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Abstract

Background—Elevated blood pressure is linked to cognitive impairment and Alzheimer’s 

disease biomarker abnormality. However, blood pressure levels vary over time. Less is known 

about the role of long-term blood pressure variability in cognitive impairment and Alzheimer’s 

disease pathophysiology.

Objective—Determine whether long-term blood pressure variability is elevated across the 

clinical and biomarker spectrum of Alzheimer’s disease.

Methods—Alzheimer’s Disease Neuroimaging Initiative participants (cognitively normal, mild 

cognitive impairment, Alzheimer’s dementia [n=1421]) underwent baseline exam, including blood 

pressure measurement at 0, 6, 12 months. A subset (n=318) underwent baseline lumbar puncture 

to determine cerebral spinal fluid amyloid-β and phosphorylated tau levels. Clinical groups and 

biomarker-confirmed Alzheimer’s disease groups were compared on blood pressure variability 

over 12 months.

Results—Systolic blood pressure variability was elevated in clinically diagnosed Alzheimer’s 

dementia (VIM: F2,1195 = 6.657, p = 0.001, η2 = 0.01) compared to cognitively normal 

participants (p = .001), and in mild cognitive impairment relative to cognitively normal 

participants (p = .01). Findings were maintained in biomarker-confirmed Alzheimer’s disease 

(VIM: F2,850 = 5.216, p = 0.006, η2 = 0.01), such that systolic blood pressure variability was 

elevated in biomarker-confirmed dementia due to Alzheimer’s disease relative to cognitively 

normal participants (p = .005) and in biomarker-confirmed mild cognitive impairment due to 

Alzheimer’s disease compared to cognitively normal participants (p = .04).
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Conclusion—Long-term systolic blood pressure variability is elevated in cognitive impairment 

due to Alzheimer’s disease. Blood pressure variability may represent an understudied aspect of 

vascular dysfunction in Alzheimer’s disease with potential clinical implications.
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INTRODUCTION

A large body of research suggests a link between hypertension and cognitive decline, with 

deleterious effects noted across cognitive domains that include memory, attention, language, 

processing speed, and visuospatial perception [1–8]. Moreover, high blood pressure (BP) has 

been associated with an increased risk for dementia [2,3,8], neuropathological changes in 

patients with dementia [9–18], and in mouse models of Alzheimer’s disease (AD) [19]. On 

the other hand, low BP has also been associated with increased dementia risk [2,3,20–24], 

and BP levels have been shown to decrease with advancing clinical symptoms of AD [25]. 

Together these studies underscore the potential importance of careful BP assessment and 

treatment in the prevention of cognitive decline in older adults.

In addition to the importance of average BP levels, blood pressure variability (BPV) over 

several months and years (e.g., long-term BPV) is thought to be a key index of 

cardiovascular health [26]. Despite the potential value of BPV, the vast majority of prior 

observational research and clinical trials have focused on static measures of BP. It is widely 

appreciated that BP is dynamic and highly variable [26], and BP levels tend to fluctuate over 

multiple time-scales due to a host of internal and external factors [26]. The inherent 

variability of BP limits the value and reliability of average BP levels as a biomarker of 

neurocognitive dysfunction. These fluctuations in BP also have important implications for 

brain health since variable pressure must be counteracted by homeostatic mechanisms, 

including baroreflex function and cerebral autoregulation, in order to ensure steady brain 

perfusion supporting normal neurological function [27–31]. However, these homeostatic 

processes can be disrupted by a number of pathological processes, including cerebrovascular 

remodeling due to chronic hypertension, leaving the brain vulnerable to hypoperfusion 

injury [29,32–39].

Elevated BPV has been reported in AD [40–42], and is recognized as a risk factor for 

cognitive impairment and dementia in the general older adult population [43–49], even in 

those with well-controlled average BP [50]. Several of these studies report the prognostic 

value of BPV in predicting cognitive decline and dementia risk is beyond that of average BP 

[40,44,46,48,51]. Prior research on BPV in cognitive impairment and AD has a number of 

limitations, including investigating BPV in a combined group of mild-to-moderate AD 

patients [40–42], combining cognitively unimpaired and mildly impaired participants into 

one “non-demented” group [51], lack of characterization of older adult samples [43–47], and 

reliance on clinical diagnosis without biomarker confirmation [40–44,49,51]. Thus, it 

remains unclear whether increased BPV occurs in the more mild stages of cognitive 

impairment and whether it is specific to one etiology [40–51]. Importantly, we are not aware 
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of any studies investigating BPV in mildly impaired participants relative to cognitively 

unimpaired older adults or to patients with AD dementia. Although one study compared 

BPV in AD patients versus cognitively normal (CN) controls [41], elevation of mildly 

impaired participants may be important for early diagnosis and treatment implications. 

