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ABSTRACT
Objective  To examine how and to what extent medical 
devices using machine learning (ML) support clinician 
decision making.
Methods  We searched for medical devices that were (1) 
approved by the US Food and Drug Administration (FDA) 
up till February 2020; (2) intended for use by clinicians; (3) 
in clinical tasks or decisions and (4) used ML. Descriptive 
information about the clinical task, device task, device 
input and output, and ML method were extracted. The 
stage of human information processing automated by ML-
based devices and level of autonomy were assessed.
Results  Of 137 candidates, 59 FDA approvals for 49 
unique devices were included. Most approvals (n=51) were 
since 2018. Devices commonly assisted with diagnostic 
(n=35) and triage (n=10) tasks. Twenty-three devices were 
assistive, providing decision support but left clinicians 
to make important decisions including diagnosis. Twelve 
automated the provision of information (autonomous 
information), such as quantification of heart ejection 
fraction, while 14 automatically provided task decisions 
like triaging the reading of scans according to suspected 
findings of stroke (autonomous decisions). Stages of 
human information processing most automated by devices 
were information analysis, (n=14) providing information 
as an input into clinician decision making, and decision 
selection (n=29), where devices provide a decision.
Conclusion  Leveraging the benefits of ML algorithms to 
support clinicians while mitigating risks, requires a solid 
relationship between clinician and ML-based devices. 
Such relationships must be carefully designed, considering 
how algorithms are embedded in devices, the tasks 
supported, information provided and clinicians’ interactions 
with them.

INTRODUCTION
Artificial intelligence (AI), technologies 
undertake recognition, reasoning or learning 
tasks typically associated with human intelli-
gence,1 such as detecting disease in an image, 
diagnosis and recommending treatments, 
have the potential to improve healthcare 
delivery and patient outcomes.2 Machine 
learning (ML) refers more specifically to 
AI methods that can learn from data.3 The 

current resurgence in ML is largely driven 
by developments in deep learning methods, 
which are based on neural networks. Despite 
the expanding research literature, relatively 
little is known about how ML algorithms 
are embedded in working clinical decision 
support (CDS).

CDS that diagnoses or treats human disease 
automate clinical tasks otherwise done by 
clinicians.4 Importantly, CDS operates within 
a human–technology system,5 and clinicians 
can elect to ignore CDS advice and perform 
those tasks manually. Clinician interaction 
with ML-based CDS influences how they work 
and make decisions which in turn affects care 
quality and patient safety.

Alongside intended benefits, ML poses new 
risks that require specific attention. A funda-
mental challenge is that ML-based CDS may 
not generalise well beyond the data on which 
they are trained. Even for restricted tasks 
like image interpretation, ML algorithms 
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port (CDS) operates within a human–technology 
system.
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vide clinicians with decisions or information to sup-
port their decision making.
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cians to confirm information provided by CDS and to 
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►► We demonstrate methods to examine how ML-
based CDS are used by clinicians in the real world.

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-2695-0368
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjhci-2020-100301&domain=pdf&date_stamp=2021-04-14


2 Lyell D, et al. BMJ Health Care Inform 2021;28:e100301. doi:10.1136/bmjhci-2020-100301

Open access�

can make erroneous diagnoses because of differences in 
the training and real-world populations, including new 
‘edge’ cases, as well as differences in image capture work-
flows.6 Therefore, clinicians will need to use ML-based 
CDS within the bounds of their design, monitor perfor-
mance and intervene when it fails. Clinician interaction 
with CDS is thus a critical point where the limitations of 
ML algorithms are either mitigated or translated into 
harmful patient safety events.7–9

One way to study the interaction between clinicians 
and ML-based CDS is to consider medical devices. In the 
USA, software, including CDS that is intended to diag-
nose, cure, mitigate, treat or prevent disease in humans, 
are considered medical devices10 and subject to regu-
lation. Increasing numbers of devices that embody ML 
algorithms are being approved by the US Food and Drug 
Administration (FDA).11 12 Approval requires compliance 
with standards, as well as evaluation of device safety and 
efficacy.13 Regulators provide public access to approvals 
and selected documentation. Therefore, medical devices 
provide a useful sample for studying how ML algorithms 
are embedded into CDS for clinical use and how manu-
facturers intend clinicians to interact with them.

