-1g
JNoJ OuUl UOISS|

1seaiq e Bujuejuoo

}saleul Jo
(s)uoibau pajos|es
-Jasn Ajisse|o
Aljeoirewoiny

's9[eos
uoleolISSE|D
Aysuep savy
-1g9 8uy1 yum
90uUeplod2e
ul Aysuep
1seaiq spodal
pue sesAjeuy

sisoubelq

sisoubelq

sisoubelq

sisoubeiq

sisoubeiqg

sisoubeig

sisoubelq

4

4

910¢e
Jaquieydeg

2102 Ainp

6102
1800100

6102
19403100

ZL0og aunp

610z AIne

8102
Arenige

salbojouyos|
NIAd uressnly

sybisu|

oAoUBQ  BAleHIUEND

NN peQd!

VINd o160j0H

sal16ojouyos]
NId sBojoipien

NWNd  [ESIPSIN SO0

NI seysueQ

10 peayies|)

xyuenp

IV punojoid

sIsayluAsowo]
uofnjosay
ubIH welsAg
g suoisuswig
elusjes

sbojoipien

jsealg
10} 5@ SOI0Y

Aysue@-Na

osHOZL9IN

1622002 kN3

967661611

:800S/€00080d

1689G0Z I

10TV I

co0VS0L I

(s)esessiq

Awouony awes poyew N

ndino aoineQq

ndui as1neQq

)se} 90IAaQg HSE} [edIUl|D  SSe|D)

a1eq

awayds Jainmoejnuepy

ao1neQg

ou |eaouddy

panunuod | 9|qeL

Lyell D, et al. BMJ Health Care Inform 2021;28:6100301. doi:10.1136/bmjhci-2020-100301


https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K170540
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K190442
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K170568
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P080003S008
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P080003S008
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P080003S008
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K191994
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/denovo.cfm?ID=DEN170022
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K161201

panuiuo)

(®)

J20oue0 jseaig

(1) uoisnjooQ
|9ssa abue]

(1) wsijoqu3z
Areuownd
‘abeysioweeH
[elueIOBI|

(1) @unyoeuy
aulds [eoInIRD)

U]
sojaqelp | adAL

(1) 490uUBD 15BBIg

uolsioeq

uolsioeq

uoisioeq

uoisioeq

aAnsIssy

uoisioag

oAlISISSY

SOA

SOA

SOA

SOA

SOA

SOA

SOA

N

TN

NNO

N

suoljeoliou abeu|

suoleoiiou abeu|

suoleoliou abeu|

suoleoliiou abeu|

SUOIJEPUBLILLODSI
juswieal|

uoieoyUEND

aseasIp
Jo sainjesy Ajusp|

AydesBowwew
[eubig

10

10

10

eyep dwnd ulnsu;
pue asoon|b poo|g

IHN

Aydesbowwew
rendia

‘lons| wexa a8y} je
Buipuiy snoloidsns
QU0 }SED| 1B Ylm
saseo BuiAjiou
‘swesbowwew
Buiusslos asAfeuy

‘sa1bojoyied
uoisn|oo0
|ossap abueT jo
sBuipuiy anisod
pajoadsns yum
saseo BulAyiou
‘sabew| asAjleuy

‘sa1bojoyied
wsljoqug
Areuowind 1o
abeyiiowaeH
[elueloeU| JO
sBuipuly ensod
pajoadsns yum
saseo BulAyiou
‘sabewl asAjleuy

'sainjoel}
yum s|qiyedwiod
suJeped ul suoq

auids [B2IAI9D By}
Ul S810UddN| Jeasul|
Jo sBuipuly aaiysod
paoadsns yum
saseo BulAyiou
‘sabew| asAjeuy