Moreover, examining BPV across the biomarker-confirmed AD clinical spectrum could 

provide insight into disease-specific profiles. Prior studies have linked elevated BP and 

cerebrovascular resistance to AD biomarker abnormality [52–56], but to our knowledge no 

studies to date have examined BPV in patients with AD biomarker abnormality. The aim of 

the current study was two-fold. First, we compared BPV in older adults with a clinical 

diagnosis of AD dementia, mild cognitive impairment (MCI) or CN. Second, we compared 

BPV in older adults with biomarker-confirmed dementia due to AD, MCI due to AD, and 

CN.

MATERIALS AND METHODS

Participants

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging 

(MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and 

early AD. Volunteer adults aged 55–91 (inclusive) were recruited from more than 50 sites 

across the United States and Canada, and were enrolled if they had few depressive 

symptoms (Geriatric Depression Scale score below 6), were free of significant neurological 

disease (apart from suspected AD), and had low vascular risk (Hachinski Ischemic Score at 

or below 4). Further information on recruitment and screening can be found on the ADNI 

website (www.adni-info.org).

Ethics approval was obtained for each institution involved. This study was conducted 

according to Good Clinical Practice guidelines, the Declaration of Helsinki, US 21 CFR Part 

50- Protection of Human Subjects, and Part 56- Institutional Review Boards, and pursuant to 

state and federal HIPAA regulations. Institutional Review Boards were constituted following 

State and Federal requirements at each participating location. Study protocols were approved 

by the appropriate Boards and submitted to Regulatory Affairs at the ADNI Coordinating 

Center prior to the start of the study. All participants and/or authorized representatives and 

study partners provided written informed consent for the study prior to protocol-specific 

procedures. For more information, see www.adni-info.org.

For the present study, we included ADNI participants with an initial clinical evaluation and 

health exam that included BP measurement at baseline, 6 months, and 12 months follow up. 

A subset of these participants also underwent baseline lumbar puncture for evaluation of 

cerebral spinal fluid (CSF) AD biomarkers. See Supplementary Table 1 for information on 

included versus excluded participants in the present study.
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Measures

Clinical group assessment—Baseline evaluation determined initial clinical diagnosis. 

Criteria for ADNI diagnoses of MCI included: subjective memory complaint reported by the 

participant or informant; Mini-Mental State Examination (MMSE) scores between 24 and 30 

(inclusive); global Clinical Dementia Rating (CDR) scale score of 0.5; scores on delayed 

recall of Story A of the Wechsler Memory Scale Revised (WMS-R) Logical Memory II 

subtest that are below expected performance based on years of education; general 

presentation that would disqualify for a diagnosis of AD [57]. A diagnosis of AD dementia 

was assigned if the National Institute of Neurological and Communicative Disorders and 

Stroke and Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) 

criteria for probable AD were met, including MMSE scores between 20 and 26 (inclusive), 

and CDR scores of 0.5 or 1 [58]. Participants were deemed to be CN if neither diagnostic 

criteria were met.

Alternative diagnostic criteria for MCI were developed in efforts to reduce the known high 

false-positive rate of MCI classification by the ADNI criteria [59,60]. Given our particular 

interest in characterizing BPV during milder stages of disease, and the high potential for 

misclassification, we conducted a cluster analysis of neuropsychological test performance 

among ADNI-defined MCI participants as previously described [60]. Briefly, 

neuropsychological test scores (Rey Auditory Verbal Learning Test delayed memory recall, 

Rey Auditory Verbal Learning Test delayed memory recognition, Animal fluency, Boston 

Naming Test, Trail Making Test Parts A & B) covering three cognitive domains (memory, 

language, executive function) were entered into a cluster analysis to derive three previously 

documented subtypes of MCI (amnestic MCI, dysnomic MCI, and dysexecutive MCI), as 

well as a cluster-derived CN group [60]. The ADNI-defined CN and the cluster-derived CN 

were combined into one CN group, and the three cluster-derived MCI subtypes were 

combined into one MCI group [60]. Thus, our primary analyses included participants with 

cluster-informed CN and MCI, and ADNI-defined AD.

To contribute to the growing literature using this cluster method, as well as to validate 

previous study findings of BPV using more conventional criteria [51], identical secondary 

analyses were conducted in parallel with a sample of participants identified as CN, MCI, and 

AD dementia using the conventional ADNI criteria (see Supplementary Materials). Potential 

differences between the diagnostic schemes were examined, as the ADNI database has been 

used in a previous study of BPV in CN and MCI participants based on ADNI diagnostic 

criteria [51].

