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ABSTRACT
Background  The human leucocyte antigen (HLA) 
complex controls adaptive immunity by presenting defined 
fractions of the intracellular and extracellular protein 
content to immune cells. Understanding the benign HLA 
ligand repertoire is a prerequisite to define safe T-cell-
based immunotherapies against cancer. Due to the poor 
availability of benign tissues, if available, normal tissue 
adjacent to the tumor has been used as a benign surrogate 
when defining tumor-associated antigens. However, 
this comparison has proven to be insufficient and even 
resulted in lethal outcomes. In order to match the tumor 
immunopeptidome with an equivalent counterpart, we 
created the HLA Ligand Atlas, the first extensive collection 
of paired HLA-I and HLA-II immunopeptidomes from 227 
benign human tissue samples. This dataset facilitates a 
balanced comparison between tumor and benign tissues 
on HLA ligand level.
Methods  Human tissue samples were obtained from 16 
subjects at autopsy, five thymus samples and two ovary 
samples originating from living donors. HLA ligands were 
isolated via immunoaffinity purification and analyzed in 
over 1200 liquid chromatography mass spectrometry runs. 
Experimentally and computationally reproducible protocols 
were employed for data acquisition and processing.
Results  The initial release covers 51 HLA-I and 86 HLA-II 
allotypes presenting 90,428 HLA-I- and 142,625 HLA-II 
ligands. The HLA allotypes are representative for the world 
population. We observe that immunopeptidomes differ 
considerably between tissues and individuals on source 
protein and HLA-ligand level. Moreover, we discover 1407 
HLA-I ligands from non-canonical genomic regions. Such 
peptides were previously described in tumors, peripheral 
blood mononuclear cells (PBMCs), healthy lung tissues 
and cell lines. In a case study in glioblastoma, we show 
that potential on-target off-tumor adverse events in 
immunotherapy can be avoided by comparing tumor 
immunopeptidomes to the provided multi-tissue reference.
Conclusion  Given that T-cell-based immunotherapies, 
such as CAR-T cells, affinity-enhanced T cell transfer, 

cancer vaccines and immune checkpoint inhibition, have 
significant side effects, the HLA Ligand Atlas is the first 
step toward defining tumor-associated targets with an 
improved safety profile. The resource provides insights 
into basic and applied immune-associated questions 
in the context of cancer immunotherapy, infection, 
transplantation, allergy and autoimmunity. It is publicly 
available and can be browsed in an easy-to-use web 
interface at https://​hla-​ligand-​atlas.​org.

INTRODUCTION
In the past two decades, sequencing the 
human genome (genomics),1 2 transcrip-
tome (transcriptomics)3 4 and proteome 
(proteomics)5–7 have been milestones that 
enable a multidimensional understanding 
of biological processes. In the context of 
the immune system, a subsequent omics 
layer can be defined as the human leucocyte 
antigen (HLA) ligandome or the immuno-
peptidome, comprizing the entirety of HLA 
presented peptides. HLA molecules present 
peptides on the cell surface for recognition 
by T cells, which were generated and selected 
to distinguish self from foreign8 peptides. 
Despite HLA-I ligands originating primarily 
from intracellular proteins, the correlation 
with their precursors (mRNA transcripts and 
proteins) is poor,9–11 limiting approaches 
based on in silico HLA-binding predictions 
in combination with transcriptomics and 
proteomics data alone.12

The importance of investigating HLA 
ligandomes from human healthy and 
diseased tissues has been well recognized13–15 
to improve HLA-binding prediction algo-
rithms,16–18 and immunogenicity prediction 
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analysis,19 but also, to inform precision medicine.20–22 
Direct evidence of naturally presented HLA ligands is 
required to prove visibility of target peptides to T cells. 
This is a challenge, for example, in the context of cancer 
immunotherapy approaches that aim to identify optimal 
tumor-specific HLA-presented antigens.20 23 While their 
discovery has been made possible by proteogenomics 
approaches, a major impediment still resides in the 
lack of benign tissues as a reference for the definition 
of tumor specificity of target peptides.11 24 25 Due to the 
scarce availability of benign human tissue ligandomes, 
common alternative strategies are based on transcrip-
tomic datasets either from the same patient, or from 
multiple tissues extracted from publicly available repos-
itories.3 4 Frequently, morphologically normal tissue 
adjacent to the tumor (normal tissues adjacent to tumor, 
NATs) is used as a control in cancer research. However, 
NATs have been shown to pose unique challenges, since 
they may be affected by disease and have been suggested 
to represent a unique intermediate state between healthy 
and malignant tissues, with a pan-cancer-induced inflam-
matory response.26 Additionally, for some malignancies, 
for example, of the brain, surgical resection of NATs is 
inadmissible. Even in cancers that allow for the extraction 
of NATs, it is still necessary to investigate the presence 
of potential tumor-associated antigens (TAAs) on other 
tissues to anticipate on-target/off-tumor, systemic 
adverse events when administering immunotherapies to 
patients.27 28

In this study, we, thus, employed tissues originating 
from research autopsies of subjects that have not been 
diagnosed with any malignancy and have deceased for 
other reasons, an approach previously described as a 
surrogate source of benign tissue.3 26 Although these 
tissues were affected by a range of non-malignant diseases, 
we designate them as benign to emphasize morpholog-
ical normality and absence of malignancy. This defini-
tion of benign is in agreement with the definition used 
by the Genotype-Tissue Expression Consortium,3 4 which 
provides RNA sequencing data of benign tissues origi-
nating from autopsy specimens.

We performed a large-scale liquid chromatography 
mass spectrometry (LC-MS/MS)-based characterization 
of both HLA-I and HLA-II ligands providing data from 
benign human tissues obtained at autopsy. The HLA 
Ligand Atlas is a first draft of a pan-tissue immunopepti-
domics reference library from benign tissues comprizing 
for the first time 227 mostly paired HLA-I (198) and 
HLA-II (220) ligandomes from 29 different benign tissue 
types obtained from 21 human subjects. For the data 
analysis, we employed MHCquant,29 the first open-source 
customized computational tool for immunopeptidomics 
assays that provides database search, false discovery rate 
(FDR) scoring, label-free quantification and binding 
affinity predictions. In addition, we implemented a user-
friendly, web-based interface to query and access the data 
at https://​hla-​ligand-​atlas.​org. Despite its unprecedented 
comprehensiveness, the HLA Ligand Atlas currently 

contains only a limited number of tissues and subjects. 
However, it has been designed as an open and extensible 
community resource and we invite other researchers to 
share additional data with us for inclusion in the data-
base. Consistent quality control and data processing will 
ensure a high quality of the data.

RESULTS
The HLA Ligand Atlas: content and scope of the data resource
We describe the HLA Ligand Atlas, a dataset of matched 
HLA-I and HLA-II ligandomes of benign tissues. HLA-I 
and HLA-II ligands were isolated via immunoaffinity 
purification and identified by LC-MS/MS. HLA-binding 
prediction algorithms and an assessment of peptide 
length distributions were used to identify high-quality 
samples and only these were integrated into the dataset 
(online supplemental figure S1 describes the QC steps 
employed). Our online resource https://​hla-​ligand-​atlas.​
org provides access to the dataset comprizing HLA-I 
and HLA-II ligands (1% local peptide-level FDR), their 
source proteins, tissue and subject of origin, as well as all 
corresponding HLA allotypes classified as strong or weak 
binders through several user-friendly views (figure 1A and 
online supplemental figure S1). We have acquired HLA 
ligandome data from 29 distinct tissues obtained from 
21 individuals, surmounting to 1274 LC-MS/MS runs 
from 225 mostly paired HLA-I (198) and HLA-II (220) 
samples (figure  1C and online supplemental table S1. 
The majority of samples was obtained from 14 subjects 
after autopsy, while 7 additional subjects contributed 5 
thymus and 2 ovary samples after surgery. We performed 
a time series experiment on three benign samples, two 
ovaries and one liver (online supplemental figure S2) 
and observed no qualitative or quantitative degradation 
of the immunopeptidome for up to 72 hours after tissue 
removal, supporting the feasibility of employing autopsy 
tissue as input material for immunopeptidomics assays 
(online supplemental figure S2).