'soljed
asop dwnd uynsui
Buisiwndo Joy
suoljepuUBIWOD8I
ajelausb 0} elep
dwnd ujnsul

pue asoon|b
poo|q asAjleuy

*UOI}BJ}USIUOD
uoJI JBA|| 8INSEB|A|

‘Aoueubijew

0 pooyii
1oy} ssasse pue
Jooueo jseaiq
Jo} snojoidsns
suolbai Aypusp)|

61L0¢

abeu] 4 yosey

6L0C

abel] 2 Jequweosqg

aben| 2 610g ludy

abeu| Z 610z fey

juawieal] ¢ 6LogAine

8L0¢

sisoubelq 2 JequwanoN

6L0C

sisoubelig 2 JequweoeQg

NINd

NINd

NINd

NINd

NI

NN

NINd

XU}oN8IND

[EOIPSIN 00N

[EQIPBI 00N

[BJIP3N S0

sejeqelq
paeaiq
S90INMBS
sisAleuy

yiesH
20uUBUOSaY

A4 [BOIPBN
JUI04U99105

abeuw)

(On7) eseogeug

(3d pue
HOI) eseojeug

(4s90) eseoyaug

oid
JOSIAPY PaNESIq

wolsAg sisAleuy
HewSLIeH

eJedsuel|

#S82E8IM

€826 1

2CL00B I

+96806 11

150LELBIM

2581+2281

65282261

(s)esessiq

Awouoiny

dnes

poyow N

ndino aoinaq

ndui ad1n8Q

)se} 90Ine(Q HSE)} [edIul]D  SSe|D)

a1eq

awayosg

Jainjoegnuep

ERTTET]

ou |eaouddy

panuizuo)

L alqeL

o
7
o
3]
3]
©
c
[
o

o

Lyell D, et al. BMJ Health Care Inform 2021;28:100301. doi:10.1136/bmjhci-2020-100301

10


https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K192287
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K182218
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K191370
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K190896
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K190072
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K192383
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K183285

"90IA8(J [BOIPS|A B SE 21emios ‘QINES ‘uoneonou axiewald ‘NN ‘feroidde jesuewsaid ‘YiNd Somiau [einsu ‘NN ‘Buiuies] suilyoew N ‘waisAg ereq
pue Buipoday-Buibew| JaAIT ‘SQyY-1T 4omiau [ednau dasp ‘NNQ ‘Buluies| desp “1q HomisN [eInaN [euonnjoauod deag ‘NNOQ HI0MIaU [einau [eUOIIN|OAUOD ‘NNO ‘WalsAS ereq pue Buipodey-Buibew) 1seaig ‘SQyd-1g ‘@ousabijjaiul [eloliye ‘|y

*UOISIOdP SNOWOUOINE ‘UOISIOa( ‘UOIFBWIONUI SNOWOUOINE ‘UOIFBLLIOLN| DAIISISSE :Alouoiny

“JainjoenuBW AQ pPaqlosep se poyiew A
‘9SEasIp PoleIDoSSE (B) ‘oseasIp pajedlpul (1) :(s)esessiq

(0]

xeloyjownaud

(1) ebeysowseH
[elueloeU|

(0]

uoisny3 [einald

(1) uoisnjooQ
|9ssap abie

(1) ebeysowseH
[elueIoBI|

(0]

Xeloyjownaud

QAlISISSY

uolsioeq

uoisioeq

uoisioag

uolsioeq

uolsioeq

uolsioeq

uolsioeq

SOA

ON

SOA

SOA

SOA

SOA

SOA

SOA

1a

v

aa

921ASp JO
|0J1UOD DlFeWOoINY

921ABP JO
|0J1U0D DlFeWOoINY

suoleolyijou aber|

suoljeoiijou abeu)

suoleojou abeu|

suoleoiiou abeu|

suolyeoliou abeu|

suoleoliiou abeu|

weJbolpiesoyoy

Adoosolon|4

Ael-x

10

Aes-x

10

10

Ael-x

*SUOI}BIUSLIO pUE
SMaIA olysoubelp
pJepuE)s jo
sabew| 1081100
Bulureyqo jsisse
0} uojysinboe
AydeiBoipieooyos
Buunp souepinb
swi-lesy