Blood pressure measures—Physiological measures included brachial artery systolic 

BP and diastolic BP collected during a health exam using a standardized ADNI protocol 

described elsewhere (www.adni-info.org). Briefly, a calibrated mercury sphygmomanometer 

recorded BP from the dominant forearm arranged at the horizontal level of the fourth 

intercostal space at the sternum while the participant was seated and resting. BP assessment 

was conducted during each exam, including baseline, 6 months, and 12 months follow up. 

Average BP and BPV (standard deviation [SD], coefficient of variation [CV] [100 × SD / 

mean], variation independent of mean [VIM]) were calculated for each participant using the 
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three BP measurements collected. VIM is a commonly used index of long-term BPV and has 

no correlation with average BP levels over visits [42,61]. VIM was calculated using the 

formula: VIM = SD/meanx, where the power x was derived from non-linear curve fitting 

(BP SD on y-axis against average BP on x-axis) using the nls package in R Project [61,62].

Other physiological measures—Blood samples were collected by venipuncture and 

used to determine apolipoprotein E (APOE)-ϵ4 carrier status [63]. Participants were 

categorized into those with or without at least one copy of the APOE-ϵ4 allele.

Vascular risk factors—Vascular risk factor burden was determined by physical exam and 

clinical interview as part of the general health evaluation at study entry. For the present 

study, general health evaluation data were screened and coded for vascular risk factors most 

relevant to cerebrovascular disease and cognition based on the Framingham Stroke Risk 

Profile [53,64–66]. Specifically, history of cardiovascular disease (i.e., myocardial 

infarction, intermittent claudication, angina, heart failure, or other evidence of coronary 

disease), type 2 diabetes mellitus, atrial fibrillation, evidence of carotid artery disease, and 

transient ischemic attack or minor stroke were included as vascular risk factors. Each 

participant was determined to have low vascular risk (i.e., the presence of ≤ 1 vascular risk 

factor) or high vascular risk (i.e., the presence of ≥ 2 vascular risk factors) based on prior 

studies linking vascular risk burden to cerebrovascular pathology at autopsy [53,66]. 

Baseline body mass index (BMI) was calculated as weight (kg) divided by height (meters) 

squared. Medications taken at baseline evaluation were screened and participants were 

classified as those taking antihypertensive medication (all major classes of hypertensive 

medications) versus those who were not taking antihypertensive medication, as well as those 

who were taking acetylcholinesterase inhibitor (ChEIs) medication versus those who were 

not taking ChEIs. Hypertensive status was determined based on mean BP.

Biomarker-confirmed Alzheimer’s disease diagnosis—A subset of participants 

underwent baseline lumbar puncture to obtain CSF samples for assessment of amyloid-β 
(Aβ) and phosphorylated tau (Ptau) levels using methods detailed elsewhere [67–70]. 

Briefly, Roche Elecsys Aβ CSF and Elecsys Ptau CSF immunoassays were used to measure 

Aβ and Ptau levels in CSF aliquots following a Roche Study protocol at the UPENN/ADNI 

Biomarker Laboratory. Acceptance criteria were met using previously described analyte 

measuring ranges with lower to upper technical limits [67]. Using established guidelines 

[69], participants with Aβ values at or above 980 pg/ml were characterized as Aβ negative 

and participants with values below this cutoff were defined as Aβ positive. Participants were 

defined as Ptau negative with values of Ptau at or below 21.8, and as Ptau positive with 

values above this threshold.

To investigate BP in relation to cognitive impairment with biomarker-confirmed AD 

pathophysiology, participants identified as MCI or AD dementia who had available 

biomarker data were classified into one of two biomarker groups based on biomarker status 

of Aβ and Ptau per research recommendations for the diagnosis of AD [71,72]: MCI with 

two positive biomarkers (MCIAβ+Ptau+), or AD dementia with two positive biomarkers 

(ADAβ+Ptau+).
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To explore the contribution of specific biomarker burden on BPV, CN participants identified 

using the cluster method who had available biomarker data were further classified into 

intermediate biomarker groups for exploratory analyses (see Supplementary Methods).

STATISTICAL ANALYSIS

Systolic and diastolic BPV values (SD, CV, VIM) were not normally distributed and were 

corrected through log transformation. Outliers of each BP measurement (mean, SD, CV, 

VIM) were removed if they were greater than +/− 3 SD from the mean. One-way analysis of 

variance (ANOVA) and chi-square tests were used to compare demographic variables (age, 

sex, BMI, education, APOE-ϵ4 carrier status, antihypertensive medication use, ChEI use, 

vascular risk level) among clinical and biomarker-confirmed AD groups. Analysis of 

covariance (ANCOVA) models compared BP measurements across clinical and biomarker-

confirmed AD groups after covarying for age, sex, BMI, years of education, APOE-ϵ4 

carrier status, vascular risk level, antihypertensive medication use, and ChEI medication use. 