Overall, we identified 90,428 HLA-I and 142,625 
HLA-II peptides with a local peptide-level FDR of 1% and 
estimated global peptide-level FDRs of 4.5% and 3.9% 
for HLA-I and HLA-II peptides, respectively. Identified 
peptides could be attributed to 51 HLA-I and 81 HLA-II 
allotypes.

Ultimately, this dataset increases the total number of 
registered HLA ligands from 440,231 to 467,319 for HLA-I 
and from 160,931 to 257,933 for HLA-II, as currently 
encompassed in SysteMHC30 and the immune epitope 
database (IEDB)31 (figure 1B).

Moreover, we sought to approximate the worldwide 
HLA allele frequency of subjects included in the HLA 
Ligand Atlas. For this purpose, we computed population 
coverages using the IEDB Analysis Resources (http://​
tools.​iedb.​org/​population/) (online supplementla table 
S2). When considering at least one HLA allele match 
per individual, we observe an allele frequency of 95.1%, 
73.6%, 93.0%, for HLA-A (n=16), HLA-B (n=21) and 
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Figure 1  The HLA Ligand Atlas: content and scope of the data resource. (A) The high-throughput experimental and 
computational workflow steps used to analyze thousands of HLA-I and HLA-II peptides isolated from benign tissues. The 
resulting HLA-I and HLA-II immunopeptidomes are comprised in the searchable web resource: https://hla-ligand-atlas.org. 
See online supplemental figure S1 for details of the quality control workflow. See online supplemental figure S2 for proof of 
principle using autopsy tissues. (B) HLA-I and HLA-II peptides expand the know immunopeptidome as curated in the public 
repositories SysteMHC and IEDB. (C) Sample matrix: HLA-I- (blue triangles) and HLA-II samples (orange triangles) included 
in the HLA Ligand Atlas cover 29 different tissues obtained from 21 human subjects. See online supplemental table S1 for 
patient characteristics. (D) Position-wise coverage (%) of identified source proteins by HLA ligands binned into four groups: (1) 
exclusively covered by HLA-I peptides, (2) exclusively covered by HLA-II peptides and (3–4) covered by both and separated 
into higher position-wise coverage by either HLA-I or HLA-II peptides. HLA, human leucocyte antigen; IEDB, immune epitope 
database; LC-MS/MS, liquid chromatography mass spectrometry.
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HLA-C (n=14) alleles, respectively. Within the same 
constraints, we observe allele frequencies of 78.8%, 
99.5%, 98.2%, 92.3% for HLA-DPB1 (n=9), HLA-DQA1 
(n=11), HLA-DQB1 (n=12) and DRB1 (n=19) alleles, 
respectively (online supplemental table S2).

Source proteins and HLA allotype coverage characteristics of 
HLA ligands
The HLA ligands in the dataset were identified based on 
15,262 of the 20,365 proteins in Swiss-Prot, hereinafter 
referred to as source proteins. About half of these source 
proteins yield both HLA-I and HLA-II ligand identifica-
tions, 40% yield only HLA-I ligands and 8% only HLA-II 
ligands (figure  1D). We performed a gene ontology 
(GO) enrichment analysis of HLA-I and HLA-II exclusive 
source proteins, which corroborates the expected cellular 
compartments associated with the class-specific antigen 
presentation pathways, with HLA-I presenting primarily 
intracellular and HLA-II primarily extracellular proteins 
(figure 2F).

When looking at single amino acid residues across 
all source proteins (position-wise), 10% of the single 
residue positions are covered by HLA ligands, a param-
eter that ranges from 0.02% to 1.15% for individual 
HLA allotypes (online supplemental figure S3). The 
mode of the overall peptide length distribution depicts 
the highest abundance of 9mers (60%) for HLA-I and 
of 15mers (18%) for HLA-II ligands (figure 2A). While 
82% of the HLA-I ligands are predicted to bind a subject’s 
HLA allotype, this holds true for only 62% of the HLA-II 
ligands. A major shortcoming of HLA-II binding predic-
tion models appears to be a negative bias toward the tails 
of the observed peptide length distribution, in partic-
ular toward short peptides (figure 2A). The number of 
identified peptides that are predicted to bind to specific 
allotypes varies strongly between allotypes, with HLA-
A*02:01, HLA-B*15:01, HLA-B*35:01, HLA-C*04:01 and 
most HLA-DRB1 allotypes being among the highly repre-
sented ones (figure 2B,C).

The interindividual heterogeneity outweighs similarities 
between tissue types
An unaddressed question, relevant for the discovery and 
administration of shared TAAs, is whether the similarity 
between tissue types outweighs that between individuals. 
We assessed the similarity of the immunopeptidome on 
both source protein (figure 2D,E) and HLA-ligand level 
(online supplemental figure S4C,D) between samples, as 
defined by subject-tissue combinations. For this purpose, 
we computed pairwise similarities between all samples as 
measured by the Jaccard similarity index and clustered 
the samples based on their similarity.

We observe that even on the source protein level there 
is a higher similarity between samples that originate 
from the same subject over samples that originate from 
the same tissues. Notably, while this effect is to some 
degree expected due to the allotype specific presentation 
behavior, it persists when only allele matched samples and 

peptides are taken into account (online supplemental 
figure S5). Prominent exceptions are the thymus samples, 
which form clusters within the HLA-I and HLA-II samples 
despite originating from different donors.

The immunopeptidome yield varies consistently across 
tissues
We observe a strong variance in the immunopeptidome 
yield, defined as the number of identified peptides per 
sample, across all tissues (figure 3A) and subjects (online 
supplemental figure S4A,B). Despite the interindividual 
(i.e. inter-allotype) variance, we can consistently differ-
entiate between high-yielding and low-yielding tissues 
with respect to both HLA-I and HLA-II peptides (figure 3 
and online supplemental figure S4A,B). The separation 
of tissues based on the immunopeptidome yield is not 
abrupt, but gradual. Low-yielding tissues include skin, 
aorta, brain and the gallbladder with a low number of both 
HLA-I and HLA-II presented peptides across all subjects. 
On the other hand, high-yielding tissues include thymus, 
lung, spleen, bone marrow and kidney (figure 3A). These 
tissues have well-characterized immune-related functions 
or are central components of the lymphatic system.

