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A B S T R A C T

In the U.S. in early 2020, heterogenous and incomplete county-scale data on COVID-19 hindered effective
interventions in the pandemic. While numbers of deaths can be used to estimate actual number of
infections after a time lag, counties with low death counts early on have considerable uncertainty about
true numbers of cases in the future. Here we show that supplementing county-scale mortality statistics
with socioeconomic data helps estimate true numbers of COVID-19 infections in low-data counties, and
hence provide an early warning of future concern. We fit a LASSO negative binomial regression to select a
parsimonious set of five predictive variables from thirty-one county-level covariates. Of these,
population density, public transportation use, voting patterns and % African-American population are
most predictive of higher COVID-19 death rates. To test the model, we show that counties identified as
under-estimating COVID-19 on an early date (April 17) have relatively higher deaths later (July 1) in the
pandemic.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Coronavirus disease 2019 (COVID-19), the pandemic that
emerged in Wuhan, China in 2019 (World Health Organization,
2020), increased rapidly across the United States in early 2020,
challenging the capacity for a coordinated response. In the absence
of a vaccine, two strategies for containing the virus have been
social distancing and widespread testing (Bedford et al., 2020;
Maharaj and Kleczkowski, 2012). Widespread testing reduces
selection bias in estimating the numbers of undocumented
infections, a crucial variable in the dynamics of spread (Munster
et al., 2020; Li et al., 2020). In early 2020, however, there were not
enough COVID-19 testing data in the U.S. to predict infections and
health care demand (Munster et al., 2020), given substantial
heterogeneity in testing rates in both geographic and socio-
economic terms (Chowell and Mizumoto, 2020). Under-reporting
of COVID-19 infections was likely substantial, perhaps by orders of
magnitude in the U.S., both overall and at the county level
(Bendavid et al., 2020; Lau et al., 2020).

During the urgent early phase of such a pandemic, decisions at
the level of both individual behavior and public health response are

not only crucial (e.g., Dehning et al., 2020), but “have to be made
using the scarce data available” (Zhang and Qian, 2020). Rapid,
approximate estimates of infection rates, using online data, are
valuable in this phase (Bentley and Ormerod, 2010; McIver and
Brownstein, 2014; Bancroft and Lee, 2014; Chunara et al., 2013).
Here we use U.S. COVID-19 data, from early (17 April 2020) and
later (1 July 2020) in the progression of the pandemic, to test a
means of county-scale estimation of pandemic virus infections
when testing data are still incomplete and heterogeneous. This
then offers a means of identifying the most vulnerable counties
that have not yet reported significant statistics.

At the scale of U.S. counties, we assume that the numbers of
recorded deaths by a given day are the most complete data on the
extent of the virus (Baud et al., 2020; Flaxman et al., 2020; Marchant
et al., 2020). Even though there will naturally be a distribution of
times between infection and death, for purposes of statistical
prediction, we assume the number of infections will be proportional
to the numberof deaths a certain numberof days afterward. With the
clinical literature as a guide (Huang et al., 2020), we follow Diebner
and Timmesfeld (2020) in using regressions to determine the most
predictive number of days lag between cases and deaths. We expect
the optimal lag, in terms of predictive value to be between one and
two weeks. In two clinical studies of patients with confirmed COVID-
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tudy (Huang et al., 2020) and 10 days (n ¼ 138 patients) in
nother study (Wilson et al., 2020). Comparing the Pearson r
orrelations between the logarithm of cumulative COVID-19 cases
ersus the logarithm of cumulative COVID-19 deaths in Germany at
ifferent time lags, Diebner and Timmesfeld (2020) find that 13
ays was the optimal lag. The same 13-day optimal lag was found
hen comparing log-transformed new (daily) deaths versus cases
Diebner and Timmesfeld, 2020). Other studies determine or use a
ime delay of 13 days from illness onset to death (Linton et al.,
019; Wang et al., 2020; Yang et al., 2020), so while our regression
stimate of ten days (below) delay for the U.S. seems reasonable,
e find only limited effect on our regression results by using a 14-
ay delay. Similarly, an epidemiological model found little impact
etween using lags of 13, 15 or 18 days (Flaxman et al., 2020).