ANCOVA models also included average BP over the 12 months as a covariate to account for 

the high degree of correlation between average BP and some measures of BPV [26,61]. 

Potential interaction effects of group by antihypertensive medication use on BPV, as well as 

group by average BP on BPV were also examined. Post-hoc Least Significant Difference 

(LSD) tests and post-hoc chi-squared tests were used in the case of significant main effects 

to determine specific group differences. All analyses were 2-tailed with significance set at p 
< .05. Multiple comparison corrections (using the False Discovery Rate [FDR] method) for 

significant main effects was set at p < .05 [73]. Reported values for ANOVA and ANCOVA 

models include F-value (F), p-value (p), and partial eta-squared (η2). Reported values for 

interaction effects include F-value (F) and p-value (p). Reported values for chi-squared tests 

include x2 values (x2) and p-values (p). See Supplementary Materials for identical secondary 

and exploratory analyses and results. All analyses were carried out in R Project [62].

RESULTS

Primary analyses of clinical groups included 1421 participants identified through cluster 

analysis as CN, MCI, and AD who had valid BP measurements taken at a health exam at 

baseline, 6 months, and 12 months follow up. A subset of 318 participants with valid CSF 

Aβ and Ptau data from lumbar puncture were included in primary analyses of biomarker-

confirmed AD groups (Supplementary Figure 1).

Demographic Findings

Clinical groups—As summarized in Table 1, there were significant differences among 

clinical groups by sex, BMI, years of education, APOE-ϵ4 carrier status, antihypertensive 

medication use, and ChEI use.

Biomarker-confirmed Alzheimer’s disease groups—As shown in Table 2, 

biomarker-confirmed AD groups were significantly different on BMI, years of education, 

APOE-ϵ4 carrier status, and ChEI use.
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Demographic findings for secondary and exploratory groups showed a similar pattern (see 

Supplementary Results and Supplementary Tables 2–4).

Blood Pressure Variability Findings

Clinical groups—After controlling for age, sex, BMI, years of education, APOE-ϵ4 

carrier status, vascular risk level, antihypertensive medication use, ChEI use, and average 

BP, there were significant differences among the clinical groups on systolic BPV (SD: 

F2,1195 = 5.829, p = 0.003, η2 = 0.01; CV: F2,1194 = 4.447, p = 0.01, η2 = 0.007; VIM: 

F2,1195 = 6.657, p = 0.001, η2 = 0.01). Post-hoc comparisons indicated participants with a 

clinical diagnosis of AD showed significantly higher systolic BPV than CN for all measures 

of variability (SD: p = .002; CV: p = .004; VIM: p = .001). MCI exhibited greater systolic 

BPV relative to CN on SD (p = .03) and VIM (p = .01) but not CV (p = .08) measures of 

variability. Clinically diagnosed AD did not significantly differ from MCI on systolic BPV 

(SD: p = .21; CV: p = .20; VIM: p = .28) (Figure 1a).

There were no statistically significant differences in diastolic BPV among the clinical groups 

(SD: F2,1197 = 2.281, p = .10; CV: F2,1197 = 1.904, p = .15; VIM: F2,1197 = 1.992, p = .14) 

(Figure 1b). There were also no significant interaction effects of clinical group by 

antihypertensive medication use on BPV (systolic: SD: F2,1193 = 2.203, p = .11; CV: F2,1192 

= 2.040, p = .13; VIM: F2,1193 = 2.241, p = .11; diastolic: SD: F2,1195 = 0.014, p = .99; CV: 

F2,1195 = 0.069, p = .93; VIM: F2,1195 = 1.465, p = .23), or of clinical group by average BP 

on BPV (systolic: SD: F2,1193 = 1.222, p = .30; CV: F2,1192 = 1.264, p = .29; VIM: F2,1193 = 

1.855, p = .16; diastolic: SD: F2,1195 = 0.459, p = .63; CV: F2,1195 = 0.145, p = .87; VIM: 

F2,1195 = 0.717, p = .49).

Secondary analyses of clinical groups showed a similar pattern of BPV findings (see 

Supplementary Results and Supplementary Figure 2).

Biomarker-confirmed Alzheimer’s disease groups—Biomarker-confirmed AD 

groups differed significantly on systolic BPV (SD: F2,850 = 3.955, p = 0.02, η2 = 0.009; 

VIM: F2,850 = 5.216, p = 0.006, η2 = 0.01; trending CV: F2,850 = 2.928, p = 0.05, η2 = 

0.007), such that ADAβ+Ptau+ participants showed significantly higher systolic BPV than CN 

participants for all measures of variability (SD: p = .007; CV: p = .02; VIM: p = .005). 