We employed a linear model to systematically evaluate 
the correlation between the median HLA-I/HLA-II immu-
nopeptidome yield with RNA expression values (reads per 
kilobase per million - RPKM) of immune-related genes 
identified by targeted RNA sequencing from an external 
dataset32 (figure 3B and online supplemental figure S6). 
We observe a significant correlation between expression 
values of immune-related genes and HLA-I and HLA-II 
immunopeptidome yields (online supplemental figure 
S6). Among these, genes of the immunoproteasome 
correlate well with the number of HLA-I ligand identifica-
tions per tissue (R2=0.407, rho=0.671, p=0.001, figure 3B, 
left). Independent studies mapping the healthy human 
proteome confirm expression of the immunoproteasome 
in a wide range of tissues, including tissues for which no 
primary immunological function would be expected.6 7

HLA-II peptide yields correlate well with the expres-
sion of HLA-DRB1 genes (R2=0.244, rho=0.451, p=0.017, 
figure  3B, right). HLA-DR is well characterized due to 
the invariant α chain, and thus reduced complexity in 
the peptide binding groove. Through the high speci-
ficity of the L243 antibody for HLA-DR, and the presum-
ably varying specificity of the second antibody Tü39 for 
different HLA-II allotypes, we cannot exclude a skewed 
identification in favor of HLA-DRB allotypes. However, 
higher expression values for HLA-DRB1 compared with 
other HLA-II allotypes have been described for example 
in earlier studies on gastric epithelium.33

Small subsets of source proteins are tissue exclusive
Previous studies characterizing the human transcriptome 
and proteome across tissues have shown varying degrees 
of tissue specificity for transcripts and proteins.34 35 In this 
context, we analyzed source proteins of the benign immu-
nopeptidome as a whole and grouped all samples by 
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tissue of origin. We observe a particularly small number 
of HLA-I (ranging from 5 in mamma to 674 in thymus), 
and HLA-II (ranging from 8 in ovary to 564 in thymus) 
source proteins identified exclusively in one tissue 
(figure 4A,B and online supplemental table S5). Concor-
dantly, only small numbers of tissue-exclusive protein 
identifications have been observed in human tissue-wide 
proteomics studies.6 Only recently, the systematic, quanti-
tative analysis of the human proteome and transcriptome 
in multiple tissues has revealed that differences between 
tissues are rather quantitative than defined by the pres-
ence or absence of certain proteins.34 35

To determine whether tissue-specific biology is 
conserved between the transcriptome and immunopep-
tidome, we compared tissue-enriched gene sets from the 
GTEx repository with tissue-exclusive HLA-I and HLA-II 
source proteins (figure 4A,B, left). We observe that tissue-
specific biology is represented by HLA-I and HLA-II 
source proteins through an enrichment with upregulated 
transcripts in the respective tissue.

We additionally observed that tissue-specific traits 
are recapitulated by GO term enrichment of biolog-
ical processes (figure  4A,B, right). Enriched GO terms 
reveal tissue-specific biological functions such as ‘adap-
tive immune response’ in the thymus or ‘behavior’ in 
the brain. However, clear associations between enriched 
gene sets and HLA-I and HLA-II source proteins are less 
evident in tissues such as spleen or testis, despite the 
disparity of tissue-exclusive HLA-I source protein iden-
tifications, accounting for only 23 in testis, while spleen 
yields 308.

Overall, tissue-specific traits are more evident for 
HLA-I than for HLA-II source proteins when assessing 
the correlation between tissue-exclusive source proteins 
with GTEx-enriched transcripts and function-specific GO 
terms. HLA-II source proteins are represented by more 
general GO terms, which still reflect distinct biological 
processes characteristic for the respective tissue.

Cryptic peptides are part of the benign immunopeptidome
Recently, cryptic HLA peptides came into focus as a new 
potential source of TAAs. Cryptic peptides originate 
from non-coding regions, that is, 5’- and 3’- untranslated 
region (UTR), non-coding RNAs (ncRNA), intronic and 
intergenic regions, or from shifted reading frames in 
annotated protein coding regions (off-frame). Ribosome 

profiling and immunopeptidomics studies confirm their 
translation and presentation on HLA-I molecules.24 25 36 
So far, cryptic peptides have predominantly been char-
acterized in tumors, while their presentation in benign 
tissues remains poorly charted. We analyzed the HLA-I-
restricted LC-MS/MS data of the HLA Ligand Atlas with 
Peptide-PRISM37 (figure 5A) and identified 1407 cryptic 
peptides, including the peptide SVASPVTLGK that was 
classified as a TAA in lung cancer tissue in a previously 
published study (figure 5F and online supplemental table 
S3).25 This peptide was identified in the HLA Ligand Atlas 
in five different subjects in lung and liver tissues. We find 
that 47% of cryptic peptides were identified in more than 
one subject (online supplemental table S3). Both cryptic 
and conventional peptides share similar physicochem-
ical properties. Their predicted chromatographic reten-
tion time correlates with their experimentally observed 
retention time equally well as for conventional peptides 
(figure 5D).24 36 The identified cryptic peptides predom-
inantly originate from 5’-UTRs (figure  5C), which is in 
accordance with previous studies.36 37 Overall, HLA allo-
types show different presentation propensities of cryptic 
peptides, when related to cryptic and canonical peptides, 
with HLA-A*03:01 covering the largest fraction of all 
identified cryptic peptides, followed by HLA-A*68:01 and 
HLA-B*07:02, as previously observed (figure 5B).37

We selected 36 top-ranking (1% FDR) cryptic peptides, 
shared among subjects for spectral validation by experi-
mental comparison with the corresponding isotopically-
labeled synthetic peptide (online supplemental table 
S3). We were able to confirm the correct identification 
of selected cryptic HLA-I ligands by comparing the pair-
wise similarity (spectral angle) between experimental 
and synthetic peptides against a random distribution 
(figure  5E) as well as through individual inspection 
(online supplemental figure S7). In summary, we can 
show that cryptic peptides are not per-se tumor-specific, 
although their frequency might be reduced in benign 
tissues.37

HLA Ligand Atlas data enables prioritization of TAAs
On-target/off-tumor adverse events in a clinical immuno-
therapeutic setting can have fatal consequences.27 28 To 
minimize the risk of on-target/off-tumor adverse events, 
multi-tissue immunopeptidomics reference libraries from 
benign tissues are required to identify TAAs.24 25 Here, we 

Figure 2  Source proteins and HLA allotype coverage characteristics of HLA ligands. (A) Length distribution of identified HLA-I 
and HLA-II peptides from all samples was analyzed. HLA-II peptide lengths are mirrored on the negative side of the x-axis. (B, 
C) Global overview of HLA-I predicted binders distributed across HLA molecules. HLA binding prediction was performed with 
NetMHCpan-4.1 (% binding rank ≤2) and SYFPEITHI (Score >50%), while multiple HLA allotypes per peptide were allowed 
as long as their scores met the aforementioned thresholds. HLA binding prediction for HLA-II ligands was performed with 
NetMHCIIpan-4.0 and MixMHC2pred (% binding rank ≤5 for both). (D) Pairwise hierarchical clustering of samples based on the 
Jaccard similarity between HLA-I (blue) and HLA-II (orange) source proteins. The dendrogram illustrates the nearest neighbor 
based on the similarity between tissues and subjects. (E) Violin plots illustrate the distribution of the Jaccard similarity index 
for each pairwise comparison between the same subject—different tissues; different subjects—the same tissue and different 
subject—different tissues. (F) Gene ontology (GO) term enrichment of cellular components was performed for HLA-I and HLA-II 
source proteins. Top10 enriched genes with respect to their log10 p value (Fisher’s exact test) differentiate between intracellular 
and extracellular antigen processing pathways. HLA, human leucocyte antigen.
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propose the implementation of the HLA Ligand Atlas as 
a reference library of benign multi-tissue immunopep-
tidomes for comparative profiling with tumor immuno-
peptidomes for the discovery of actionable TAAs. As a 
case study, we selected three glioblastoma tumor samples 
from different individuals and analyzed their immuno-
peptidomes. We comparatively profiled the 11,784 HLA-I 
and 9631 HLA-II ligands identified in the glioblastoma 
samples against the benign dataset encompassed in the 
HLA Ligand Atlas (figure  6A,B). The majority of HLA 
ligands is shared between both tumor and benign tissues, 
with 5185 HLA-I TAAs and 3243 HLA-II TAAs being 

unique to glioblastoma (online supplemental table S4). 
When assessing their presentation frequency, 690 HLA-I 
TAAs are found on two glioblastoma samples, while 4494 
are patient-individual. In the case of HLA-II TAAs, 42 are 
shared between two glioblastoma patients, and 3201 are 
patient individual. No identified HLA-I or HLA-II ligands 
were common to all three glioblastoma patients.

