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In all countries the political decisions aim to achieve an almost stable configuration with a
small number of new infected individuals per day due to Covid-19. When such a condition
is reached, the containment effort is usually reduced in favor of a gradual reopening of the
social life and of the various economical sectors. However, in this new phase, the infection
spread restarts and, moreover, possible mutations of the virus give rise to a large specific
growth rate of the infected people. Therefore, a quantitative analysis of the regrowth
pattern is very useful. We discuss a macroscopic approach which, on the basis of the
collected data in the first lockdown, after few days from the beginning of the new phase,
outlines different scenarios of the Covid-19 diffusion for longer time. The purpose of this
paper is a demonstration-of-concept: one takes simple growth models, considers the
available data and shows how the future trend of the spread can be obtained. The method
applies a time dependent carrying capacity, analogously to many macroscopic growth laws
in biology, economics and population dynamics. The illustrative cases of France, Italy and
United Kingdom are analyzed.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The pandemic spreading of the Coronavirus infection 2019 (COVID-19) (World Health Organization a World Health
Organization b; Novel Coronavirus (D-) is forcing billion of people to live in isolation. The related economical degrowth is
producing dramatic conditions for workers, trade and industry.

In all countries the political decisions aim to reduce the spreading and to achieve an almost stable configuration of
coexistence with the disease, where a small number of new infected individuals per day is sustainable. In this new condition,
the containment effort is usually reduced in favor of a gradual reopening of the social life and of the various economical
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sectors. Moreover, the possible virus mutations can give rise to more aggressive strain. Therefore, a new phase of the in-
fectious spread starts: the so called phase 2 (Ph2).

In the Ph2 the evaluation of the regrowth of the infection diffusion is a complex problem: microscopic models require a
coupled dynamics of the stakeholders, implying a strongmodel dependence and a large number of free parameters (Grassly&
Fraser, 2008; Herzog and BlaizotNiel Hens, 2017; Pastor-Satorras et al., 2015; Blanchard et al., Kruger; Pluchinoet al., 2004;
Walters et al., 2018). For example, the asymptomatic population has been estimated about � 50 (Flaxman et al., 2020), x 10
(Fenga),x 3� 4 (Lanteri et al., 2003; Tuite et al., 2020) times the symptomatic one and the simulation in the Italian report on
the effects of the reopening on the National Health System is based on a stochastic epidemic model including the age
dependence, the demographic structure, the heterogeneity of social contacts in different meeting places (home, school, work,
public transportation, cultural activity, shop, bank, post office) and many work sub-sectors (public health, manufacturing,
building, trade, …) (Comitato Tecnico Scientif).

On the other hand, complementary approaches, which outline the Covid-19 evolution in Ph2 in a model independent way,
on the basis of macroscopic growth laws (with few parameters) are a useful tool for monitoring the regrowth of the spreading
by collecting data after few days from the end of the lockdown or, in general, of the restarting phase.

In this paper we propose a method, based on macroscopic variables (Castorina & Blanchard, 2012; Castorina et al., 2003,
2006; Lanteri et al., 2003) and with no explicit reference to the underlying dynamics, which analyzes the quantitative
consequences of the impairment of the constraints.

The starting point is the observation that the Covid-19 spreading, after an initial exponential increase and a subsequent
small slowdown (which follows the Gompertz law (GL) (Gompertz, 1825) or other non linear trends), reaches a saturation,
stable phase, described by the GL or by a logistic equation (LL) (Verhulst, 1838), after which the Ph2 starts.

The GL, initially applied to human mortality tables (i.e. aging), also describes tumor growth, kinetics of enzymatic re-
actions, oxygenation of hemoglobin, intensity of photosynthesis as a function of CO2 concentration, drug dose-response
curve, dynamics of growth, (e.g., bacteria, normal eukaryotic organisms). The LL (Verhulst, 1838) has been used in popula-
tion dynamics, in economics, in material science and in many other sectors.

The previous macroscopic growth laws, GL and LL, depend on two parameters, related to the initial exponential trend and
to the maximum number of infected individuals, N∞, called carrying capacity.