Research has predominantly focused on the develop-
ment and validation of ML algorithms, and evaluation of 
their performance,11 14–16 with little focus on how ML is 
integrated into clinical practice and the human factors 
related to their use.17 In a recent systematic review of ML 
in clinical medicine, only 2% of studies were prospective, 
most were retrospective providing ‘proof of concept’ for 
how ML might impact patient care, without comparison 
to standard care.18

While one recent study has described the general char-
acteristics of 64 ML-based medical devices approved by 
the FDA,12 no previous study has examined how ML 
algorithms are embedded to support clinician decision 
making. Our analysis of ML medical devices thus seeks to 
bridge the gap between ML algorithms and how they are 
used in clinical practice.

Human information processing
In assessing human–machine interaction, it is useful to 
consider how clinicians process information and make 
decisions, and which stages of that process are automated 
by ML devices. Automaton is the machine performance 
of functions otherwise be done by humans.4 Human 
information processing has been broken down into four 
distinct stages: (1) Sensing information in the environ-
ment, (2) Perceiving or interpreting what the infor-
mation means, (3) Deciding the appropriate response 
and (4) Acting on decisions (figure  1).19 For example, 
the diagnosis of pneumonia requires clinicians to sense 
information relevant to the provisional and differential 
diagnoses of the patient’s condition from their medical 
history, physical examination and diagnostic tests. Infor-
mation then needs to be interpreted: do chest X-rays 
show evidence of inflammation? These analyses inform 

decisions about diagnosis and treatment, which are then 
enacted by ordering or referring for treatment.

ML devices can automate any or all stages of human 
information processing: (1) Acquiring information, (2) 
Analysing information, (3) Decision selection from avail-
able alternatives and (4) Implementation of the selected 
decision (figure 1).19 Later stages represent higher levels 
of automation. For instance, an ML device assisting the 
diagnosis of cardiac arrhythmias that report quantita-
tive measurements from ECGs, automates information 
analysis, whereas devices that indicate the presence or 
absence of atrial fibrillation automate decision selection. 
Identifying the stage of human information processing 
automated provides a useful framework for evaluating 
how ML devices change clinicians’ work, especially the 
division of labour between clinicians and ML devices.

Accordingly, we examined FDA-approved ML devices to 
understand:

►► Which ML devices have been approved for clinical 
practice, their intended use, the diseases they diag-
nose, treat or prevent, and how manufacturers intend 
for clinicians to interact with them?

►► How ML devices might change clinician decision 
making by exploring the stage of human information 
processing automated.

►► The extent to which ML devices function autono-
mously and how that impacts clinician–ML device 
interaction.

METHOD
We examined FDA-approved medical devices that use ML 
(online supplemental appendix A). Unable to directly 
search FDA databases for ML devices, we used an internet 
search to identify candidate devices that were:
1.	 FDA-approved medical devices.
2.	 Intended for use by clinicians.
3.	 Intended to support clinical tasks/decisions.
4.	 Using ML.

The search identified 137 candidate devices for which 
130 FDA approvals were retrieved. Of these, 59 approvals 
met the inclusion criteria covering 49 unique ML devices 
(figure 2).

Data extraction and analysis
For each included approval, we extracted the approval 
details (date, pathway, device risk class). For each unique 
device, we then extracted type (software as a medical 
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Stages of Human Information Processing
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Figure 1  Stages of human information processing (top) and 
their automation (bottom).19
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device or integrated into hardware); characteristics (indi-
cated disease, clinical task, device task, input, output); and 
ML method used as described in the approval. Clinical 
task, device input and output were identified from device 
indications and descriptions, and grouped according to 
natural categories emerging from the sample. The device 
task was summarised from the indications and device 
description in FDA approvals.