Moreover, we investigated the presentation of cancer 
testis antigens (CTAs) by HLA-I and HLA-II molecules 
on benign tissues. CTAs are immunogenic proteins 
preferentially expressed in normal gametogenic tissues 
and different types of tumors. We compiled a list of 422 

A NUMBER OF DETECTED PEPTIDES ACROSS TISSUES
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Figure 3  Tissues exhibit a gradual separation based on the immunopeptidome yield. (A) The number of identified HLA-I and 
HLA-II peptides per sample (subject and tissue combinations) was sorted and plotted by median immunopeptidome yield 
per tissue. Boxes span the inner two quantiles of the distribution and whiskers extend by the same length outside the box. 
Remaining outlier samples are indicated as black diamonds. The number of subjects contributing to each tissue is illustrated 
on the y-axis in parenthesis. (B) A linear model was used to correlate the log transformed HLA-I and HLA-II median peptide 
yields with log transformed median gene expression counts (RPKM) of the immunoproteasome and HLA-DRB1 per tissue32. 
Corresponding R2, p value (F-statistic) and spearman rho are indicated in the bottom right box. HLA, human leucocyte antigen.

https://dx.doi.org/10.1136/jitc-2020-002071
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published CTAs from the curated CT database38 and a 
recent publication aiming to identify CTAs from tran-
scriptomics datasets.39 Of 422 published CTAs, 49 CTAs 
were presented on either HLA-I or HLA-II molecules 
and 10 CTAs on both HLA-I and HLA-II molecules in 
the HLA Ligand Atlas, provided that respective source 
proteins were identified with at least two HLA ligands 
(figure  6B and online supplemental table S4). CTAs, 

such as CTAGE5, KIA0100 and SPAG9, were presented in 
numerous benign samples with HLA-I and HLA-II ligands 
(figure  6B and online supplemental table S4). Further-
more, the CTA KIA1210 was only identified in the benign 
dataset on testis in accordance to its CTA status. Similarly, 
we queried all glioblastoma source proteins against the 
selected 422 CTAs and found three CTAs (two HLA-I and 
one HLA-II) exclusively presented in glioblastoma and 

Figure 4  Small subsets of source proteins are tissue exclusive. (A, B) Gene set enrichment (left) was tested for each tissue 
by correlating unique HLA-I and HLA-II source proteins per tissue with upregulated genes as annotated in GTEx. Heatmaps 
depict log10 p values (Fisher’s exact test) for each pairwise comparison. The number of tissue-specific HLA-I and HLA-II 
source proteins is depicted through the bar plot for each tissue on the right-hand side of the heatmaps. In addition, GO term 
enrichment (right) of biological processes was performed using the panther DB webservice for selected tissues with the same 
set of HLA-I and HLA-II tissue-specific source proteins. Top five enriched terms with respect to their log10 p value (Fisher’s exact 
test) were selected. DB, database; GO, gene ontology; HLA, human leucocyte antigen.

https://dx.doi.org/10.1136/jitc-2020-002071
https://dx.doi.org/10.1136/jitc-2020-002071
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not in our benign dataset, indicating promising targets 
against this tumor entity.

HLA ligands form hotspots in source proteins
When looking at the position-wise coverage profiles of 
individual source proteins across all HLA allotypes, we 
observe that HLA ligands seem to emerge from spatially 
clustered hotspot regions while other areas of the 
source protein do not contribute any HLA ligands at all 
(figure 6C, left). It has been shown previously that this 

clustering effect cannot be explained by the occurrence 
of HLA binding motifs as incorporated in epitope predic-
tion tools.40 The hotspot locations often coincide between 
HLA-I and HLA-II ligands, however, we did not perform a 
large-scale statistical analysis to validate this class linkage 
effect. In the case of HLA-II, the clustering effect has to 
be distinguished from the co-occurrence of HLA-II ligand 
length variants, which leads to a large number of distinct 
peptides covering the same source protein position due 

Figure 5  Cryptic peptides are part of the benign immunopeptidomes. (A) Spectra were searched with Peptide-PRISM to 
identify peptides of cryptic origin. Briefly, de novo sequencing was performed, and top 10 sequences per spectrum were 
queried against a database consisting of the three-frame translated transcriptome (Ensemble 90) and the six-frame translated 
human genome (HG38). Target-Decoy search was performed per database stratum, separately for canonical and cryptic 
peptides. (B) The HLA-allotype distribution of cryptic peptides was plotted in relation to cryptic and canonical peptides 
predicted to bind to the respective HLA allotype across all subjects and tissues. (C) Distribution of identified cryptic peptides 
categorized into multiple non-coding genomic regions. (D) Linear model correlating measured retention times (RT) of cryptic 
peptides with their predicted RTs trained on canonical peptide RTs. Corresponding R2, pi (width of the prediction interval—red 
dashed lines) and frac (the number of peptides falling into the prediction interval) are indicated in the bottom right. (E) 36 cryptic 
peptides were selected for spectral validation with synthetic peptides. The similarity between the synthetic and experimental 
spectrum was computed by correlation scores. (F) Exemplary spectral comparison of the cryptic peptide SVASPVTLGK and 
its synthesized heavy isotope-labeled counterpart (P+6). Matching b (red) and y ions (blue) are indicated as well as the isotope 
mass shifted ions (orange stars) of the synthesized peptide. FDR, false discovery rate; HLA, human leucocyte antigen.
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to the nature of HLA-II antigen processing and binding.41 
Many of the observed clusters span ranges of distinct, non-
overlapping HLA-II ligands (figure 6C, right). Position-
wise coverage plots for all source proteins are available 
online at http://​hla-​ligand-​atlas.​org.

The HLA Ligand Atlas web interface
The HLA Ligand Atlas web interface was designed to 
allow users to conveniently access the data we collected. 
Users can formulate queries in the form of filters based 
on peptide sequences, peptide sequence patterns, HLA 
allotypes, tissues and proteins of origin, or combinations 
thereof. Additionally, users can submit files with peptides 
or UniPort IDs, either as plain lists or as a FASTA files. 
The peptide list is then queried against the database and 
the resulting hits can again be freely combined with the 
aforementioned filters. Query results are shown as a list 
of peptides with plots of the corresponding HLA allotype 
and tissue distributions. Additionally, detailed views for 
single peptides and for coverage of proteins are available. 
Apart from the query interface, the web front-end also 
displays various aggregate views of the data stored in the 
database.