Although COVID-19 mortality rates are age-dependent (Kuchar-
ski et al., 2020; Verity et al., 2020), we use a generalized fatality
rate in our regressions, as this may be the only variable available
from early county-aggregated data, as well as include two age
variables in our regressions (mean age and % over 65 years old).

In using county-scale death statistics, a source of statistical
uncertainty is the relatively low numbers of deaths early in the
pandemic. On April 17, 2020, for example, a large portion of U.S.
counties were not reporting any deaths, whereas by 1 July 2020
many more counties were reporting nonzero deaths (Fig. 1a and b).
Since the early increase of infections was exponential (Fig. S2), as
expected in compartmental models (Wu et al., 2020b; Kucharski
et al., 2020), the level of under-reporting can outpace increases in
testing rates. As the early numbers of COVID-19 cases in states can
ig.1. Maps of the numbers, per million in each county population, of confirmed COVID-19 cases by April (upper left) versus July 2020 (upper right) and deaths by April (lower
ft) versus July 2020 (lower right). Gray counties designate zero reported cases/deaths.
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differ by orders of magnitude (e.g., New York vs. Great Plains states;
Figs. 1a and S2), their differences in under-reporting could be
substantial.

This raises the concern as to which counties reporting few
deaths and cases early in the pandemic might be most vulnerable
to relatively higher cases and deaths as the pandemic spreads. To
address this, we can make use of the rich co-variate data available
at the U.S. county level to improve estimates of under-reporting.
Although these county-level estimates are our main objective, the
multivariate regression also identifies factors most predictive of
COVID-19 deaths. As our objective is prediction, we note that the
most predictive variables may or may not be the most causal.
Given, for example, the importance of age, physical clustering and
pre-existing conditions to COVID-19 (Kucharski et al., 2020; Verity
et al., 2020; Centers for Disease Control, 2020; Thompson, 2020; Lu
et al., 2020; Yusef et al., 2020), certain county-level variables may
have direct correlation; others will have indirect correlation. For
example, a likely direct effect on the COVID-19 death to case ratio is
the number of hospital ICU beds in the county (Schulte et al., 2020;
King, 2020). An indirect effect may be median household income:
high income counties may have more jobs that can be performed
remotely (del Rio-Chanona et al., 2020). Some variables likely
subsume the effects of other variables. Nonwhite populations may
have higher rates of COVID-19 infections and/or deaths, for reasons
that could include distrust in healthcare (Armstrong et al., 2008),
reliance on public transportation (Anderson, 2016), exposure to
greater air pollution (Ard and Bullock, 2020) or higher incidence of
chronic health conditions (Fang et al., 2020; Lighter et al., 2020).

For our ‘early warning’ estimates, we do not use data on
protective behaviors such as social distancing and mask wearing.
While these behaviors affect (reduce) the number of infections,
they are delayed, dynamic responses to the number of cases (see
Supplementary Fig. S1) and unlikely to be available early in the
pandemic. In the case of COVID-19, for example, survey data on
mask wearing were collected and reported in mid-July 2020 (Katz
et al., 2020), months after an early warning system could be
implemented.

In essence, we use the county-level death statistics to estimate
how many people in the county were infected by COVID-19 on a
given date. Even if the death counts were 100% accurate, however,
due to all the counties with low numbers, we need to impute the
underlying likelihood of death in those counties. The county-scale
likelihood estimates provide non-zero values for predictive
purposes on all counties, including sparsely-populated counties
or counties that the epidemic has not yet fully reached. Comparing
observations of cases and deaths from April and July 2020, we can
test whether the method identified in April the most vulnerable
counties to subsequent infections in July.

Due to the exponential growth in numbers plus the sparseness of
count data from many counties, here we will be using a negative
binomial regressionwith the Least Absolute Shrinkage and Selection
Operator (LASSO) method to estimate deaths across the country at a
given date (a new regression must be carried for each selected date).
When these death estimates are divided by a generalized fatality
rate, the result is an estimation of the true numbers of infected
people in each county. Comparing the estimated numbers of infected
people to the observed number of confirmed cases gives us a
measure of case under-estimation in each county.