Stage of human information processing automated by ML devices
The device task was examined using the stages of auto-
mation of human information processing framework.19 
We classified the highest stage of human information 
processing (figure 1) automated by ML devices according 
to the following criteria (from lowest to highest):
1.	 Information acquisition: Device automates data acqui-

sition and presentation for interpretation by clinicians. 
Data are preserved in raw form, but the device may aid 
presentation by sorting, or enhancing data.

2.	 Information analysis: Device automates data interpre-
tation, producing new information from raw data. Im-
portantly, interpretation contributes new information 
that supports decision making, without providing the 
decision. For example, the quantification of QRS du-
ration from electrocardiograms provides new infor-
mation from ECG tracings that may inform diagnosis 
without being a diagnosis.

3.	 Decision selection: Device automates decision making, 
providing an outcome for the clinical task. For exam-
ple, prompting and thereby drawing attention to ma-
lignant lesions on screening mammograms, indicates 
a device decision about the presence of breast cancer.

4.	 Action implementation: Device automates implemen-
tation of the selected decision where action is required. 

For example, an implantable cardioverter-defibrillator, 
having decided defibrillation is required, acts by auto-
matically delivering treatment.

ML device autonomy
To understand the level of device autonomy, we exam-
ined the description and indications for use to determine 
the extent to which the device performs automated tasks 
independent of clinicians.19 For example, a device auto-
mating decision selection that requires clinician approval 
is less autonomous than similar devices that do not require 
approval. The approach is similar to existing levels of 
autonomy for specific tasks, such as driving automation,20 
and computer-based automation,21 which identify what 
user and automation are responsible for in relation to 
a defined task. Taking these models as a starting point, 
we developed a three-level classification for ML device 
autonomy based on how clinical tasks are divided between 
clinician and ML device (lowest to highest; figure 3).

1. Assistive devices are characterised by overlap in what 
clinician and device contribute to the task, but where clini-
cians provide the decision on the task. Such overlap or 
duplication occurs when clinicians need to confirm or 
approve device provided information or decisions.

2. Autonomous information is characterised by a sepa-
ration between what device and clinician contribute to 
the task, where devices contribute information that clini-
cians can use to make decisions.

3. Autonomous decision is where device provides the 
decision for the clinical task which can then be enacted 
by clinicians or the device itself.

Conceptually, there is also a zero level, representing 
the complete absence of automation where clinicians 
perform tasks manually without any device assistance.

Two investigators independently assessed the stage of 
automation and level of autonomy (DL and FM). Inter-
rater agreement was assessed using absolute agreement, 
two-way mixed effects intraclass correlation coefficient 
(ICC). Agreement for stage of automation was ICC=0.7 
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(95% CI 0.53 to 0.82) indicating moderate to good agree-
ment and for level of autonomy was ICC=0.97 (95% CI 
0.95 to 0.98) indicating excellent agreement.22 Disagree-
ments were resolved by consensus. A narrative synthesis 
then integrated findings into descriptive summaries for 
each category of ML devices.

RESULTS
Fifty-nine FDA approvals for ML devices met the inclusion 
criteria covering 49 unique devices (table 1). Six devices 
had two approvals and two had three approvals.

FDA approvals
The earliest approval was in 2008 for IB Neuro23 which 
produces perfusion maps and quantification of blood 
volume and flow from brain MRI. However, the majority 
of approvals were observed in recent years (2016=3; 
2017=5; 2018=22; 2019=27; 2020=2).

Most approvals (n=51) were via premarket notification 
(PMN) for devices which are substantially equivalent to 
existing and legally marketed devices. Only two were via 
premarket approval (PMA), the most stringent pathway 
involving regulatory and scientific review, including clin-
ical trials to evaluate safety and efficacy.13 The remaining 
six approvals were De Novo classification; a less onerous 
alternative to PMA for low to moderate risk devices where 
there is no substantially equivalent predicate. All PMN 
and De Novo approvals (n=57) were for class 2 devices, 
while both pPMAs (n=2) were for class 3 devices, which are 
classified as moderate and high levels of risk, respectively.