DISCUSSION
The HLA Ligand Atlas provides for the first time a 
comprehensive collection of benign human HLA-I and 
HLA-II immunopeptidomes. Both the experimental and 
computational workflows were designed in a standard-
ized and reproducible fashion. The data resource enables 
further data-driven research to improve our mechanistic 
understanding of antigen presentation and will substan-
tially enhance HLA binding prediction models. In addi-
tion, the analyses presented here already underline 
the individuality of HLA ligandomes, even beyond the 
rather well understood heterogeneity imposed by HLA 
allotypes. Our evaluation of pairwise sample similarity 
provides evidence that differences between individuals 
surpass differences between tissue types in the same indi-
vidual for both the immunopeptidome and their source 
proteins even when samples are matched for HLA allo-
types. On the proteome34 and transcript levels,3 4 however, 
samples were previously shown to cluster by tissue type, 
rather than by individual. In line with that finding, a 
weak correlation between immunopeptidome yield and 

RNA expression values has been observed previously.10 11 
It is evident that allotype-specific presentation by HLA is 
crucial to explain the different behavior on the level of 
proteomes and ligandomes. However, when comparing 
HLA-matched datasets, the clustering by individual is still 
evident and thus additional effects (eg, other—poten-
tially unknown—steps in the HLA-I antigen processing 
pathway) could play an important role as well.

This high degree of individuality between immunopep-
tidomes has major repercussions for clinical applications 
in emerging fields such as immuno-oncology. Our find-
ings indicate that the immunopeptidome adds an addi-
tional layer of complexity to the well-described genomic 
and transcriptomic tumor-heterogeneity. Successful 
induction of T-cell responses after peptide vaccination 
with neoantigens42 43 indicate that precision medicine 
will evolve to an increasingly individualized field, where 
treatment options will be tailored to the immunopepti-
domic landscape of the tumor. Mapping the tumor HLA 
ligandome of an individual patient therefore needs to 
be paralleled by a broad and in-depth knowledge of its 
benign counterpart—the HLA Ligand Atlas is a first step 
in this direction.

An essential application of the HLA Ligand Atlas is the 
selection of candidate peptide targets for immunotherapy 
approaches. We propose to prioritize the large candidate 
pool of non-mutated tumor-associated targets by compar-
atively profiling immunopeptidomes of primary tumors 
and benign tissues, as provided by the HLA Ligand Atlas. 
This approach would complement current strategies 
based on transcriptomes of benign tissues as comprised 
for example in GTEx.3 4 The HLA Ligand Atlas represents 
a first draft of a tissue-wide immunopeptidomics map 
covering both HLA-I and HLA-II canonical peptides, but 
also HLA-I non-canonical peptides that can be employed 
as an orthogonal level of quality control when defining 
TAAs.

Advances in LC-MS/MS technology, data acquisi-
tion methods and computational tools are constantly 
improving the depth of coverage of immunopeptidomics 
experiments. Therefore, we encourage the reanalysis of 
the raw LC-MS/MS dataset with novel hypotheses and 
upcoming computational methods that will lead to addi-
tional insight. Overall, we anticipate that the number 
of charted human immunopeptidomes will increase, 

Figure 6  HLA Ligand Atlas data enables prioritization of tumor-associated antigens (TAAs) and HLA ligands form hotspots 
in source proteins. (A) The size-proportional Venn diagram illustrates the overlap between the pooled glioblastoma (GBM) and 
benign HLA-I and -II immunopeptidomes, respectively. The waterfall plots show the number of glioblastoma-associated HLA-I 
ligands and their frequency among the three GBM patients analyzed. (B) Published CTAs are presented as HLA-I or HLA-II 
ligands on benign tissues, including testis but also in glioblastoma tumors. The number of identified samples either from the 
HLA Ligand Atlas or the glioblastoma dataset is depicted on the x-axis, provided that each CTA has been identified with at 
least two different HLA ligands. The CTA KIA1210 was identified exclusively on HLA-I source proteins in testis and is marked 
with an asterisk. (C) The position-wise HLA ligand coverage profiles as available in the HLA Ligand Atlas web interface for two 
exemplary proteins (left), the fibrinogen alpha chain (Uniprot ID P02671, length 866 aa, top) and the basement membrane-
specific heparan sulfate proteoglycan core protein (Uniprot ID P98160, length 4391 aa, bottom) are shown, illustrating the 
spatial clustering of HLA ligands into hotspots. For P02671 a close-up of such a cluster is shown in form of a multiple sequence 
alignment of the identified peptides (right). CTAs, cancer testis antigens; HLA, human leucocyte antigen, GBM, glioblastoma.

https://hla-ligand-atlas.org
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similarly as the human genome and transcriptome were 
mapped across multiple individuals. By generating larger 
datasets from many human individuals, population-wide 
conclusions can be drawn, and immunopeptidome-wide 
studies will provide insight into disease-associated HLA 
alleles and peptides.14 The HLA Ligand Atlas strives to 
advance our understanding of fundamental aspects of 
immunology relating to autoimmunity, infection, trans-
plantation, cancer immunotherapy and might provide 
a foundation for vaccine design. We hope that together 
with the scientific community we can expand the benign 
immunopeptidome to encompass more human subjects, 
tissues and HLA alleles.

METHODS
Experimental model and subject details
Human tissue samples were obtained post-mortem 
during autopsy performed for medical reasons at the 
University Hospital Zürich. None of the subjects included 
in this study was diagnosed with any malignant disease. 
Tissue samples were collected during autopsy, which was 
performed within 72 hours after death. Tissue annotation 
was performed by a board-certified pathologist. Tissue 
samples were immediately snap-frozen in liquid nitrogen.

Thymus samples were obtained from the University 
Children's Hospital Zürich/ Switzerland. Thymus tissue 
was removed during heart surgery for other medical 
reasons.

Furthermore, two benign ovarian tissue samples were 
collected for the time series experiments (OVA-DN278 
and OVA-DN281). Both patients were post-menopausal 
and had a bilateral ovarectomy for cystadenofibromas, 
which were diagnosed by histopathological examina-
tion of the specimen. The samples were obtained from a 
normal part of the ovary.

Finally, we included three primary glioblastoma tumor 
samples to illustrate a selection strategy for TAAs. The 
primary glioblastoma tumor was analyzed for patients 
GBM616 and GBM654, whereas, a recurrent tumor was 
analyzed for GBM753.

HLA typing
Multiple HLA typing approaches were performed for the 
different sources of patient material.

Autopsy subject AUT-DN08, AUT-DN16, and two benign 
ovary samples (OVA-DN278 and OVA-DN281) were 
typed at the Department of Transfusion Medicine of the 
University Hospital of Tübingen. High-resolution HLA 
typing was performed by next-generation sequencing on 
a GS Junior Sequencer using the GS GType HLA Primer 
Sets (both Roche, Basel, Switzerland). HLA typing was 
successful for HLA-A, -B, and -C alleles. However, HLA-II 
typing was only reliable for the HLA-DR locus, and incom-
plete for the HLA-DP and -DQ loci.

Therefore, we performed exome sequencing of lung 
tissue for remaining autopsy subjects. The HLA-I and 
HLA-II alleles were identified from the exome sequencing 

data using an improved version of OptiType44 available 
online at https://​github.​com/​FRED-​2/​OptiType (tagged 
hla-ligand-atlas).

Finally, sequence-based typing was performed for the 
five thymus samples and the three glioblastoma samples, 
by sequencing exons 1–8 for HLA-I alleles and exons 2–6 
for HLA-II alleles (Histogenetics, Ossining, New York, 
USA).