2. Methods

age, ethnicity, links to COVID-19 hotspots, employment and
education. Included among these covariates are three scalar
variables to capture some of the international spread of COVID-19
from early hotspots (Callaway et al., 2020), specifically China, Italy,
and Iran (Table 1). These fixed scalar effects for each U.S. county are
derived from the Facebook social connectedness index (Bailey
et al., 2018).

All variables in Table 1 represent fixed, county-level effects.
While dynamic effects of social networks and inter-county travel
were surely a factor in coronavirus spread (Maier and Brockmann,
2020), we do not employ such dynamic data here for two reasons.
The first is that we aim for early estimation using fixed county-
level covariates that would be already available at the onset of a
future pandemic. Secondly, there is not currently an established
method for adding network covariates to the method we employ

Table 1
Covariates for predicting cumulative COVID-19 deaths and under-reporting rates, at
the county level of aggregation. The portal for U.S. Census data (U.S. Census Bureau,
2020a,b) is www.census.gov.

Covariates in matrix X Description Source

Clustering
P Population size U.S. Census
r Population density U.S. Census
ph Persons per house U.S. Census
pb Persons per bedroom U.S. Census
pr Persons per room U.S. Census
Pt Public transport U.S. Census

Voteshare
v % Democratic – Republican MIT Election Lab

Health care
B ICU beds per capita Schulte et al. (2020)
H Hospitals Schulte et al. (2020)
U % no health insurance U.S. Census

Health
O % Obese (BMI � 30) CDC
D Diabetes CDC
Ht Hypertension Olives et al. (2013)
pm2:5 Air pollution ( Wu et al. (2020a)

Age
a Mean age U.S. Census
a65 % over 65 years old U.S. Census

Ethnicity
Black Black U.S. Census
Hispanic Hispanic U.S. Census
Native Native American U.S. Census

Facebook connections to:
SCICN China (per capita) Facebook SCI
SCIIT Italy (per capita) Facebook SCI
SCIIR Iran (per capita) Facebook SCI

Employment
In Median household income U.S. Census
Jp , Js , Jobs: professional, service U.S. Census
Jo , Jt , Jr Jobs: office, trade, transport U.S. Census
Ic Incarcerated Vera Inst. (2020)

Education
EBA College educated U.S. Census
EHS No high school U.S. Census
To improve estimations from heterogeneous COVID-19 death
data at the U.S. county level, here we introduce thirty-one
covariates (Table 1) into a negative-binomial regression. These
covariates cover nine broad categories: clustering of population,
voting behavior, health-care access, preexisting health conditions,
3

here, a LASSO Negative Binomial regression (Hays et al., 2010; Silk
et al., 2017; Leifeld and Cranmer, 2019). We reserve the challenge of
adding dynamic network data for future work.

Since case numbers grow exponentially, our regressions use the
logarithm of county-level death counts on day t, logðDt

!
Þ, where the

vector Dt

!
contains entries for each of 3088 counties. Even when
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og-transformed, however, the count data are likely to be over-
ispersed and subsequent standard errors underestimated. For this
eason, we use a negative binomial distribution of errors in the
egressions, which allows us to use number of COVID-19 deaths as
ount data for predictions. To estimate the numbers of deaths, Dt

!
,

n all counties on day t, the regression relationship is:

og Dt ¼ ~bX þ e ð1Þ

here ~b is the vector of weights for the covariates X (see Table 1).
he errors e follow a negative binomial distribution and have a
ariance for a given mean, m, of mð1 þ m=rÞ, where r is a dispersion
arameter. In the regression, we use sandwich corrected estimates
f standard errors (Luque-Fern et al., 2016).
Using thirty-one related covariates, while comprehensive, will

ikely result in both overfitting and colinearity in the Negative
inomial regression. To mitigate these risks, we employ a LASSO
enalization in the loss function of the Negative Binomial
egression. LASSO selects the most predictive variables by
egularization, forcing many of the estimated effect sizes to zero;
he most predictive covariates are those left with non-zero effects.
mportantly, as LASSO is a method of dimension reduction that
ocuses on prediction, covariates that are set to zero may actually
e causal in the real world. Conversely, highly predictive covariates
ay actually not be causal, they may have just subsumed the
ariance of many other truly causal covariates.
In the LASSO process, the choice of the regularization

arameter, l, is important, as higher l results in fewer non-zero
arameters. We optimize l using 2-fold cross-validation over a
ange of possible values. The LASSO regularization minimizes the
ollowing function, which plays-off the log likelihood, ‘ðDt j~bÞ
ersus the sum of the individual coefficients in ~b multiplied by l
Lehman and Archer, 2019):