'suoljeoldde
o1doosoionjy Ul
}saJlaul Jo uoibal
pajewony

‘XeJoyjownaud Jo
sBuipuyy payoadsns
Ayou pue Ayuapi
Ajjesnewoiny

abeyioweeH
[elueJOB.IU| JO
sBuipuy peyoadsns
Aou pue Apjuspl
Ajjeairewoiny

‘uoisnye [eng|d jo
sBuipuiy pajoadsns
Aou pue Apjuspl

Ajjeoirewoiny

*uoISN|990
|ossan abue| Jo
sBuipuiy pajoadsns
ypim sased Ayjou
pue Ayusp|

abeyliowsaey
[elueIOBIUI
@)noe jo sbuipuly
pajoadsns yum
Sased Ajj0u

pue Ayusp|

‘xeJjoyjownaud jo
sBuipuy peyoadsns
Unm saseo Ajjou
pue asAleuy

2Inpaooid

2Inpaooid

obeu|

abeu|

abeu)

abeu]

abeu]

abeu]

4

0202
Arenige

61L0¢

1803100

6102 Aey

610¢ aunp

6102
JaquianoN

8102
Arenige4

810¢
19403100

6102
1snbny

8ouBpIND

onou eq sqe] Aeg uonded 9907006 N3

Buibew
[edIpa N

NINd ebawQ pilysoioni4 10E L6

uonejuswajdwy uonoy

uoIsin

NWd [eJIPSN BIgaZ XNduiesH gyG9E06 IM

uoIsin

NINd  [edIPS|\ eigeZ HOIY¥EsH 1572706 M

uoIsin

NINd  [edIPS|A eigeZ dXxouyesH 9p02EC6 1M

onou eq IV°ZIN 10®j0p «©2002IN3A

NINd IV-OXeiN x|oidiooy wllLC8IM

swalsAg
NN [edIpaN 3D

ale) [eonud epC8HE8IN

(s)aseasiq

Awouoiny gnes poyaw TN

ndino asineqg

ndul ao1naq

Sk} @0IneQ YSE} [edIul) SSe|D

e1eq

awiayog Jainjoejnuepy aoInaQq ou jeaouddy

panupuod | a|qeL

11

Lyell D, et al. BMJ Health Care Inform 2021;28:6100301. doi:10.1136/bmjhci-2020-100301


https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K183182
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K182177
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/denovo.cfm?ID=DEN170073
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K192320
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K190424
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K190362
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K191713
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/denovo.cfm?ID=DEN190040

Open access

3

Table 2 Diseases indicated or associated with ML devices

Indicated or associated disease*

Diagnose Triage Treatment

Breast cancer

Cardiac arrhythmias
Intracranial haemorrhage
Lung cancer

Heart murmurs

Large vessel occlusion
Pneumothorax

Cervical spine fracture
Coronary artery disease
Diabetic retinopathy
Osteoarthritis

Liver cancer

Pleural effusion
Prostate cancer
Pulmonary embolism

Sleep and respiratory related sleep disorders

Diabetes mellitus type 1
Wrist fracture

7 1

e e T S S O S S N e TL L S T RV R OV I GV I o o - 4
[ S O U
N

*Two devices were indicated for two diseases.

ML, machine learning.

time-sensitive cases by flagging and displaying notifica-  is ALECG Platform.” It reports whether common cardiac
tions for cases with suspect positive findings of cervical =~ conditions are present, such as arrhythmias and myocar-
spine fracture,” large vessel occlusion,” intracranial  dial infarction. While clinicians can view the original trac-
haemorrhage and pulmonary embolism® as they are  ings, the device reports on the entire case. In contrast,
received. A device providing case level findings of disease ~ a device providing feature level detection of disease is

Table 3 ML device output by type

Output type Devices Description

Quantification 13 Quantification of information derived from the images, such as, cardiac function
and blood flow,? % %3837 or yolume of structures including the brain,®' %% and
prostate.®*

Triage notifications 10 Triage notification alert clinicians to cases with suspected positive findings.?® ***

Case-level finding of disease 6

Identify features of disease 6

Clinical grading or scoring 5

Enhanced images

Automatic coding of features 2
or events

Automatic control of 2
electronic or mechanical
devices

Treatment recommendations 1

Case level finding of disease such as, wrist fractures,®® diabetic retinopathy,*®
osteoarthritis,®' heart murmurs®* *® and cardiac arrhythmias.?* %2

Identify features of disease thereby drawing clinician attention to them, such
prompting breast®*” *° or lung®® cancers on images or cardiac arrythmias on ECG
tracings.>*

Clinical grading or scoring (n=5) on standardised clinical assessment instruments,
such as BI-RADS,?° %% | |-RADS,?? lung-RADS,® or Agatston-equivalent scores.®