The subject characteristics are summarized in online 
supplemental table S1 encompassing information on 
sex, age, the number of collected tissues and HLA-I and 
HLA-II alleles.

HLA immunoaffinity purification
HLA-I and HLA-II molecules were isolated from snap-
frozen tissue using standard immunoaffinity chro-
matography. The antibodies employed were the 
pan-HLA-I-specific antibody W6/32,45 and the HLA-DR-
specific antibody L243,46 produced in house (University 
of Tübingen, Department of Immunology) from HB-95, 
and HB-55 cells (ATCC, Manassas, Virginia, USA), 
respectively. Furthermore, the pan-HLA-II-specific anti-
body Tü39 was employed and produced in house from 
a hybridoma clone as previously described.47 The anti-
bodies were cross-linked to CNBr-activated sepharose 
(Sigma-Aldrich, St. Louis, Missouri, USA) at a ratio of 
40 mg sepharose to 1 mg antibody for 1 g tissue with 0.5 
M NaCl, 0.1 M NaHCO3 at pH 8.3. Free activated CNBr 
reaction sites were blocked with 0.2 M glycine.

For the purification of HLA-peptide complexes, tissue 
was minced with a scalpel and further homogenized 
with the Potter-Elvehjem instrument (VWR, Darmstadt, 
Germany). The amount of tissue employed for each puri-
fication is documented in online supplemental table S1. 
This information is not available for seven tissues, anno-
tated as n.d. in said table. Tissue homogenization was 
performed in lysis buffer consisting of CHAPS (Panreac 
AppliChem, Darmstadt, Germany) and one cOmplete 
protease inhibitor cocktail tablet (Roche) in PBS. There-
after, the lysate was sonicated and cleared by centrifugation 
for 45 min at 4000 rpm, interspaced by 1-hour incubation 
periods on a shaker at 4°C. Lysates were further cleared by 
sterile filtration employing a 5 µm filter unit (Merck Milli-
pore, Darmstadt, Germany). The first column contained 
1 mg of W6/32 antibody coupled to sepharose, whereas 
the second column contained equal amounts of Tü39 and 
L243 antibody coupled to sepharose. Finally, the lysates 
were passed through two columns cyclically overnight 
at 4°C. Affinity columns were then washed for 30 min 
with PBS and for 1 hour with water. Elution of peptides 
was achieved by incubating four times successively with 
100–200 µL 0.2% trifluoroacetic acid (TFA) on a shaker. 
All eluted fractions were subsequently pooled. Peptides 
were separated from the HLA molecule remnants by 
ultrafiltration employing 3 kDa and 10 kDa Amicon filter 
units (Merck Millipore) for HLA-I and HLA-II, respec-
tively. The eluate volume was then reduced to approxi-
mately 50 µL by lyophilization or vacuum centrifugation. 

https://github.com/FRED-2/OptiType
https://dx.doi.org/10.1136/jitc-2020-002071
https://dx.doi.org/10.1136/jitc-2020-002071
https://dx.doi.org/10.1136/jitc-2020-002071
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Finally, the reduced peptide solution was purified five 
times using ZipTip pipette tips with C18 resin and 0.6 µL 
bed volume (Merck,) and eluted in 32.5% acetonitrile 
(ACN)/0.2% TFA. Each peptide eluate was purified by 
loading it five times onto the same ZipTip pipette tip. The 
tip was passed sequentially by pipetting ten times up and 
down through 32.5% ACN/ 0.2% TFA for purification, 
0.1% TFA for equilibration, the sample for binding the 
peptides, 0.1% TFA for desalting and 32.5% ACN/0.2% 
TFA for elution. This entire sequence was repeated five 
times using the same ZipTip pipette tip. The purified 
peptide solution was concentrated by vacuum centrifu-
gation and supplemented with 1% ACN/0.05% TFA and 
stored at −80°C until LC-MS/MS analysis.

Time series experiments
We performed time series experiments to assess the suit-
ability of tissues obtained from autopsies as a source of 
human tissues for the characterization of the benign immu-
nopeptidome. We evaluated the degradation profile of the 
immunopeptidome, when tissues were stored at 4°C for up 
to 72 hours after tissue removal, to mimic the conditions at 
autopsy. The time series experiment was repeated in three 
benign tissues from different individuals: one benign liver 
obtained at autopsy (AUT-DN16 Liver), and two benign 
ovaries removed surgically (OVA-DN278 and OVA-DN281). 
The tissues were extracted and incubated at 4°C until the 
defined time point and flash-frozen in liquid nitrogen until 
HLA ligand extraction. As more tissue was available form 
AUT-DN16 Liver, tissue samples were frozen after 8 hours, 
16 hours, 24 hours, 48 hours and 72 hours. Due to the 
limited sample amount obtained from OVA-DN278 and 
OVA-DN281, only three time points could be accounted for: 
0 hours, 24 hours and 72 hours. The HLA immunoaffinity 
purification was performed as mentioned, with the excep-
tion that mass to volume ratio in ovary samples was adjusted 
to the lowest mass across all time points before loading onto 
sepharose columns.

Mass spectrometric data acquisition
HLA ligand characterization was performed on an Orbitrap 
Fusion Lumos mass spectrometer (Thermo Fisher Scien-
tific, San Jose, California, USA) equipped with a Nanospray 
Flex Ion Source (Thermo Fisher Scientific) coupled to an 
Ultimate 3000 RSLC Nano UHPLC System (Thermo Fisher 
Scientific). Peptide samples were loaded with 1% ACN/ 
0.05% TFA on a 75 µm x 2 cm Acclaim PepMap 100 C18 
Nanotrap column (Thermo Fisher Scientific) at a flow rate 
of 4 µL/min for 10 min. Separation was performed on a 
50 µm × 25 cm PepMap RSLC C18 (Thermo Fisher Scien-
tific) column, with a particle size of 2 µm. Samples were 
eluted with a linear gradient from 3% to 40% solvent B 
(80 %/0.15% FA in water) at a flow rate of 0.3 µL/min over 
90 min. The column was subsequently washed by increasing 
to 95% B within 1 min, and maintaining the gradient for 
5 min, followed by reduction to 3% B and equilibration for 
23 min.

Data acquisition was performed as technical triplicates 
in data-dependent mode, with customized top speed (3 s) 
methods for HLA-I- and HLA-II-eluted peptides. HLA-I 
peptides have a length of 8–12 amino acids,48 49 there-
fore, the scan range was restricted to 400–650 m/z and 
charge states of 2–3. MS1 and MS2 spectra were detected 
in the Orbitrap with a resolution of 120,000 and 30,000, 
respectively. Furthermore, we set the automatic gain 
control (AGC) targets to 1.5*105 and 7.0*104 and the 
maximum injection time to 50 ms and 150 ms for MS1 
and MS2, respectively. The dynamic exclusion was set 
to 7 s. Peptides were fragmented with collision-induced 
dissociation while the collision energy was set to 35%.

HLA-II peptides have a length of 8–25 amino acids,49 50 
thus, the scan range was set to 400–1000 m/z and the 
charge states were restricted to 2–5. Readout for both MS1 
and MS2 were performed in the Orbitrap with the same 
resolution and maximum injection times as for HLA-I 
peptides. The dynamic exclusion was set to 10 s and AGC 
values employed were 5.0*105 and 7.0*104 for MS1 and 
MS2, respectively. Higher-energy collisional dissociation 
fragmentation with 30% collision energy was employed 
for HLA-II peptides.