MCIAβ+Ptau+ participants exhibited significantly higher systolic BPV relative to CN on VIM 

(p = .04) but not SD (p = .21) or CV (p = .38) measures of variability. There were no 

statistically significant differences in systolic BPV between ADAβ+Ptau+ and MCIAβ+Ptau+ 

(SD: p = .19; CV: p = .19; VIM: p = .43) (Figure 2a).

Biomarker-confirmed AD groups did not differ significantly on diastolic BPV (SD: F2,851 = 

0.236, p = .79; CV: F2,853 = 0.175, p = .84; VIM: F2,851 = 1.331, p = .27) (Figure 2b). There 

were also no significant interaction effects of biomarker-confirmed AD group by 

antihypertensive medication use on BPV (systolic: SD: F2,848 = 0.452, p = .64; CV: F2,848 = 

0.293, p = .75; VIM: F2,848 = 0.184, p = .83; diastolic: SD: F2,849 = 0.446, p = .64; CV: 

F2,851 = 0.448, p = .64; VIM: F2,849 = 0.505, p = .60) , or of biomarker-confirmed AD group 

by average BP on BPV (systolic: SD: F2,848 = 0.738, p = .48; CV: F2,848 = 0.815, p = .44; 
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VIM: F2,848 = 1.366, p = .26; diastolic: SD: F2,849 = 0.972, p = .38; CV: F2,851 = 0.253, p 
= .78; VIM: F2,849 = 0.084, p = .92).

Secondary analyses of biomarker-confirmed AD groups showed a similar pattern of BPV 

findings (see Supplementary Results and Supplementary Figure 3).

Exploratory analyses of CN intermediate biomarker groups revealed no significant 

differences in systolic or diastolic BPV by level of AD biomarker burden (see 

Supplementary Results and Supplementary Figure 4).

All primary analyses of systolic BPV findings survived FDR correction.

DISCUSSION

Study findings suggest that long-term systolic BPV over one year is elevated in older adults 

with cognitive impairment due to AD. The present investigation replicated the previously 

published elevation of systolic BPV in clinically diagnosed AD compared to age-matched 

controls [41], and extended prior work by using multiple CSF biomarkers to confirm systolic 

BPV elevation in older adults with a pathological diagnosis of dementia due to AD [71,72]. 

With regard to more mild levels of symptoms, prior studies of BPV have combined clinical 

groups [40,42,51], obscuring whether BPV is elevated in MCI. The present study is the first 

to demonstrate increased systolic BPV at the MCI stage and to further demonstrate that 

increased systolic BPV specifically applies to MCI in the presence of AD biomarker 

abnormality. Participant groups did not significantly differ by diastolic BPV in any analyses. 

Exploratory analyses also revealed no significant differences in systolic or diastolic BPV 

among cognitively unimpaired participants with varying levels of AD biomarker burden. 

This suggests that systolic BPV is linked to AD-related cognitive impairment rather than AD 

in the absence of cognitive dysfunction, a finding that is consistent with recent studies 

implicating vascular factors in AD-related cognitive decline specifically [74]. Importantly, 

there were also no significant interactions between BPV and antihypertensive use, or 

between BPV and average BP levels. Thus, results indicate increased systolic BPV, but not 

diastolic BPV, may occur in the early stages of cognitive decline in AD. Findings were 

similar using conventional criteria but were more consistent using cluster-derived groups, a 

pattern previously observed when using refined MCI classifications to investigate biomarker 

associations in the ADNI cohort [75]. Study findings provide novel insights into the timeline 

of BPV elevation with respect to MCI diagnosis and AD pathology, which may have 

important diagnostic and treatment implications.

The present study does not investigate possible mechanisms responsible for the observed 

increase in systolic BPV in MCI and AD, but it has been hypothesized that variable BP may 

induce variability of cerebral perfusion and impact brain health and cognition. Over time, 

chronic high fluctuations in BP may outreach the homeostatic mechanisms that work to 

steady changing BP levels, making the brain more vulnerable to waxing and waning levels 

of cerebral blood flow [76]. Erratic levels of cerebral perfusion threaten the brain’s need for 

continuous circulation of oxygen and glucose, and may lead to cerebrovascular injury and 

disrupted functioning [28,30,37,39,76–79].
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Another possible explanation for the study findings is that long-term arterial stiffening may 

be responsible for both inflated BPV [32,80–87] and AD-related cognitive decline [88]. 

Arterial stiffness may increase BPV through distinct mechanisms involving changes in the 

timing and buffering of the pulse wave as it is propagated throughout the arterial tree and 

reflected to the heart [89]. Additionally, arterial stiffness may cause biophysical injury to the 

brain by passing pulsatile forces into the vulnerable cerebrovasculature, but also by 

interfering with clearance of toxic proteins along perivascular and/or lymphatic spaces 

[90,91]. Therefore, arterial stiffness may be responsible for the observed correlation between 

BPV and brain health. Future studies that directly investigate mechanisms are needed to 

disentangle these relationships.