Clinical tasks and diseases supported by ML devices
We identified five distinct clinical tasks supported by 
ML devices. Most (n=35) assisted with diagnostic tasks 
assisting with the detection, identification or assessment 
of disease, or risk factors, such as breast density. The 
second most common were triage tasks (n=10), where 
devices assisted with prioritising cases for clinician review, 
by flagging or notifying cases with suspected positive 
findings of time-sensitive conditions, such as stoke. Less 
common tasks were medical procedures (n=2), where 
devices either assisted users performing diagnostic or 
interventional procedures. Treatment tasks (n=1) where 
devices provided CDS recommendations for changes to 
therapy regimes. Monitoring tasks (n=1) involved devices 
assisting clinicians to monitor patient trajectory over time.

Twenty-three devices were indicated for a specific 
disease, and nine could be reasonably associated with a 
disease. The most common diseases were cancers, espe-
cially of the breast, lung, liver and prostate (table  2). 
Others were stroke (intracranial haemorrhage and large 
vessel occlusion) and heart diseases. Two devices were 
indicated for two separate diseases.24 25 The remaining 
17 devices were indicated for applications broader than 
a specific disease.

Device inputs and outputs
The majority of devices used image data (n=42), these 
included computed tomography (CT; n=15), magnetic 

resonance imaging (MRI; n=10), X-ray (n=5), digital 
breast tomosynthesis (n=3), digital mammography (n=3), 
echocardiography (n=3), fluoroscopy (n=1), fundus 
imaging (n=1), optical coherence tomography (n=1), 
positron emission tomography (PET; n=1) and ultra-
sound (n=1).

The remaining seven used signal data. These included, 
electrocardiography (n=3), phonocardiography (n=2), 
polysomnography (n=1), blood glucose and insulin pump 
data (n=1) and biometric data from wearables (n=1).

We identified nine common means by which ML devices 
communicated results (table 3).

ML method
Manufacturers descriptions of ML method were varied. 
Most described a family of techniques (ML=14; deep 
learning=11), followed by generic descriptors (AI=15). 
Specific ML techniques were the least frequently reported 
(convolutional neural network=6; neural network=1; deep 
neural network=1; deep convolution neural network=1).

Stage of decision-making automated or assisted by ml 
devices
Most devices aided information analysis (n=14) and deci-
sion selection (n=29). ML devices also, but less commonly, 
aided in information acquisition (n=4) and action imple-
mentation (n=2), the earliest and latest stages of decision 
making, respectively.

Information acquisition
None of the devices acquired information, but instead 
aided presentation by enhancing the quality of CT, MRI 
and PET images26–29 thereby assisting clinician interpre-
tation. One representative device, SubtleMR28 reduces 
noise and increases image sharpness of head, neck, spine 
and knee MRI scans. SubtleMR receives DICOM (Digital 
Imaging and Communications in Medicine) image data 
from and returns enhanced DICOM images to a PACS 
(picture archiving and communication system) server.

Information analysis
Information analysis provides clinicians with new infor-
mation derived from processing raw inputs. Devices 
provided analysis in the form of quantification30–37 or 
automatic coding of features or events.38 39 For example, 
IcoBrain31 provides volumetric quantification of brain 
structures from MRI or CT scans, which can aid in the 
assessment of dementia and traumatic brain injury, while 
EnsoSleep39 automatically codes events in sleep studies 
such as stages of sleep and obstructive apnoeas to assist 
with the diagnosis of sleep disorders.