The LC-MS/MS immunopeptidomics data comprised 
in the HLA Ligand Atlas has been deposited to the 
ProteomeXchange Consortium via the PRIDE 51partner 
repository.

Database search with MHCquant
MS data obtained from HLA ligand extracts was analyzed 
using the nf-core52 containerized, computational pipe-
line MHCquant29 (release V.1.5.1 - https://www.​openms.​
de/​mhcquant/) with default settings. The workflow 
comprises tools to analyze LC-MS/MS data of the open-
source software library OpenMS (V.2.5).53 Identification 
and post-scoring were performed using the OpenMS 
adapters to Comet 2016.01 rev.354 and Percolator V.3.455 
at a local peptide-level FDR threshold of 1% among the 
technical replicates per sample. Subsequently, we esti-
mated the global peptide-level FDR by dividing the sum of 
expected false positive identifications from each sample 
(1% peptide level FDR) by the total number of identi-
fied peptides in the entire dataset (HLA-I: 4.5% FDR, 
HLA-II: 3.9% FDR).56 57 The human reference proteome 
(Swiss-Prot, Proteome ID UP000005640, 20,365 protein 
sequences) was used as a database reference. Database 
search was performed without enzymatic restriction, 
with methionine oxidation as the only variable modifi-
cation. MHCquant settings for high-resolution instru-
ments involving a precursor mass tolerance of 5 ppm 
and a fragment bin tolerance of 0.02 Da were applied. 
The peptide length restriction, digest mass and charge 
state range were set to 8–12 amino acids, 800–2500 Da 
and 2–3 for HLA-I and 8–25 amino acids, 800–5000 Da 
and 2–5 for HLA-II, respectively. No protein inference 
was performed, however, all proteins that contain a given 
peptide were annotated as peptide source proteins.

https://www.openms.de/mhcquant/
https://www.openms.de/mhcquant/
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HLA binding prediction
Peptide binding predictions were computed based on 
the subject’s HLA alleles. For HLA-I ligand extracts, 
we employed SYFPEITHI58 and NetMHCpan-4.159 in 
ligand mode (default). The SYFPEITHI score ‍sSYF‍ was 
computed by dividing the sum of amino acid-specific 
values for each position in the tested peptide by the 
maximally attainable score for the respective HLA allo-
types.60 HLA-II ligand extracts were annotated with 
NetMHCIIpan-4.018 and MixMHC2pred17 using the 
default settings.

Peptides were categorized as strong binders against a 
given HLA allotype if any tool reported it as such (netM-
HCpan-4.1 ‍srank ≤ 0.5‍, netMHCIIpan-4.0 ‍srank ≤ 1.0,‍ MixM-
HC2pred ‍srank ≤ 1.0‍, where ‍srank‍ is the reported percentile 
rank score). Peptides were otherwise reported as weak 
binders if any of the tools reported it as such (netMH-
Cpan-4.1 ‍srank ≤ 2.0‍, netMHCIIpan-4.0 ‍srank ≤ 5.0,‍ MixMH-
C2pred ‍srank ≤ 5.0‍, SYFPEITHI ‍sSYF ≥ 0.5‍). All peptide-HLA 
allotype associations within these limits were included 
in the dataset, that is, a single peptide sequence can be 
reported as a binder against multiple allotypes of the 
same donor. Throughout this article, unless allele asso-
ciations are specified, all peptides including those clas-
sified as non-binders against any subject’s allotype were 
included in the analysis.

Binding prediction and length distribution-based quality 
control
We defined the fraction of predicted binders of a sample 
as the ratio of predicted binders divided by the total 
number of peptide identifications. Technical replicates 
with a fraction of predicted binders lower than 50% for 
HLA-I and lower than 10% for HLA-II ligand extracts 
were excluded from the dataset. Furthermore, individual 
replicates were removed from the dataset if the mode of 
the length distribution differed from nine amino acids 
for HLA-I and was not in the interval [12, 18] for HLA-II 
(see online supplemental file 1).

Quantitative time series analysis
Database search of LC-MS/MS data from the three time 
series experiments was performed with MHCquant V.1.5.1 as 
previously described.29 Identifications were matched between 
runs61 based on retention time alignment and targeted 
feature extraction62 to integrate respective MS1 areas for all 
time points and technical replicates.

MS1 areas ‍x‍ were normalized to z-scores (standard scores) 
‍z‍ per MS run by subtracting the mean and dividing by SD:

	﻿‍ z =
(
x−µ

)
σ ‍�

The trajectory of scaled MS1 areas was clustered by 
k-means unsupervised clustering with six seeds using 
the tslearn (V.0.3.1) python package. All trajectories are 
related to the first time point by subtracting its median 
z-score from all other timepoints in the respective analysis.

Comparison of the HLA-Ligand-Atlas database with IEDB and 
SysteMHC
All peptides contained in the HLA Ligand Atlas data-
base were compared with peptides listed in the IEDB 
and SysteMHC databases for HLA-I and HLA-II ligands 
separately. The list of peptides stored in the IEDB was 
obtained by downloading the file ‘​epitope_​full_​v3.​zip’ 
from the ‘Database Export’ page. The obtained table 
was subsequently filtered for positive MS assays, linear 
peptides and human origin. Peptides with modifications 
were removed. Peptides stored in the SysteMHC database 
were obtained by downloading the file ‘​180409_​master_​
final.​tgz’ from ‘Builds_for_download’ page. The obtained 
table was subsequently filtered for human as organism.

GO-term enrichment
GO term enrichment analyses were performed using the 
Panther63 ‘statistical overrepresentation test’ (Release 
2020-07-28) based on the 2020-10-09 GO Ontology data-
base release (DOI: 10.5281/zenodo.4081749). Gene 
identifiers of source proteins presented exclusively by 
either HLA-I or HLA-II allotypes were queried against 
the ‘GO cellular component complete’ database using 
the default ‘Homo sapiens genes’ reference list. GO 
terms were sorted by Fisher’s exact raw p value, and top 
10 scoring terms reported as overrepresented and their 
corresponding p values were selected for illustration.

Tissue-specific source proteins were defined as HLA-I or 
HLA-II source proteins identified exclusively in one tissue 
across all subjects (online supplemental table S5). Gene 
identifiers of tissue-specific HLA-I and HLA-II source 
proteins were queried against the ‘GO biological process 
complete’ database, with the only difference that only the 
top five scoring terms reported as overrepresented were 
selected for illustration.

Tissue-specific gene set enrichment
Analogously to the GO-term enrichment, tissue-specific 
HLA-I and HLA-II source proteins were separately queried 
against the GTEx database for gene set enrichment anal-
ysis. Gene sets with upregulated gene expression profiles 
per tissue ‘GTEx_Tissue_Sample_Gene_Expression_
Profiles_up’ were retrieved using the gseapy implemen-
tation (V.0.9.15, 2019-08-07) through the enrichr API. All 
tissues covered in the HLA Ligand Atlas were matched 
and compared against all tissues in the GTEx database 
that co-occur in the HLA Ligand Atlas. Fisher’s exact raw 
p values for the enrichment were computed for each pair-
wise comparison.