Alternatively, neurodegenerative effects on cortical control of autonomic nervous system 

regulation may cause amplification of BPV [92]. Specifically, the insular cortex, anterior 

cingulate gyrus, and amygdala regulate autonomic nervous system activity [92], and 

neurodegeneration in these areas is related to autonomic disruption [93–99]. In addition, the 

locus coeruleus plays a major role in regulating autonomic activity, and is an early site of 

AD pathology [100]. Together these studies suggest that AD pathology impacting central 

nervous system control of autonomic activity may influence BP and BPV.

While increased BPV is a cardiovascular risk factor in the general population, it may be 

particularly detrimental in AD since these patients already show decreased cerebral 

perfusion [101], increased cerebrovascular resistance [56], and autonomic abnormalities [2]. 

Individuals with AD pathology and elevated BPV may be especially promising candidates 

for therapeutic intervention. Despite the known dynamic nature of BP, most BP therapies 

focus on modifying average levels [102,103]. Thus, the potential role of BPV with regard to 

informing diagnosis, treatment and/or prevention of neuropathological processes warrants 

further investigation.

Dysregulated BP has garnered enormous attention from both the clinical and scientific 

communities, in part because BP is a highly modifiable risk factor for cardiovascular [104] 

and cognitive outcomes [103,105]. It is also increasingly recognized that early intervention 

offers the highest likelihood to alter disease trajectories to prevent dementia [105]. It has 

been estimated that BP control, particularly in midlife, could significantly reduce the world-

wide prevalence of AD [106]. Given the importance of BP as an early modifiable risk factor, 

understanding the potential role of BPV during the early stages of cognitive impairment may 

be of great value for early diagnostic and treatment studies.

The present investigation has a number of strengths. First, the study used both CSF Aβ and 

Ptau biomarkers to confirm AD diagnosis. In doing so, we were able to characterize long-

term BPV in cognitive impairment specifically due to AD. Second, the study compared 

distinct groups of rigorously defined CN, MCI and AD on BPV, providing insights into the 

characterization of BPV elevation across the spectrum of AD. Third, the study utilized 

multiple diagnostic methods for distinguishing between CN and MCI participants. Fourth, 

while some studies on long-term BPV in cognitive impairment and dementia measured BPV 

over more than 12 months, consistent with other studies [40,45], the present study revealed 

elevation across groups over just one year, which may suggest the immediate influence 
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variable BP may have in aging adults. Fifth, the study accounted for medication use known 

to affect BP levels (e.g., antihypertensive agents), and autonomic nervous system activity 

perhaps especially in patients with cognitive impairment (e.g., ChEIs) [107]. The present 

study cannot address the role of specific antihypertensive medication classes in the observed 

clinical and pathological associations with BPV; however, it should be noted that some 

antihypertensive medications may influence BPV more than others. Specifically, some 

studies have reported different class effects on risk of stroke [102,108]. The literature is 

mixed in terms of which specific antihypertensive medication class may have the greatest 

impact on cognition [109–111], and may vary based on BP dependent and independent 

effects since some medications may cross the blood-brain barrier to directly influence the 

central nervous system [112]. A final study strength is that the study had a large sample size 

and drew from a well-characterized participant pool, which included a detailed panel of 

vascular health.

Limitations of the present study include the fact that some details of BP measurement were 

not explicitly standardized across sites and the study utilized three measurements of BP to 

calculate BPV. Although it has been recommended to use more than three BP measurements 

to estimate BPV for predicting cardiovascular risk (i.e., stroke) [113], one longitudinal study 

predicted cognitive impairment and dementia using just three BP measurements [44]. 

Another study limitation is the demographic differences between included and excluded 

participants. As summarized in Supplementary Table 1, the included participants were older, 

less educated, contain a smaller percent of males, and differ by distribution of baseline 

clinical diagnosis, when compared to participants excluded from the study. It should be 

noted that ADNI protocols changed mid-study from collecting BP measurement every six 

months to collecting it every 12 months, which may further influence these differences. 

Participants excluded from the present study due to missing BP data were largely excluded 

because they were newly enrolled and only had baseline BP recorded at this point in their 

study involvement. Other limitations of the present investigation include the cross-sectional 

nature of the study design and the lack of direct measures of arterial stiffening or other 

vascular mediators linking BPV to the AD spectrum, such as cerebral perfusion or 

autoregulation. Future studies will investigate the role these processes may have in the 

progression to dementia. Future studies will also investigate how cerebrovascular 

autoregulation and neuropathological factors may moderate the relationship between BPV 

and cognitive impairment. While the present study included a substantial number of 

participants with MCI, an even larger sample size would allow evaluation of MCI subtypes 

(i.e., amnestic, dysnomic, dysexecutive) and intermediate biomarker categories to further 

determine the timing and etiology of BPV elevation.