Decision selection
Decision selection provides a decision that is an outcome 
for the clinical task, such as triage notifications,25 40–48 case 
level findings of disease,24 49–53 identification of features 
indicative of disease,54–59 or clinical classifications or 
gradings.60–64 One device providing triage notifications 
is Briefcase.25 40 41 Briefcase assists radiologists triage 
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time-sensitive cases by flagging and displaying notifica-
tions for cases with suspect positive findings of cervical 
spine fracture,40 large vessel occlusion,41 intracranial 
haemorrhage and pulmonary embolism25 as they are 
received. A device providing case level findings of disease 

is AI-ECG Platform.53 It reports whether common cardiac 
conditions are present, such as arrhythmias and myocar-
dial infarction. While clinicians can view the original trac-
ings, the device reports on the entire case. In contrast, 
a device providing feature level detection of disease is 

Table 2  Diseases indicated or associated with ML devices

Indicated or associated disease* N Diagnose Triage Treatment

Breast cancer 8 7 1

Cardiac arrhythmias 3 3

Intracranial haemorrhage 3 3

Lung cancer 3 3

Heart murmurs 2 2

Large vessel occlusion 2 2

Pneumothorax 2 2

Cervical spine fracture 1 1

Coronary artery disease 1 1

Diabetic retinopathy 1 1

Osteoarthritis 1 1

Liver cancer 1 1

Pleural effusion 1 1

Prostate cancer 1 1

Pulmonary embolism 1 1

Sleep and respiratory related sleep disorders 1 1

Diabetes mellitus type 1 1 1

Wrist fracture 1 1

*Two devices were indicated for two diseases.
ML, machine learning.

Table 3  ML device output by type

Output type Devices Description

Quantification 13 Quantification of information derived from the images, such as, cardiac function 
and blood flow,23 30 32 33 37 or volume of structures including the brain,31 35 36 70 and 
prostate.34

Triage notifications 10 Triage notification alert clinicians to cases with suspected positive findings.25 40–48

Case-level finding of disease 6 Case level finding of disease such as, wrist fractures,52 diabetic retinopathy,49 
osteoarthritis,51 heart murmurs24 50 and cardiac arrhythmias.24 53

Identify features of disease 6 Identify features of disease thereby drawing clinician attention to them, such 
prompting breast55–57 59 or lung58 cancers on images or cardiac arrythmias on ECG 
tracings.54

Clinical grading or scoring 5 Clinical grading or scoring (n=5) on standardised clinical assessment instruments, 
such as BI-RADS,60 63 64 LI-RADS,62 lung-RADS,62 or Agatston-equivalent scores.61

Enhanced images 4 Enhanced images with reduced noise and improved image quality.26–29

Automatic coding of features 
or events

2 Automatic coding of features or events in the data, such as sleep stages and 
respiratory events in polysomnography data,39 or colour coding structures in 
optical coherence tomography.38

Automatic control of 
electronic or mechanical 
devices

2 Automatic control of electronic or mechanical devices, such as fluoroscope 
collimator67 and automatic recording of ultrasound clips dependent on detected 
image quality.66

Treatment recommendations 1 Treatment recommendations, such as adjustments to insulin pump dose ratios.87

BI-RADS, Breast Imaging-Reporting and Data System; LI-RADS, Liver Imaging-Reporting and Data System; ML, machine learning.
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Profound AI,56 which detects and marks features indicative 
of breast cancer on digital breast tomosynthesis exams. It 
is intended to be used concurrently by radiologists while 
interpreting exams, drawing attention to features which 
radiologists may confirm or dismiss. A device reporting 
clinical classifications or grades is DM-Density,63 which 
reports breast density grading for digital monography 
cases according to the American Collage of Radiology’s 
Breast Imaging-Reporting and Data System Atlas.65

Action implementation
Devices providing action implementation included 
Caption Guidance66 and FluroShield67; these imple-
mented decisions through the automatic control of an 
electronic or mechanical device. Caption Guidance66 
assists with acquisition of echocardiograms, providing 
real-time guidance to sonographers and feedback on 
detected image quality. Ultrasounds are automatically 
captured when the correct image quality is detected. 
FluroShield67 automatically controls the collimator 
during the fluoroscopy to provide a live view of a region 
of interest, with a lower refresh rate of once or twice per 
second for the wider field of view, thereby reducing radi-
ation exposure to patient and clinician.