It is well known that the carrying capacity changes according to some “external” conditions inmany biological, economical
and social systems (Meyer & Ausubel, 1999). In tumor growth it is related to a multi-stage evolution (Wheldon, 1988). In
population dynamics, new technologies affect how resources are consumed, and since the carrying capacity depends on the
availability of that resource, its value changes (Royama, 1992).

Therefore a simple method of monitoring the Ph2 is to understand how the carrying capacity (CC) increases due to the
reduction of the social isolation, to the restarting of the economical activities and to more aggressive virus strains. As dis-
cussed, thismodification is difficult to predict, but different scenarios of regrowth (i.e. with different time dependence of CC in
the Ph2, for example) are analyzed in the next sections.

By monitoring the initial data in the new phase one outlines the behavior of the spreading for longer time to evaluate the
possible effects of new mobility constraints or new total lockdown. If the infection regrows exponentially, the (re)lockdown
and/or other containment efforts have to be decided as soon as possible. On the other hand, a small change of the specific rate
in the Ph2, parameterized by a slight modification of the CC, should require less urgent political choices.
2. Theory and calculations

2.1. Macroscopic growth law with time dependent carrying capacity

The macroscopic growth laws for a population N(t) are solutions of a general differential equation that can be written as

1
NðtÞ

dNðtÞ
dt

¼ f ½NðtÞ� (1)

where f(N) is the specific growth rate and its N dependence describes the feedback effects during the time evolution. If
f(N) ¼ constant, the growth follows an exponential pattern.

In particular, the Gompertz and the logistic equations are

1
NðtÞ

dNðtÞ
dt

¼ �kg ln
NðtÞ
Ng
∞

Gompertz ; (2)

1
NðtÞ

dNðtÞ
dt

¼ kl

 
1� NðtÞ

Nl
∞

!
logistic; (3)

where kglnðNg
∞Þ and kl are respectively the initial exponential rates and the other terms determine their slowdown. In both

cases the steady state condition, dN/dt ¼ 0 is reached when N is equal to the carrying capacity N∞.
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As shown in refs (Castorina et al., 2003; Lanteri et al., 2003). the coronavirus spreading has, in general, three phases: an
initial exponential behavior, followed by a Gompertz one and a final logistic phase, due to lockdown. Fig. 1 for China shows
exactly this time evolution and, indeed, in many dynamical systems the previous, simple, GL or LL solutions give a good
quantitative understanding of the growth.

On the other hand, Fig. 2, where the number of infected people in Italy is depicted (see discussion below), shows a clear
example of a Ph2 phase after the logistic steady phase.

Therefore, the CC (and in general, the macroscopic parameters describing the time evolution) can be modified by effects
not included in eqs. (2) and (3).

For example, the invention and diffusion of technologies lift the growth limit and the infectious diseases spread increases
by human mobility and by possible genetic mutations.

Accordingly, one introduces an extension to the widely-used macroscopic model to allow for a time dependent carrying
capacity and a change in the parameter which characterize the exponential initial phase, due to the different infectious
features of the Covid-19. In other terms, eqs. (2) and (3) are now respectively coupled with different values of the constant kg
or kl and a differential equation for the evolution of the CC, i.e. (g ¼ Gompertz, l ¼ logistic)

dNg;l
∞

dt
¼ bg;lðtÞ (4)

where bg,l(t) are the rates: b ¼ 0, b ¼ constant, b x tn, b x c exp(b t) give respectively constant, linear, power law and
exponential time dependence of the CC.
2.2. Covid-19 spreading in phase 2 - formulation and examples

The application of the previous differential equations to the spreading of Covid-19 in the Ph2 in different Countries re-
quires: a) the time, t+, of the beginning of the change of the isolation conditions and/or of the restarting phase; b) a stable
phase of the infection diffusion for t < t+: the effects of the political decision of reducing the constraints start (or should start)
when the disease shows a clear slowdown (see below).