Enhanced images with reduced noise and improved image quality.?52°

Automatic coding of features or events in the data, such as sleep stages and
respiratory events in polysomnography data, or colour coding structures in
optical coherence tomography.®

Automatic control of electronic or mechanical devices, such as fluoroscope
collimator®” and automatic recording of ultrasound clips dependent on detected
image quality.®

Treatment recommendations, such as adjustments to insulin pump dose ratios.®”

BI-RADS, Breast Imaging-Reporting and Data System; LI-RADS, Liver Imaging-Reporting and Data System; ML, machine learning.
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Profound AI,56 which detects and marks features indicative
of breast cancer on digital breast tomosynthesis exams. It
is intended to be used concurrently by radiologists while
interpreting exams, drawing attention to features which
radiologists may confirm or dismiss. A device reporting
clinical classifications or grades is DM-Density,” which
reports breast density grading for digital monography
cases according to the American Collage of Radiology’s
Breast Imaging-Reporting and Data System Atlas.*®

Action implementation

Devices providing action implementation included
Caption Guidance®® and FluroShield”; these imple-
mented decisions through the automatic control of an
electronic or mechanical device. Caption Guidance®
assists with acquisition of echocardiograms, providing
real-time guidance to sonographers and feedback on
detected image quality. Ultrasounds are automatically
captured when the correct image quality is detected.
FluroShield®” automatically controls the collimator
during the fluoroscopy to provide a live view of a region
of interest, with a lower refresh rate of once or twice per
second for the wider field of view, thereby reducing radi-
ation exposure to patient and clinician.

ML device autonomy

Nearly half (n=23) of devices were assistive, characterised
by indications emphasising clinician responsibility for the
final decision or statements limiting the extent to which
the device could be relied on (box 1). Assistive devices
comprised all devices providing feature level detec-
tion,”™ five of six devices reporting a case level finding of
disease,” >’ and almost half of devices providing quanti-
fication,**57 % Notwithstanding clinician responsibility to
patients, the indications for the remaining devices did not

Box1 Examples of FDA-approved indications specifying
responsibility for the final decision on the device task

resides with the clinician. For further examples, see online
supplemental appendix A

‘All automatically scored events are subject to verification by a qualified
clinician.”®

‘Not intended for making clinical decisions regarding patient treatment
or for diagnostic purposes.’®

‘Intended as an additional input to standard diagnostic pathways and is
only to be used by qualified clinicians.’®”

‘Interpretations offered by (device) are only significant when considered
in conjunction with healthcare provider over-read and including all other
relevant patient data.’

‘Should not be used in lieu of full patient evaluation or solely relied on to
make or confirm a diagnosis.’’

‘The clinician retains the ultimate responsibility for making the pertinent
diagnosis based on their standard practices.®?

‘Patient management decisions should not be made solely on the
results.’®*

‘Provides adjunctive information and is not intended to be used without
the original CT series. %

specify such limitations, when used as indicated. Conse-
quently, those devices appeared to automate functions
otherwise performed by clinicians, to a greater extent
than assistive devices. Fourteen devices provide autono-
mous decisions that clinicians could act on; these were
primarily devices providing triage notiﬁcations,25 4048
but also included IDx-DR" a device providing case-level
findings of diabetic retinopathy, allowing screening in
primary practice where results are used as the basis for
specialist referral for diagnosis and management. Twelve
devices provide autonomous information, that clini-
cians could use in their decision making to determine
an outcome for clinical tasks. These included devices
providing enhanced images,?**’ quantification **=#2 %70
and one device which coded features or events.*

DISCUSSION

Main findings and implications

The way that algorithms are embedded in medical devices
shapes how clinicians interact with them, with different
profiles of risk and benefit. We demonstrate how the
stages of automation framework,'” can be applied to
determine the stage of clinician decision making assisted
by ML devices. Together with our level of autonomy
framework, these methods can be applied to examine
how ML algorithms are used in clinical practice, which
may assist addressing the dearth of human factors eval-
uations related to the use of ML devices in clinical prac-
tice.'” Such analyses (table 1) permit insight into how
ML devices may impact or change clinical workflows and
practices, and how these may impact healthcare delivery.