ML device autonomy
Nearly half (n=23) of devices were assistive, characterised 
by indications emphasising clinician responsibility for the 
final decision or statements limiting the extent to which 
the device could be relied on (box 1). Assistive devices 
comprised all devices providing feature level detec-
tion,54–59 five of six devices reporting a case level finding of 
disease,24 50–53 and almost half of devices providing quanti-
fication.33–37 68 Notwithstanding clinician responsibility to 
patients, the indications for the remaining devices did not 

specify such limitations, when used as indicated. Conse-
quently, those devices appeared to automate functions 
otherwise performed by clinicians, to a greater extent 
than assistive devices. Fourteen devices provide autono-
mous decisions that clinicians could act on; these were 
primarily devices providing triage notifications,25 40–48 
but also included IDx-DR49 a device providing case-level 
findings of diabetic retinopathy, allowing screening in 
primary practice where results are used as the basis for 
specialist referral for diagnosis and management. Twelve 
devices provide autonomous information, that clini-
cians could use in their decision making to determine 
an outcome for clinical tasks. These included devices 
providing enhanced images,26–29 quantification23 30–32 69 70 
and one device which coded features or events.38

DISCUSSION
Main findings and implications
The way that algorithms are embedded in medical devices 
shapes how clinicians interact with them, with different 
profiles of risk and benefit. We demonstrate how the 
stages of automation framework,19 can be applied to 
determine the stage of clinician decision making assisted 
by ML devices. Together with our level of autonomy 
framework, these methods can be applied to examine 
how ML algorithms are used in clinical practice, which 
may assist addressing the dearth of human factors eval-
uations related to the use of ML devices in clinical prac-
tice.17 Such analyses (table  1) permit insight into how 
ML devices may impact or change clinical workflows and 
practices, and how these may impact healthcare delivery.

While FDA approval of ML devices is a recent develop-
ment, only six approvals in this study were via De Novo 
classification for new types of medical devices. Most 
approvals were via the PMN pathway for devices that are 
substantially equivalent to existing predicate devices. 
Some predicates could be traced to the ML device De 
Novo’s, while others were non-ML devices with similar 
indications except using different algorithms. As the FDA 
assesses all medical devices on the same basis, regardless of 
ML utilisation, it is unsurprising that ML medical devices 
largely follow in the footsteps of their non-ML forebears. 
Most were assistive or autonomous information which left 
responsibility for clinical decisions to clinicians.

We identified an interesting group of devices, primarily 
triage devices, which provided autonomous decisions, 
independent of clinicians. These triage devices appeared 
to perform tasks intended to supplement clinician work-
flow, rather than to automate or replace existing clinician 
tasks. The expected benefit is prioritising the reading of 
cases with suspected positive findings for time-sensitive 
conditions, such as stroke, thereby reducing time to inter-
vention, which may improve prognosis. Unlike PMNs, De 
Novo classifications report more details, including identi-
fied risks. The De Novo for the triage device, ContaCT,45 
identifies risks associated with false-negatives that could 

Box 1  Examples of FDA-approved indications specifying 
responsibility for the final decision on the device task 
resides with the clinician. For further examples, see online 
supplemental appendix A

‘All automatically scored events are subject to verification by a qualified 
clinician.’39

‘Not intended for making clinical decisions regarding patient treatment 
or for diagnostic purposes.’68

‘Intended as an additional input to standard diagnostic pathways and is 
only to be used by qualified clinicians.’37

‘Interpretations offered by (device) are only significant when considered 
in conjunction with healthcare provider over-read and including all other 
relevant patient data.’50

‘Should not be used in lieu of full patient evaluation or solely relied on to 
make or confirm a diagnosis.’51

‘The clinician retains the ultimate responsibility for making the pertinent 
diagnosis based on their standard practices.’62

‘Patient management decisions should not be made solely on the 
results.’64

‘Provides adjunctive information and is not intended to be used without 
the original CT series.’58

https://dx.doi.org/10.1136/bmjhci-2020-100301
https://dx.doi.org/10.1136/bmjhci-2020-100301
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lead to incorrect or delayed patient management, while 
false-positives may deprioritise other cases.