‘ðDt j~bÞ þ l
X
i

jbij ð2Þ

here in this case, i indexes the 3088 counties in the sample. For a
iven likelihood ‘, the higher l is, the smaller

P
ijbij must be, and

the fewer non-zero parameters are allowed. We apply this negative
binomial regression to COVID-19 deaths data on both 17 April and 1
July, 2020. To maximize the number of non-zero predictors, we
chose the largest l that did not markedly reduce the out-of-sample
predictive power of the LASSO regression. This turned out to be
l ¼ 0:1; higher l values reduced the cross-validated log likelihood
of the LASSO regression (see Fig. S3).

Next, as our estimate of the number actually infected in county i
on date t, Ii;t , we divide Di;t by the fatality rate, a. We then
define the under-estimation in the county, Ui;t , as the ratio of
confirmed cases on record, Ci;t , to Ii;t . Measuring under-estimation
as a ratio—the difference of the log-transformed values
(logIi;t � logCi;t)—rather than a simple difference helps account
for the highly skewed distribution of cases across counties. Using
vector notation to represent all 3088 counties in the sample, we
determine Ut

!
:

Ut

!
¼ log It

!
�log Ct

!
¼ log

~Dt

a

  !
� log Ct

!
ð3Þ

Using data from the two dates allows us to determine whether

Ut

!
determined for low-data counties in April is predictive of

unexpectedly high numbers of COVID-19 deaths in July.

3. Results

For estimating COVID-19 infection rates from death rates, we
first determined an optimum lag between COVID-19 infection and
death statistics (log-transformed) in 3088 counties. We ran forty
regressions of the logged number of new deaths on April 13 against
the logged number of new cases, at lag times ranging between 1
and 40 days. The largest R2 value occurred with a lag of t ¼ 10 (see
Fig. 2), which is in line with findings from other studies (Backer
et al., 2020; Huang et al., 2020; Russell et al., 2020; Wilson et al.,
2020).

We confirm that our results are robust to variation in lag time by
showing our under-reporting statistic still predicts more future
ig. 2. Left: COVID-19 cases on day t � t versus deaths on day t (both log scale) for all U.S. counties with more than 1,000,000 people, from t ¼ 1 to t ¼ 14 days’
elay. All are comparing versus a case date of 04/13/2020. Right: Daily deaths versus daily cases in the U.S., with logarithmic y-axis.
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deaths, using mean lag times between contracting COVID-19 and
death, t, of 0, 7, 10 and 14 days (Supplementary Figs. S4–S6). We
find positive slopes in all cases (Supplementary Tables S3–S6),
indicating that our under-reporting statistic is predictive of a
higher number of future COVID-19 cases. We stress that the value
of t is strictly a parameter for use in prediction, not a definitive
statement about duration of infection for individuals. Indeed the
parameter t—which we estimated for COVID-19 in the U.S. in
2020—would ideally be estimated independently for each case
study. The lag would likely differ, for example, in a future pandemic
and/or within health/hospital systems of the world (e.g., Wood,
2020).

3.1. Five predictive covariates

Of the thirty-one variables (Table 1) entered into the LASSO
negative binomial regression, five were retained by the
LASSO analysis at the optimal level of l ¼ 0:1 as most predictive
of COVID-19 deaths by county (Table 2). Consistent with existing
literature (discussed below), the five predictive variables are:
population size, population density, public transport, voteshare,
and % African-American population. Table 2 shows their
regression coefficients via Eq. (1). These five variables explain a
significant proportion of the variance in county death data:
comparing predicted versus confirmed death counts (both log-
transformed) yields R2 ¼ 0:47 for 17 April, and R2 ¼ 0:60 for 1 July
(Table 2). Using these coefficients, Fig. 3 compares logIt vs logCt in
all counties for two dates in 2020, April 17 and July 1. Using a
similar LASSO regression (see Supplement), we confirm that
deaths are a much better predictor of Ut than the full 31 covariates
of Table 1. By themselves, these fixed socioeconomic variables
cannot predict which counties are likely to under-report COVID-19
cases.