While FDA approval of ML devices is a recent develop-
ment, only six approvals in this study were via De Novo
classification for new types of medical devices. Most
approvals were via the PMN pathway for devices that are
substantially equivalent to existing predicate devices.
Some predicates could be traced to the ML device De
Novo’s, while others were non-ML devices with similar
indications except using different algorithms. As the FDA
assesses all medical devices on the same basis, regardless of
ML utilisation, it is unsurprising that ML medical devices
largely follow in the footsteps of their non-ML forebears.
Most were assistive or autonomous information which left
responsibility for clinical decisions to clinicians.

We identified an interesting group of devices, primarily
triage devices, which provided autonomous decisions,
independent of clinicians. These triage devices appeared
to perform tasks intended to supplement clinician work-
flow, rather than to automate or replace existing clinician
tasks. The expected benefit is prioritising the reading of
cases with suspected positive findings for time-sensitive
conditions, such as stroke, thereby reducing time to inter-
vention, which may improve prognosis. Unlike PMNs, De
Novo classifications report more details, including identi-
fied risks. The De Novo for the triage device, ContaCT,45
identifies risks associated with false-negatives that could
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lead to incorrect or delayed patient management, while
false-positives may deprioritise other cases.

Likewise, the diabetic retinopathy screening device,
IDx-DR* appears to supplement existing workflows by
permitting screening in primary practice that would
otherwise be impossible. The goal is to increase screening
rates for diabetic retinopathy by improving access to
screening and reducing costs.”" The De Novo describes
risks that false-negatives may delay detection of retinop-
athy requiring treatment, while false-positives may subject
patients to additional and unnecessary follow-up.*
However, the device may enable far greater accessibility
to regular screening.

In contrast, with assistive devices there is overlap
between what the clinician and device does. Despite many
of these ML devices providing decision selection, such as
reporting on the presence of disease, the approved indi-
cations of all assistive devices—nearly half of reviewed
devices—emphasised that decisions are the responsibility
of the clinician (box 1). Such stipulations specify how
device information should be used and may stem from
several sources, such as legal requirements for tasks: who
can decide what, for example, diagnose or prescribe medi-
cines, and legal liability about who is accountable when
things go wrong. However, the trustworthiness of devices
cannot be inferred by the presence of such indications.

Assistive devices change how clinicians work and can
introduce new risks.”? Instead of actively detecting and
diagnosing disease, through patient examination, diag-
nostic imaging or other procedures, the clinician’s role is
changed by the addition of the ML device as a new source
of information. Crucially, indications requiring clini-
cians to confirm or approve ML device findings create
new tasks for clinicians; to provide quality assurance for
device results, possibly by scrutinising the same inputs as
the ML device, together with consideration of additional
information.

The benefit of assistive ML devices is the possibility
of detecting something that might have otherwise been
missed. However, there is risk that devices might bias clini-
cians; that is, ML device errors may be accepted as correct
by clinicians, resulting in errors that might not have
otherwise occurred.” ™ Troublingly, people who suffer
these automation biases exhibit reduced information
seeking”"® and reduced allocation of cognitive resources
to process that information,”” which in turn reduces their
ability to recognise when the decision support they have
received is incorrect. While improving ML device accu-
racy reduces opportunities for automation bias errors,
high accuracy is known to increase the rate of automa-
tion bias,” likely rendering clinicians less able to detect
failures when they occur. Of further concern, is evidence
showing far greater performance consequences when
later stage automation fails, which is most evident when
moving from information analysis to decision selection.”
Greater consequences could be due to reduced situa-
tional awareness as automation takes over more stages of
human information processing.”

Indeed, the De Novo for Quantx,57 an assistive device
which identifies features of breast cancer from MRI,
describes the risk of false-negatives which may lead to
misdiagnosis and delay intervention, while false-positives
may lead to unnecessary procedures. The De Novo for
OsteoDetect’ likewise identifies a risk of false-negatives
that ‘users may rely too heavily on the absence of (device)
findings without sufficiently assessing the native image.
This may result in missing fractures that may have other-
wise been found.”” While false-positives may result in
unnecessary follow-up procedures. These describe the
two types of automation bias errors which can occur when
clinicians act on incorrect CDS. Omission errors where
clinicians agree with CDS false-negatives and conse-
quently fail to diagnose a disease, and commission errors
whereby clinicians act on CDS false-positives by ordering
unnecessary follow-up procedures.”