Likewise, the diabetic retinopathy screening device, 
IDx-DR49 appears to supplement existing workflows by 
permitting screening in primary practice that would 
otherwise be impossible. The goal is to increase screening 
rates for diabetic retinopathy by improving access to 
screening and reducing costs.71 The De Novo describes 
risks that false-negatives may delay detection of retinop-
athy requiring treatment, while false-positives may subject 
patients to additional and unnecessary follow-up.49 
However, the device may enable far greater accessibility 
to regular screening.

In contrast, with assistive devices there is overlap 
between what the clinician and device does. Despite many 
of these ML devices providing decision selection, such as 
reporting on the presence of disease, the approved indi-
cations of all assistive devices—nearly half of reviewed 
devices—emphasised that decisions are the responsibility 
of the clinician (box  1). Such stipulations specify how 
device information should be used and may stem from 
several sources, such as legal requirements for tasks: who 
can decide what, for example, diagnose or prescribe medi-
cines, and legal liability about who is accountable when 
things go wrong. However, the trustworthiness of devices 
cannot be inferred by the presence of such indications.

Assistive devices change how clinicians work and can 
introduce new risks.72 Instead of actively detecting and 
diagnosing disease, through patient examination, diag-
nostic imaging or other procedures, the clinician’s role is 
changed by the addition of the ML device as a new source 
of information. Crucially, indications requiring clini-
cians to confirm or approve ML device findings create 
new tasks for clinicians; to provide quality assurance for 
device results, possibly by scrutinising the same inputs as 
the ML device, together with consideration of additional 
information.

The benefit of assistive ML devices is the possibility 
of detecting something that might have otherwise been 
missed. However, there is risk that devices might bias clini-
cians; that is, ML device errors may be accepted as correct 
by clinicians, resulting in errors that might not have 
otherwise occurred.9 73 Troublingly, people who suffer 
these automation biases exhibit reduced information 
seeking74–76 and reduced allocation of cognitive resources 
to process that information,77 which in turn reduces their 
ability to recognise when the decision support they have 
received is incorrect. While improving ML device accu-
racy reduces opportunities for automation bias errors, 
high accuracy is known to increase the rate of automa-
tion bias,78 likely rendering clinicians less able to detect 
failures when they occur. Of further concern, is evidence 
showing far greater performance consequences when 
later stage automation fails, which is most evident when 
moving from information analysis to decision selection.79 
Greater consequences could be due to reduced situa-
tional awareness as automation takes over more stages of 
human information processing.79

Indeed, the De Novo for Quantx,57 an assistive device 
which identifies features of breast cancer from MRI, 
describes the risk of false-negatives which may lead to 
misdiagnosis and delay intervention, while false-positives 
may lead to unnecessary procedures. The De Novo for 
OsteoDetect52 likewise identifies a risk of false-negatives 
that ‘users may rely too heavily on the absence of (device) 
findings without sufficiently assessing the native image. 
This may result in missing fractures that may have other-
wise been found.’52 While false-positives may result in 
unnecessary follow-up procedures. These describe the 
two types of automation bias errors which can occur when 
clinicians act on incorrect CDS. Omission errors where 
clinicians agree with CDS false-negatives and conse-
quently fail to diagnose a disease, and commission errors 
whereby clinicians act on CDS false-positives by ordering 
unnecessary follow-up procedures.9 80

Other risks identified in De Novo classifications45 52 57 
include device failure, and use of devices on unintended 
patient populations, with incompatible hardware and 
for non-indicated uses. Such risks could result in devices 
providing inaccurate or no CDS. Controls outlined in De 
Novos focused on software verification and validation, 
and labelling, to mitigate risks of device and user errors, 
respectively.