Since LASSO is a factor-reduction technique, rather than a
definitive statement of causality, we discuss first the predictive
value of these five covariates as an ‘early warning system’ to
identify US counties of particular concern. The predictions are
mapped at county level in Fig. 4, which shows county-level
predicted COVID-19 cases and deaths for April 17, and July 1, 2020.
The maps fill in the data gaps across the less populated counties in
the middle of the country, including the Great Plains (cf. Fig. 1).
Similar to the raw numbers (Fig. 1), the predicted numbers are
highest on the coasts, the northeast, Florida, and major urban
areas.

Fig. 5 shows county-level maps of the under-estimation
measure, Ut

!
, for April 17 and July 1. These maps of Ut

!
have less

obvious patterning than maps of observed infections or deaths
(Figs. 1 and 4). Many of the highest values of Ut

!
in July are found in

counties in the northern states (Maine, Idaho, Montana and
Michigan), as well as parts of northern California and Oregon.

Using a fatality rate of 1%, our estimations of actual infections, It
!
,

are one to two orders of magnitude larger than confirmed case
numbers, Ct

!
, as shown in Fig. 6a, which shows both Ct

!
and It

!
on

April 17 and July 1. This is broadly consistent with localized
estimates, such as a California county where the COVID-19
infection rate was “50–85-fold more than the number of confirmed
cases” in early April (Bendavid et al., 2020). In China, by
comparison, 6 out of 7 COVID-19 infections (before 23 January)
were potentially not reported (Li et al., 2020).

Fig. 6a shows that the gap between the confirmed cases and the
predicted infections (red band) increases with number of deaths
(i.e., population size). We test how well Ut

!
estimated for low-

information counties on 17 April identifies those counties with
high death counts by July. For low-data counties, our estimate of Ut

!

can offer an indicator of risk at the county level, as shown in Fig. 6b.
Determining Ut

!
for 17 April, we predict which counties were at

most risk for relatively high levels of COVID-19 by July 1. Fig. 6b
shows that, for counties with little data in April 2020, a high under-
reporting estimate was an effective early warning signal of excess
deaths by July 2020. Fig. 6b shows this for the 1171 counties with 0
(n ¼ 609), 1 (n ¼ 341) or 2 (n ¼ 221) confirmed cases in April. The
fits show that counties with larger under report scores had higher
COVID-19 deaths, ranging between just over 0 and 5 on average.
This may seem like a small number, but with our assumed fatality
rate of 1%, this represents an outbreak stretching into the hundreds
in counties with fewer than 3 reported cases in April. There is also a
substantial range on these predictions, with 13 out of the 1171
counties reporting 15 or more deaths, indicating an outbreak of
more than 1500 cases.

4. Discussion and conclusion

In this prediction exercise, certain variables identified by LASSO
explain more of the variation in the outcome than others. We
should avoid assigning actual causation with the value these
variables have in predicting true number of infections. Neverthe-
less, the five covariates in Table 2 are among the prominent risk
factors listed by the CDC, and we may speculate on how they relate
to the twenty-two variables not retained by the LASSO at the
optimized l ¼ 0:1 value (see Supplement for results using other
values of l).

Equally notable are the twenty-two variables from Table 1 not
returned in the LASSO results (Table 2). This does not mean these
variables are not important in the real world, but that for the
purposes of predicting case numbers, the information in the five
are sufficient to supersede, or encompass, the information residing
in the other twenty-six. Notably, none of the four pre-existing
health conditions—obesity, diabetes, hypertension or pollution—
was selected by LASSO as predictive of COVID-19 deaths or cases.
Given the studies showing these to be genuine risk factors for
individuals (Lighter et al., 2020), one of the five variables in Table 2
must be subsuming their predictive effects. The importance of
African-American proportion of the population is consistent with
the literature on socioeconomic correlates with COVID-19. In
different ZIP codes of New York City, for example, Lieberman-
Cribbin et al. (2020) found that, as the proportion of white
residents increased, the number of COVID-19 tests increased and
fraction of those testing positive decreased. Again, as LASSO is a
factor-reduction method, we suspect that the proportion African
American has such predictive significance that it subsumed the

Table 2
Coefficients for the five variables retained by the LASSO regression (l ¼ 0:1) for
prediction of COVID-19 deaths and cases, on 17 April 2020 and 1 July 2020.
Variables from Table 1 with zero effect at l ¼ 0:1 are not shown. Population
variables were log-transformed. There were 3088 observations. For a full list
of effects at different levels of l, see Supplementary Tables.