Therefore for t � t+ the total number of infected individuals is described by eqs. (2) and (3) with constant Ng;l
∞ fitted by the

available data, and for t� t+ one has to solve the system of coupled differential equations (2)e(4) where the CC is a function of
time, with the initial condition that Ng;l

∞ ðt+Þ ¼ Ng;l
∞ .

A simple example is useful to outline the strategy. If a time t* the spread is stable, then Nðt*ÞxNðg;lÞ
∞ and the specific rate is

very small. Let us assume that for t > t* there is a fast rate of the spreading which follows the GL in the new phase with a new
CC, i.e.

1
NðtÞ

dNðtÞ
dt

¼ �kg ln
NðtÞ
Nðg2Þ
∞

t > t* ; (5)

where Nðg2Þ
∞ >Ng

∞ is the carrying capacity in the new phase and N(t*) is the initial value of the regrowth. If Nðg2Þ
∞ ¼ gNg

∞, with
constant g, the Gompertz equation for t > t* is given by
Fig. 1. Comparison of the growth laws with the data of the cumulative number of infected individuals in China.
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Fig. 2. Comparison of the growth laws with the data of the cumulative number of infected individuals in Italy (see text below): data until 30th November (black),
more recent data (red). Light-green curve is the GC fit of the first phase data. Data after November 30th (red points) are compared with the extrapolation of the
fitted curves according to trends (a, b) of the CC.
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1
NðtÞ

dNðtÞ
dt

¼ �kg ln
NðtÞ
Nðg2Þ
∞

¼ �kg ln
NðtÞ
gNg

∞
(6)

that is

1
NðtÞ

dNðtÞ
dt

¼ þkg ln g� kg ln
NðtÞ
gNg

∞
(7)

and if ln g[ln½Nðt*Þ =Ng
∞� a new exponential phase of the spread starts for t > t*.

The condition t > t+ has to be better clarified. The instantaneous change of the CC is unphysical since there is a time
interval to observe a possible increase of the spreading due to the Covid-19 incubation time, D. Therefore in the time interval
t+ < t < t+ þ D the growth behavior still follows the initial phase, with a fixed CC. The study of the incubation time is crucial to
define the delay (after t+) of a possible regrowth. This aspect is discussed in the next section and to clarify the proposed
method let us assume that a logistic trend up to t+ ¼ 60 days, with a CC, Nl

∞ ¼ 2883, is modified at the day t+ ¼ 60 þ D, with
D ¼ 5, by an increase of the CC by a constant factor (1.02, 1.1, 1.20). Fig. 3 shows the cumulative number of detected infected
individuals.

Aweaker effect is obtained by considering a linear time dependence of the CC, i.e. N∞(t) ¼ N∞(t+) þ b [t � (60 þ 5)] with b
such that N∞(100) ¼ 1.02, 1.1, 1.2 N∞(t+) respectively. The result is reported in fig. (4).

The previous examples are for illustrative purposes and in the next sections we apply the proposed approach to France,
Italy and United Kingdom.
Fig. 3. Variation of a logistic growth due to a sudden change in the CC: Nl+
∞ ¼ k Nl

∞ , with k ¼ 1.02 (orange), k ¼ 1.1 (red) and k ¼ 1.2 (purple).
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Fig. 4. LL - linear time dependence CC, with N[
∞ð100Þ ¼ k Nl+

∞ and k ¼ 1.02 (orange), k ¼ 1.1 (red) and k ¼ 1.2 (purple).
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2.3. Covid-19 incubation time

The definition of the incubation time, or the time from infection to illness onset, is necessary to inform choices of quar-
antine periods, active monitoring, surveillance, control and modeling. COVID-19 emerged just recently, and the presence of a
high rate of asymptomatic individuals, does not currently allow a precise estimation of incubation time. Different studies,
especially at the beginning of the pandemic, tried to define the incubation period, obtaining a mean time varying between 4.0
and 6.4 days (Backer et al., 2020; Guan et al., 2020; Li et al., 2020).