These findings have several implications. For clinicians, 
use of ML devices needs to be consistent with labelling 
and results scrutinised according to clinicians’ expertise 
and experience. Scrutiny of results is especially critical 
with assistive devices. There needs be awareness of the 
potential for ML device provided information to bias 
decision-making. Clinicians also need to be supported to 
work effectively with ML devices, with the training and 
resources necessary to make informed decisions about 
use and how to evaluate device results. For ML device 
manufacturers and implementers, the choice of how to 
support clinicians is important, especially the choice of 
which tasks to support, what information to provide and 
how clinicians will integrate and use those devices within 
their work. For regulators, understanding the stage and 
extent of human information processing automated by 
ML devices may complement existing risk categorisation 
frameworks,81 82 by accounting for how the ML device 
contribution to decision-making modifies risk for the 
intended use of device provided information; to treat 
or diagnose, to drive clinical management or to inform 
clinical management.81 Regulators could improve their 
reporting of ML methods used to develop the algorithms 
utilised by devices. These algorithms are akin to the ‘active 
ingredient’ in medicines as they are responsible for the 
device's action. However, consistent with the previous 
study we found that the public reporting of ML methods 
varied considerably but was generally opaque and lacking 
in detail.12 Presently, the FDA only approves devices with 
‘locked’ algorithms,82 but are moving towards a frame-
work that would permit ML devices which learn and 
adapt to real-world data.83 Such a framework is expected 
to involve precertification of vendors and submission 
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of algorithm change protocols.82 It will be important to 
continually evaluate the clinician-ML device interactions 
which may change with regulatory frameworks.

Finally, there are important questions about responsi-
bility for ML device provided information and the extent 
to which clinicians should be able to rely on it. While 
exploration of these questions exceeds the scope of this 
article, models of use that require clinicians to double 
check ML devices results, may be less helpful than devices 
whose output can be acted on. As ML devices become 
more common there needs to be clearly articulated 
guidelines on the division of labour between clinician 
and ML devices, especially in terms of who is responsible 
for which decisions and under what circumstances. In 
addition to the configuration of tasks between clinician 
and ML devices, how devices work and communicate with 
clinicians is crucial and requires further study. The ability 
of ML devices to explain decisions through presentation 
of information, such as marking suspected cancers on 
images or using explainable AI techniques84 will impact 
how clinicians will assess and make decisions based on 
ML device provided information.

Limitations
There are several limitations. First, it was not possible to 
directly search FDA approval databases, the primary source 
of approvals. Second, the reporting in approvals varied 
considerably with nearly one third of included approvals 
not describing ML utilisation. Indeed, all disagreements 
on device selection occurred where evidence had to be 
sought from the manufacturer’s website and non-peer 
reviewed sources, where one reviewer located key infor-
mation the other did not. Consequently, it is possible 
that some devices may have been missed. Nevertheless, 
the review provides useful insights in the absence of capa-
bility to systematically search primary sources. Our anal-
ysis focused on intended use as described in approvals, 
rather than actual use in the real world, which may differ. 
Finally, the focus on medical devices limits the review 
to ML algorithms approved by the FDA. Nevertheless, 
our methods to examine the stage of human informa-
tion processing automated and level of autonomy can 
be applied to examine clinician interaction with the vast 
majority of ML CDS which are not regulated as medical 
devices. Indeed, there is an urgent need to ensure ML 
based CDS are implemented safely and effectively in clin-
ical settings.85

CONCLUSION
Our analysis demonstrates the variety of ways in which ML 
algorithms are embedded in medical devices to support 
clinicians, the task supported and information provided. 
Leveraging the benefits of ML algorithms for CDS and 
mitigating risks, requires a solid working relationship 
between clinician and the CDS. Such a relationship must 
be careful designed, considering how algorithms are 
embedded in devices, the clinical tasks they support, the 

information they provide and how clinicians will interact 
with them.
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