Other risks identified in De Novo classifications
include device failure, and use of devices on unintended
patient populations, with incompatible hardware and
for non-indicated uses. Such risks could result in devices
providing inaccurate or no CDS. Controls outlined in De
Novos focused on software verification and validation,
and labelling, to mitigate risks of device and user errors,
respectively.

These findings have several implications. For clinicians,
use of ML devices needs to be consistent with labelling
and results scrutinised according to clinicians’ expertise
and experience. Scrutiny of results is especially critical
with assistive devices. There needs be awareness of the
potential for ML device provided information to bias
decision-making. Clinicians also need to be supported to
work effectively with ML devices, with the training and
resources necessary to make informed decisions about
use and how to evaluate device results. For ML device
manufacturers and implementers, the choice of how to
support clinicians is important, especially the choice of
which tasks to support, what information to provide and
how clinicians will integrate and use those devices within
their work. For regulators, understanding the stage and
extent of human information processing automated by
ML devices may complement existing risk categorisation
frameworks,” ® by accounting for how the ML device
contribution to decision-making modifies risk for the
intended use of device provided information; to treat
or diagnose, to drive clinical management or to inform
clinical management.*’ Regulators could improve their
reporting of ML methods used to develop the algorithms
utilised by devices. These algorithms are akin to the ‘active
ingredient’ in medicines as they are responsible for the
device's action. However, consistent with the previous
study we found that the public reporting of ML methods
varied considerably but was generally opaque and lacking
in detail."® Presently, the FDA only approves devices with
‘locked’ algorithms,* but are moving towards a frame-
work that would permit ML devices which learn and
adapt to real-world data.*” Such a framework is expected
to involve precertification of vendors and submission

45 52 57
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of algorithm change protocols.*” It will be important to
continually evaluate the clinician-ML device interactions
which may change with regulatory frameworks.

Finally, there are important questions about responsi-
bility for ML device provided information and the extent
to which clinicians should be able to rely on it. While
exploration of these questions exceeds the scope of this
article, models of use that require clinicians to double
check ML devices results, may be less helpful than devices
whose output can be acted on. As ML devices become
more common there needs to be clearly articulated
guidelines on the division of labour between clinician
and ML devices, especially in terms of who is responsible
for which decisions and under what circumstances. In
addition to the configuration of tasks between clinician
and ML devices, how devices work and communicate with
clinicians is crucial and requires further study. The ability
of ML devices to explain decisions through presentation
of information, such as marking suspected cancers on
images or using explainable Al techniques® will impact
how clinicians will assess and make decisions based on
ML device provided information.

Limitations

There are several limitations. First, it was not possible to
directly search FDA approval databases, the primarysource
of approvals. Second, the reporting in approvals varied
considerably with nearly one third of included approvals
not describing ML utilisation. Indeed, all disagreements
on device selection occurred where evidence had to be
sought from the manufacturer’s website and non-peer
reviewed sources, where one reviewer located key infor-
mation the other did not. Consequently, it is possible
that some devices may have been missed. Nevertheless,
the review provides useful insights in the absence of capa-
bility to systematically search primary sources. Our anal-
ysis focused on intended use as described in approvals,
rather than actual use in the real world, which may differ.
Finally, the focus on medical devices limits the review
to ML algorithms approved by the FDA. Nevertheless,
our methods to examine the stage of human informa-
tion processing automated and level of autonomy can
be applied to examine clinician interaction with the vast
majority of ML CDS which are not regulated as medical
devices. Indeed, there is an urgent need to ensure ML
based CDS are implemented safely and effectively in clin-
ical settings.”

CONCLUSION

Our analysis demonstrates the variety of ways in which ML
algorithms are embedded in medical devices to support
clinicians, the task supported and information provided.
Leveraging the benefits of ML algorithms for CDS and
mitigating risks, requires a solid working relationship
between clinician and the CDS. Such a relationship must
be careful designed, considering how algorithms are
embedded in devices, the clinical tasks they support, the

information they provide and how clinicians will interact
with them.
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