This value of incubation time is similar to other Coronaviruses, such as MERS-CoV and SARS-CoV, and generally accepted
as a reliable estimate. However, 95% confidence intervals are large, varying from2.4 days to 15.5 days (Backer et al., 2020). This
strong variability is related to an uncertainty of the most probable date of exposure and onset of symptoms and this is the
main reasonwhy theWHO recommended an isolation time of 14 days after exposure to avoid more spreading of the infection
(Lei et al., 2020). In our study, knowledge of the incubation time is necessary to model possible consequence of a re-opening.
As a matter of fact, reduction of social isolationwill increase the CC, and our attention should still be at its highest levels for at
least two entire incubation periods, to promptly recognize anywarning signal and apply the right control measures. Therefore
the incubation time Dx 8 ± 6 days can be considered and D¼ 6 will be used in the next sections. Let us recall that an increase
of Covid-19 mortality in Ph2 should be observed after a longer time interval. In Italy, for example, the correlation between the
rate of infected people per day and the correspondingmortality rate shows a delay of about 8 days (see Figs. 5-6). Therefore an
increase of mortality could be expected after 14e22 days from t+.
Fig. 5. Italy - Confirmed daily rate.
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Fig. 6. Italy - Mortality daily rate.

D. Lanteri, D. Carco, P. Castorina et al. Infectious Disease Modelling 6 (2021) 632e642
3. Results and discussion

The regrowth phase has been analyzed by two possible trends described by a LL/GL with carrying capacity:

a) Nð2Þ
∞ ¼ g Nð1Þ

∞ ,
b) Nð2Þ

∞ ¼ Nð1Þ
∞ þ g ðt � t0Þ,

where g is a constant. In the next sections, Ga,b and La,b indicate the fits and the time evolution with the GL and LL,
respectively, in the corresponding case a and b.
3.1. Phase 2 in Italy: possible scenarios

In the first phase, the Italian data followed the previously discussed three phases evolution (see Fig. 2). More recently, the
Ph2 phase started and different regrowth scenarios will be outlined by an increase of the CC.

For the previous trends (a, b), Fig. 2 shows the comparison of the growth laws with the data of the cumulative number of
confirmed infected individuals from February 2020, t*þ D¼ 1th September 2020, to 30th November 2020 (black points). The
curve extrapolation is then compared with data from November 30th onwards (red points) in such a way to verify the
effective growth pattern in the new phase and to give some useful indications for political decisions.

The same analysis is reported in Figs. 7e9 respectively for the daily number of confirmed infected individuals, for the
cumulative number of deaths and for the daily number of deaths.
Fig. 7. Italy: comparison of the growth laws with the data of the daily number of confirmed infected individuals from the initial day 22/Feb to the final day 30/
Nov (black points). Light-green curve is the GC fit on the first phase data. Data after November 30th (red points) are compared with the extrapolation of the fitted
curves according to trends (a, b) of the CC.
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Fig. 8. Italy: comparison of the growth laws with the data of the cumulative number of deaths from the initial day 22/Feb to the final day 30/Nov (black points).
Light-green curve is the GC fit of the first phase data. Data after November 30th (red points) are compared with the extrapolation of the fitted curves according to
trends (a, b) of the CC.

Fig. 9. Italy: comparison of the growth laws with the data of the daily number of deaths from the initial day 22/Feb to the final day 30/Nov (black points). Light-
green curve is the GC fit onfthe first phase data. Data after November 30th (red points) are compared with the extrapolation of the fitted curves according to
trends (a, b) of the CC.
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The effects of the mobility constraints decided by the italian government can be monitored by looking at the different
predicted trends.
3.2. France

France is in a phase of strong spread of the virus, started in August 2020, with an almost total lockdown.
As in the previous case, Figs. 10e13 are devoted to the comparison of the growth laws with the data from February to

November the 30th (black points) 2020 of the cumulative number of confirmed infected individuals, of the daily number of
confirmed infected individuals, of the total and daily number of deaths. Analogously to the previous discussion for Italy, the
extrapolation of the fitted curves after November 30th gives important information for the more recent time evolution of the
Covid-19 spread.
3.3. United Kingdom