HLA-I and HLA-II peptide yield correlation to expression of 
immune-related genes
We computed a linear model to compare the median 
HLA-I peptide yields per tissue with gene expression 
values (RPKM) of the following genes involved in the 
HLA-I presentation pathway: HLA-A, HLA-B, HLA-C, 
immunoproteasome, constitutive proteasome, TAP1 
and TAP2. Median HLA-II peptide yields per tissue were 

https://dx.doi.org/10.1136/jitc-2020-002071
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correlated to genes involved in the HLA-II presentation 
pathway: HLA-DRB1, HLA-DRA, HLA-DQB1, HLA-
DQA1, HLA-DPB1, HLA-DPA1. The corresponding gene 
expression values were taken from a previously published 
study.32

An ordinary least squares linear model correlating 
gene expression and ‍log10‍ median HLA-I and HLA-II 
peptide yields was computed using R (V.3.5) and the 
corresponding stats (V.3.5) package reporting R2, F-sta-
tistic p value and spearman rho. The cross-correlation 
between all immune-related genes and their individual 
linear models (figure 3 and online supplemental figure 
S6) was computed using R (V.3.5) and the corresponding 
packages corrplot (V.0.84) and ggplot2 (V.3.2.1). As the 
expression levels of the investigated genes are highly 
covariant (online supplemental figure S6A,C), the regres-
sion would be overfitting when correlating peptide yields 
to multiple genes involved in the antigen presentation 
pathway, thus the analysis was limited to a single gene at 
a time.

Computation of Jaccard coefficients between samples
We investigated the similarity of immunopeptidomes 
between tissues and subjects by pairwise comparison of 
all samples in the HLA Ligand Atlas. Comparisons were 
performed both on HLA-I and HLA-II level as well as on 
peptide and source protein level. The Jaccard index was 
calculated by dividing the set intersection by the set union 
for all pairwise comparisons:

	﻿‍ j = A∩B
A∪B‍�

Identification of cryptic peptides with Peptide-PRISM
Identification of cryptic HLA-I peptides from HLA-I 
LC-MS/MS data was performed as recently described in 
detail.37 Briefly, de novo peptide sequencing was performed 
with PEAKS Studio X64 65 (Bioinformatics Solutions, 
Canada). Top 10 sequence candidates were exported 
for each fragment ion spectrum. Database matching of 
all sequence candidates and stratified FDR-filtering was 
performed with Peptide-PRISM using the six-frame trans-
lation of the HG38 and the three-frame translation of the 
human transcriptome (Ensembl 90). Matched peptides 
were filtered to 10% FDR and peptides were predicted 
as binder to the corresponding HLA alleles by NetMH-
Cpan-4.0.59 Peptide-PRISM is a hybrid approach for the 
identification of HLA-I peptides that combines de novo 
peptide sequencing with highly efficient string search. 
Peptide-PRISM facilitates fast and sensitive identifica-
tion of HLA-I peptides in extremely large databases that 
cannot be searched with classical search engines. Basi-
cally, Peptide-PRISM matches the peptide sequences of 
the top 10 de novo candidates of all fragment ion spectra 
against the three-frame translated human transcriptome 
and the six-frame translated human genome. Stringent 
FDR filtering is achieved by applying the common target-
decoy approach in combination with mixture modeling 
for deconvoluting the overall de novo score distribution 

into components of false and true identifications. Since 
correct FDR filtering requires different de novo score 
thresholds for peptides of different length and for 
peptides from different categories (CDS, 5’-UTR, 3’-UTR, 
out-of-frame, ncRNA, intronic, intergenic), FDR filtering 
is performed separately for these categories (for more 
details see37). Thus, Peptide-PRISM facilitates the reliable 
and sensitive identification of cryptic HLA-I peptides. Due 
to the overall low relative abundance of cryptic peptides 
(~1%) in benign tissue it was not possible to reveal data 
about the tissue prevalence of cryptic HLA-I peptides.

Retention time model for cryptic peptide validation
Retention time predictions were carried out using the 
OpenMS (V.2.5.0) RTModel based on oligo-kernel 
ν-support vector regression (ν=0.5, p=0.1, c=1, degree=1, 
border_length=22, kmer_length=1, Σ=5).66 The model 
was trained on all peptide identifications of canon-
ical peptides identified with MHCquant and applied 
to all cryptic peptide identifications resulting from 
Peptide-PRISM. Predictions were evaluated by applying 
a linear least square fit to compute the 99% predic-
tion interval around the predicted versus measured 
retention times using the statsmodels (V.0.11) function 
wls_prediction_std.

Synthesis of isotope-labeled peptides
Peptides were synthesized using the Liberty Blue Auto-
mated Peptide Synthesizer (CEM) following the stan-
dard 9-fluorenylmethyl-oxycarbonyl/tert-butyl strategy. 
After removal from the resin by treatment with TFA/
triisopropylsilane/water (95/2.5/2.5 by vol.) for 1 hour, 
peptides were precipitated from diethyl ether, washed 
three times with diethyl ether and resuspended in water 
prior to lyophilization. Purity and identity of the synthesis 
products were determined by C18-HPLC (Thermo Fisher 
Scientific, Darmstadt, Germany) and LTQ Orbitrap XL 
mass spectrometer (Thermo Fisher Scientific), respec-
tively. These peptides were synthesized in house with an 
isotopic label, in order to avoid cross-contamination of 
native peptide eluates isolated in house as well with the 
synthesized cryptic peptides of interest.

Spectrum validation
We selected 36 cryptic peptides, identified with an FDR of 
1% for spectral validation with isotope-labeled synthetic 
peptides. Selected peptides were strong binders to the 
corresponding HLA allotype of the respective subject, 
with a netMHCpan-4.0 binding rank <0.5.

Isotope-labeled synthetic peptides were spiked into 
a sample matrix of native HLA eluted peptides from a 
JY cell line at a concentration of 20 fmol/µL, with the 
purpose of showing spectrum identity between the native 
and synthetic peptides.

The spectral similarity ﻿‍ λ‍ was computed analogous to 
the normalized spectral contrast angle67 between eluted 
peptide spectra and synthetic isotope labeled peptide 
spectra:

https://dx.doi.org/10.1136/jitc-2020-002071
https://dx.doi.org/10.1136/jitc-2020-002071
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	﻿‍ λ
(
S1, S2

)
= 1 − 2 cos−1

(
S1·S2

)
π ‍�

where the spectra were encoded as intensity vectors (‍S1‍ 
and ‍S2‍ based on their theoretical b and y fragment ions by 
using the mzR (V.2.16.2), msdata (V.0.20.0) and protViz 
(V.0.4) R packages. Intensities of matching y- and b-ion 
pairs as encoded in the intensity vectors were compared, 
thereby avoiding the necessity to correct for the mass 
shift caused by the isotope label. Peaks present in at least 
one of the spectra were considered for the cross product 
(‍S1 · S2‍). Intensities of peaks missing in one spectrum 
when compared with another were set to zero.

A set of 1000 randomly selected pairwise comparisons 
was employed to create a reference negative distribution 
of the spectral similarity score.

Data storage and web interface
Data were stored and managed using the biomedical 
data-management platform qPortal.68 HLA-I and HLA-II 
peptides were complemented with their tissue and HLA 
allotype association and stored in an SQL database. A 
public web server was implemented that allows users to 
formulate queries against the database, visualize results 
and allows data export for further analysis. The web 
front-end was implemented in HTML, CSS and JavaS-
cript based on the front-end framework Bootstrap V.4. 
The table plugin DataTables was used to provide rapid 
browsing and filtering for tabular data. Interactive plots 
were designed using Bokeh and ApexCharts.
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