CONCLUSION

Study findings indicate that systolic BPV is elevated in cognitive impairment due to AD. 

Importantly, these findings are independent of average BP levels, which have historically 

been the main focus of BP research [2] and clinical trials [103]. Given the high overlap of 

vascular pathology and neurodegeneration [9], the interest to study BPV in the context of 

cognitive aging is growing. Beyond understanding how BPV is characterized in the general 

aging population, studying the role of BPV in at-risk populations with AD pathology and 
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neurodegeneration may reveal understudied targets for vascular contributions to cognitive 

impairment and dementia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Systolic BPV by Clinical Group
1a. Systolic BPV was greatest in clinically diagnosed AD overall and compared to CN for 

all measures of BPV. Clinically diagnosed MCI exhibited greater systolic BPV relative to 

CN on SD and VIM measures of BPV. 1b. Clinical groups did not significantly differ by 

diastolic BPV. Boxplot lines display minimum, 1st quartile, median, 3rd quartile, and 

maximum. Abbreviations: BPV = blood pressure variability; CN = cognitively normal; MCI 

= Mild Cognitive Impairment; AD = Alzheimer’s disease; SD = standard deviation; CV = 

coefficient of variation; VIM = variation independent of mean
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Figure 2. Systolic BPV by Biomarker-Confirmed AD Group
2a. Systolic BPV was greatest in biomarker-confirmed dementia due to AD overall and 

compared to CN for all measures of BPV. Biomarker-confirmed MCI due to AD exhibited 

greater systolic BPV relative to CN as measured by VIM. 2b. Biomarker-confirmed AD 

groups did not significantly differ by diastolic BPV. Boxplot lines display minimum, 1st 

quartile, median, 3rd quartile, and maximum. Aβ+Ptau+ indicates positive biomarkers for 

both Aβ and Ptau. Abbreviations: BPV = blood pressure variability; Aβ = amyloid-β; Ptau = 

phosphorylated tau CN = cognitively normal; MCI = Mild Cognitive Impairment; AD = 

Alzheimer’s disease; SD = standard deviation; CV = coefficient of variation; VIM = 

variation independent of mean
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Table 1

Clinical and Demographic Data for Clinical Groups

CN (n=681) MCI (n=479) AD (n=261) F or x2 p-value

Clinical/Demographic

Age, yrs 73.9 (6.8) 73.6 (7.2) 75.4 (7.6) 2.954 .05

Sex (n,% Male)
c 358 (52.6%) 295 (61.6%) 145 (55.6%) 9.333 .009

BMI, kg/m2abc 27.4 (4.9) 26.6 (4.3) 25.6 (4.3) 14.915 < .001

Education, yrs
a 16.3 (2.7) 15.9 (2.9) 15.2 (2.9) 12.409 < .001

APOE-ϵ4 carriers (n,%)
abc 232 (34.1%) 260 (54.3%) 178 (68.2%) 102.950 < .001

Hypertensive (n,%) 317 (46.6%) 236 (49.3%) 134 (51.3%) 1.936 .38

Medication Use, (n,%)

Antihypertensive agents
ab 128 (18.8%) 107 (22.3%) 77 (29.5%) 12.683 .002

 ACE inhibitors 38 (29.7%) 34 (31.8%) 24 (31.2%)

 Alpha-blockers 7 (18.3%) 5 (4.7%) 7 (9.1%)

 Angiotensin II inhibitors 29 (22.7%) 23 (21.5%) 19 (24.7%)

 Calcium channel-blockers 37 (28.9%) 19 (17.8%) 15 (19.5%)

 Central agonists 0 (0.0%) 2 (1.9%) 0 (0.0%)

 Combined alpha-beta-blockers 2 (1.6%) 5 (4.7%) 0 (0.0%)

 Diuretics 15 (11.7%) 19 (17.8%) 10 (13.0%)

 Vasodilators 0 (0.0%) 0 (0.0%) 2 (2.6%)

ChEIs
abc 38 (5.6%) 117 (24.4%) 112 (42.9%) 187.38 < .001

Mean BP, mmHg

 Systolic 132.4 (13.0) 133.2 (13.4) 133.8 (13.5) 0.601 .55

 Diastolic 73.5 (7.9) 74.0 (7.5) 74.2 (6.7) 0.852 .43

Baseline Vascular Risk Factors, (n,%)

 Cardiovascular disease 74 (10.9%) 60 (12.5%) 33 (12.6%) 0.992 .61

 Atrial fibrillation 28 (4.1%) 11 (2.3%) 12 (4.6%) 3.618 .16

 Type 2 diabetes mellitus 42 (6.2%) 44 (9.2%) 19 (7.3%) 3.750 .15

 Carotid artery disease 3 (0.4%) 6 (1.3%) 1 (0.4%) 3.124 .21

 TIA/minor stroke 16 (2.4%) 9 (1.9%) 7 (2.7%) 0.552 .76

Means and standard deviations shown unless otherwise indicated.