Very recently in United Kingdom (UK) a new phase of very fast spread of Covid-19 started.
Differently from Italy and France, where the Ph2 ismainly due toweaker constraints onmobility and on social aggregation,

in UK the fast growth of the specific spread rate is related to a Covid-19 mutation, with a more dangerous strain.
638



Fig. 11. France: comparison of the growth laws with the data of the daily number of confirmed infected individuals from the initial day 22/Feb to the final day 30/
Nov (black points) 2020. Light-green curve is the GC fit of the first phase data. Data after November 30th (red points) are compared with the extrapolation of the
fitted curves according to trends (a, b) of the CC.

Fig. 10. France: comparison of the growth laws with the data of the confirmed infected individuals from the initial day 22/Feb to the final day 30/Nov (black
points). Light-green curve is the GC fit of the first phase data. Data after November 30th (red points) are compared with the extrapolation of the fitted curves
according to trends (a, b) of the CC.

Fig. 12. France: comparison of the growth laws with the data of the cumulative number of deaths from the initial day 22/Feb to the final day 30/Nov (black
points). Light-green curve is the GC fit of the first phase data. Data after November 30th (red points) are compared with the extrapolation of the fitted curves
according to trends (a, b) of the CC.
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Fig. 13. France: comparison of the growth laws with the data of the daily number of deaths from the initial day 22/Feb to the final day 30/Nov (black points).
Light-green curve is the GC fit of the first phase data. Data after November 30th (red points) are compared with the extrapolation of the fitted curves according to
trends (a, b) of the CC.

Fig. 14. UK: comparison of the growth laws with the data of the cumulative number of confirmed infected individuals from the initial day 22/Feb to the final day
30/Nov (black points). Light-green curve is the GC fit of the first phase data. Data after November 30th (red points) are compared with the extrapolation of the
fitted curves according to trends (a, b) of the CC.

Fig. 15. UK: comparison of the growth laws with the data of the daily number of confirmed infected individuals from the initial day 22/Feb to the final day 30/Nov
(black points). Light-green curve is the GC fit of the first phase data. Data after November 30th (red points) are compared with the extrapolation of the fitted
curves according to trends (a, b) of the CC.
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Fig. 16. UK: comparison of the growth laws with the data of the cumulative number of deaths from the initial day 22/Feb to the final day 30/Nov (black points).
Light-green curve is the GC fit of the first phase data. Data after November 30th (red points) are compared with the extrapolation of the fitted curves according to
trends (a, b) of the CC.

Fig. 17. UK: comparison of the growth laws with the data of the daily number of deaths from the initial day 22/Feb to the final day 30/Nov (black points). Light-
green curve is the GC fit of the first phase data. Data after November 30th (red points) are compared with the extrapolation of the fitted curves according to
trends (a, b) of the CC.
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This condition is immediately seen in Figs. 14e17 respectively for the cumulative number of confirmed infected in-
dividuals, of the daily number of confirmed infected individuals, of the total and daily number of deaths. After fitting the data
from February 2020 to 30th November 2020, there is no agreement with the extrapolated curves for a constant increase
(trend a) or a linear time growth (trend b) of the CC both for GL and LL.

The effect is clear in the daily number of confirmed infected also, where the very recent lockdown political decision is now
producing a decreasing behavior.
4. Comments and conclusions

The purpose of this paper is a demonstration-of-concept: one takes simple growth models, considers the available data
and shows different scenarios of the future trend of the spreading. The method applies a time dependent carrying capacity
since the reduction of containment efforts and/or virus mutations change this crucial parameters of the macroscopic growth
laws. Different time behaviors of the CC outline various trends in the new phase, with clear evidence of the regrowth pattern
due to weaker social constraint with respect to more dangerous virus strains.

Therefore a comparison of data, collected in a short time interval, with the plots obtained by the various ansatz for the CC
can help to decide if the social isolation conditions have to be strengthened or weakened and can signal a new virus mutation.
Finally, a large variation of the CC signals an increase of the pressure on the National Health systems.
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