Deaths Deaths
Co-variate 17 April 1 July
Population size (logP) 0.87 0.92
Population density (logr) 0.14 0.13
Public transport (Pt) 5.36 1.36
Voteshare (v) 0.18 0.05
% African American 1.07 1.96

R2 vs. observed deaths 0.47 0.60

5

predictive effects of other covariates such as diabetes, hyperten-
sion, pollution and income. This may explain why income was not
an important predictive variable in the LASSO results, despite the
relative lack of testing resources in poorer U.S. counties (Schulte
et al., 2020; van Dorn et al., 2020) and the overall disparity in
COVID-19 testing efforts and resources attributable to



Fig. 3. Predicted log-transformed COVID-19 infections, ( log It) versus log-transformed confirmed cases ( log Ct). Each plot represents a different
state, and datum points are counties within each state. Colors show determinations for two dates, April 17, 2020 (red) and July 1, 2020 (blue). Regression lines
use points weighted by the county populations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 4. County-level predicted COVID-19 infections, It (top row) and deaths, Dt (bottom row) for April 17, and July 1, 2020. Data are log-transformed.

Fig. 5. COVID-19 under-estimation, Ut , for April 17, and July 1, 2020.
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ocioeconomic and racial disparities in healthcare access (Karaye
nd Horney, 2020; Lieberman-Cribbin et al., 2020).
As COVID-19 mortality rates depend on an individual's age

Kucharski et al., 2020; Verity et al., 2020), it may seem surprising
o see both % over 65 years old and mean adult age not among the
ost important factors emerging from the LASSO results (Table 2).
onnections with Italy, China or Iran were also not among the five
ost predictive factors, in April or in July. This despite evidence

hat the U.S. received confirmed “index” cases from Europe and
rom China (Spiteri et al., 2020).

Voteshare in the last election (% Democratic � % Republican)
as an important variable in predicting deaths, both in April 17
nd on July 1 (Table 2). The use of two dates helps us rule out
he effect of counties in New York state acting as outliers. In
pril 2020, New York state had the highest number of reported
OVID-19 cases, and was also among the most Democratic-leaning.
he voteshare effect remains, however, by July 1, when both cases
nd deaths were higher in many other parts of the country,
ncluding counties in the U.S. South, where voteshare is much
ifferent.
It could be that democratic voteshare captures aspects left

nrepresented by the other crowding variables. Various surveys in
he U.S. in 2020 (FiveThirtyEight, 2020) have shown Democratic
oters to have higher levels of concern about COVID-19 than
epublican voters. Given that Democratic voteshare predicts more
eaths, this might be due to higher levels of liberal behavior among
tates from the West coast and North-East driven by differences in
ulture (Harrington and Gelfand, 2014). Democratic voteshare may
ct as a proxy for more openness, tolerance (Ruck et al., 2020) and
ooser norms (Harrington and Gelfand, 2014). By contrast,
ollectivist cultures may be better equipped to mitigate a
andemic through a tendency to obey authority (Kemmelmeier
t al., 2003), conform with peers (Murray et al., 2011) and engage in
ess physical contact (Wu et al., 2019). Further consideration of this
ypothesis would need to account for the demographics of
trongly Democratic counties.
Overall, we find that the use of socioeconomic determinants

In future pandemics this ‘early warning system’ could be used
to identify vulnerable counties where disease outbreaks have not
yet occurred. False positives will be produced but this may be
improved by expanding our set of 31 covariates. While the results
present a parsimonious set of socioeconomic risk factors for
COVID-19 prevalence, additional covariate data will inevitably
become available for early warning tools in future events. With
further research, the methodology we have laid out here can be
adapted to incorporate dynamic and/or network data, such as
seasonality and ultraviolet light exposure (Carleton et al., 2020;
Merow and Urban, 2020), inter-county migration or the Facebook
connectedness Index. The incorporation of the more complex data
into these early warning tools is a goal for future work.
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