Significant differences (p < .05) among clinical groups are identified in boldface type.

a
indicates a Least Significant Difference-corrected pairwise difference between AD and CN at p < .05

b
indicates a Least Significant Difference-corrected pairwise difference between AD and MCI at p < .05

c
indicates a Least Significant Difference-corrected pairwise difference between MCI and CN at p < .05

Abbreviations: ACE = angiotensin-converting enzyme; APOE = apolipoprotein E; BP = blood pressure; BMI = body mass index; ChEIs = 
acetylcholinesterase inhibitors; TIA = transient ischemic attack; CN = cognitively normal; MCI = Mild Cognitive Impairment; AD = Alzheimer’s 
disease
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Table 2

Clinical and Demographic Data for Biomarker-Confirmed AD Groups

CN (n=681) MCIAβ+Ptau+ (n=185) ADAβ+Ptau+ (n=133) F or x2 p-value

Clinical/Demographic

Age, yrs 73.9 (6.8) 73.6 (7.1) 74.3 (8.0) 0.557 .57

Sex (n,% Male) 358 (52.6%) 99 (53.5%) 71 (53.4%) 0.069 .97

BMI, kg/m2ac 27.4 (4.9) 26.1 (4.1) 25.3 (4.3) 13.138 < .001

Education, yrs
a 16.3 (2.7) 16.1 (2.8) 15.4 (2.8) 5.022 .007

APOE-ϵ4 carriers (n,%)
ac 232 (34.1%) 132 (72.4%) 103 (77.4%) 143.260 < .001

Hypertensive (n,%) 317 (46.6%) 91 (49.2%) 68 (51.1%) 0.991 .61

Medication Use, (n,%)

Antihypertensive agents 128 (18.8%) 33 (17.8%) 30 (22.6%) 1.259 .53

 ACE inhibitors 38 (29.7%) 12 (36.4%) 11 (36.7%)

 Alpha-blockers 7 (18.3%) 1 (3.0%) 0 (0.0%)

 Angiotensin II inhibitors 29 (22.7%) 6 (18.2%) 7 (23.3%)

 Calcium channel-blockers 37 (28.9%) 5 (15.2%) 9 (30.0%)

 Central agonists 0 (0.0%) 0 (0.0%) 0 (0.0%)

 Combined alpha-beta-blockers 2 (1.6%) 0 (0.0%) 0 (0.0%)

 Diuretics 15 (11.7%) 9 (27.3%) 3 (10.0%)

 Vasodilators 0 (0.0%) 0 (0.0%) 0 (0.0%)

ChEIs
abc 38 (5.6%) 49 (26.5%) 47 (35.3%) 118.25 < .001

Mean BP, mmHg

 Systolic 132.4 (13.0) 133.3 (13.6) 133.1 (12.4) 0.319 .73

 Diastolic 73.5 (7.9) 73.4 (6.9) 74.4 (6.4) 1.407 .35

Baseline Vascular Risk Factors, (n,%)

 Cardiovascular disease 74 (10.9%) 26 (14.1%) 19 (14.3%) 2.233 .33

 Atrial fibrillation 28 (4.1%) 4 (0.5%) 1 (3.0%) 5.851 .05

 Type 2 diabetes mellitus 42 (6.2%) 14 (7.6%) 8 (6.0%) 0.515 .77

 Carotid artery disease 3 (0.4%) 3 (1.6%) 1 (0.8%) 2.923 .23

 TIA/minor stroke 16 (2.4%) 4 (2.2%) 4 (3.0%) 0.261 .88

Means and standard deviations shown unless otherwise indicated.

Significant differences (p < .05) among biomarker-confirmed AD groups are identified in boldface type.

a
indicates a Least Significant Difference-corrected pairwise difference between ADAβ+Ptau+ and CN at p < .05

b
indicates a Least Significant Difference-corrected pairwise difference between ADAβ+Ptau+ and MCIAβ+Ptau+ at p < .05

c
indicates a Least Significant Difference-corrected pairwise difference between MCIAβ+Ptau+ and CN at p < .05

Abbreviations: ACE = angiotensin-converting enzyme; Aβ = amyloid-β; APOE = apolipoprotein E; BP = blood pressure; BMI = body mass index; 
ChEIs = acetylcholinesterase inhibitors; Ptau = phosphorylated tau; TIA = transient ischemic attack; CN = cognitively normal; MCI = Mild 
Cognitive Impairment; AD = Alzheimer’s disease
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