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Evolution of the stroke paradigm: A
review of delayed recanalization
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Abstract

While the time window for reperfusion after ischemic stroke continues to increase, many patients are not candidates for

reperfusion under current guidelines that allow for reperfusion within 24 h after last known well time; however, many

case studies report favorable outcomes beyond 24 h after symptom onset for both spontaneous and medically induced

recanalization. Furthermore, modern imaging allows for identification of penumbra at extended time points, and reper-

fusion risk factors and complications are becoming better understood. Taken together, continued urgency exists to

better understand the pathophysiologic mechanisms and ideal setting of delayed recanalization beyond 24 h after onset

of ischemia.
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Introduction: State of current penumbra

doctrine

The time window for clinical reperfusion after ischemic

stroke continues to increase. Although originally at

�3 h, it has now been extended to as long as 24 h fol-

lowing known onset of symptoms.1

The ischemic penumbra has been defined with the

following criteria: (1) the tissue region must have an

increased oxygen extraction fraction; (2) the functional

outcome needs to correlate with the concept of penum-

bra, e.g., acute functional impairment, and subsequent

improvement with reperfusion; (3) cerebral blood flow

is approximately 18-20ml/100g per minute compared

to <10ml/100g per minute in the infarct; (4) mismatch

between diffusion (DWI) and perfusion weighted imag-

ing (PWI) and the patient’s neurological function.2

Given that ischemia results in cellular ion pump failure,

DWI specifically demonstrates these slow diffusion

regions of water protons as hyperintensity; therefore,

DWI is a marker of ischemia and used to mark the

original infarct core.2 In PWI, an intravenous bolus is

injected with a contrast agent that transiently reduces

its signal as it passes through the plain, and therefore

this signal occurs later in ischemic tissue compared to

normal tissue.2 The mismatch between DWI and PWI

represents salvageable tissue at risk of irreversible

damage if reperfusion does not take place.
Reported computed tomography (CT) perfusion

thresholds for defining penumbra and core volume
vary between studies. Some studies differ by defining
penumbra with mean transit time (MTT) versus time-
to-maximum (Tmax).3–6 Other studies differ by defin-

ing core infarct volume with cerebral blood flow (CBF)
versus cerebral blood volume (CBV).5,7–9 Lin et al,
2016 found that CT perfusion, when compared to mag-

netic resonance imaging (MRI), can most accurately
identify ischemic volume and core volume by using a
delay time greater than 3 seconds (P¼ 0.34) and a
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delay-corrected cerebral blood flow of less than 30%
(P¼ 0.33), respectively. When using limited-coverage
CT perfusion, ischemic volume accuracy declined
when brain coverage was reduced to 80mm
(P¼ 0.04); core volume accuracy declined when brain
coverage was 40mm or less (P< 0.001).10 As another
example, tissue at risk for infarct occurs with a CBF of
8-22ml/100g/min (approximately 15-40% of normal);
while, ischemic core can be estimated with a CBF of
less than 8ml/100g/min.11

Currently, the most metabolically accurate way to
classify and determine the penumbra volume is through
positron emission tomography (PET), which can dis-
tinguish between at-risk tissue that has an increased
rate of oxygen extraction compared to normal tissue.
However, due to its limitations in emergency settings,
MRI and CT are the current clinical standard for iden-
tification of salvageable penumbra.12 CT perfusion
imaging is used to calculate an area of reduced cerebral
blood volume or reduced cerebral blood flow which
estimates the size of the core. CT perfusion is also
used to calculate the mean transit time– the length of
time it takes for blood to flow from arterioles through
capillary beds to venous systems. To estimate the pen-
umbra volume, the volume of central nervous system
tissue with delayed mean transit time must be sub-
tracted from the area of reduced cerebral blood
volume and/or reduced cerebral blood flow. This mis-
match area, if large enough, justifies treatment with
revascularization techniques, increasing the likelihood
of a favorable outcome.5,7–9,13 Because recanalization
in patients with mismatch results in favorable outcome,
this implies that the penumbra tissue can survive for
hours after stroke onset with only limited perfusion,
often by collateral blood vessels.14 However, if the mis-
match/penumbra is too small, then the benefits of
reperfusion are outweighed by the risks, such as hem-
orrhage. The axiom that critically hypoperfused tissue
progresses to infarct core drives the need for continued
refinement of the balance between intervention related
risk and the benefit of penumbra targeted intervention.

Reperfusion rationale

In hypoperfusion or extinction of blood flow, tissue
survival is the determinant in treatment approaches.
Tissue at risk has been shown to survive for hours to
days in a salvageable state, regaining function if flow is
restored, or losing function if hypoperfusion contin-
ues.12 Therefore, as the only FDA approved interven-
tion, clinical trials have focused on the following
reperfusion strategies: systemic intravenous tPA tenec-
teplase, desmoteplase, combined ultrasound-induced
mechanical agitation (2MHz frequency) and systemic
tPA, and the use of endovascular multi-modal

approaches such as mechanical thrombectomy or
thromboaspiration with stent retrievers.15 Although
classical stroke intervention targets a 4–6 h window,
evidence has shown that lesion volumes may continue
to increase if recanalization does not occur. In support,
when evaluating the evolution of injury at day one and
day 60 from symptom onset, lesion volumes were
shown to increase when no recanalization occurred,
whereas recanalized groups demonstrated no subse-
quent lesion growth.16

At the 2016 Stroke Treatment Academic Industry
Roundtable (STAIR) IX meeting that discussed the
current state of endovascular therapy for large vessel
stroke, note was made of the need to prioritize investi-
gation of adjuvant therapies and evaluate the potential
for expansion of patient endovascular therapy eligibil-
ity. Current weaknesses in stroke response include
underutilization of thrombectomy and in other cases
triage of patients to the most appropriate initial facil-
ity. Furthermore, when compared to ST-segment ele-
vation myocardial infarction, endovascular stroke
response is slower, suggesting room for improvement.
One method of improvement could be development of
newer, more effective thrombectomy devices. Also, co-
administered therapies with thrombectomy, such as
early neuroprotectants, hypothermia, and stem cells,
show promise for stroke treatment.17

Many limitations exist in monotherapies in the acute
time window of ischemic stroke, and with the expan-
sion of the time-window for reperfusion due to more
effective thrombectomy devices, new opportunities for
stroke therapies are emerging. Individuals from acade-
mia and industry who convened at the STAIR X meet-
ing concluded that cerebroprotective therapies in
combination with reperfusion will improve the efficacy
of stroke treatment and may be the next step in stroke
intervention. Savitz et al. discuss potential cytoprotec-
tion therapies in three main contextes: one, prehospital
cytoprotection to increase the percentage of reperfu-
sion eligible patients arriving at a thrombectomy
center; two, in hospital pre-thrombectomy cytoprotec-
tion which may reduce the deleterious consequences of
ischemia and reperfusion; and three, post-
thrombectomy cytoprotection treatment that can
target reperfusion injury and delayed cell death.18

Treatments targeting the whole neurovascular unit
which have already passed safety profiles in phase II
or III clinical trials may be better candidates in the
aforementioned scenarios.18

Despite the risk of hemorrhagic transformation and
vasogenic edema following recanalization, endovascu-
lar thrombectomy (EVT) has been proven effective in
patients with proximal large artery occlusions beyond
the acute time window.19 Evaluating the MR CLEAN
trial, Kimberly et al. reported that early reperfusion
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and recanalization via EVT reduced brain edema.20

However, additional studies are needed to understand
the association between reperfusion and brain edema at
recanalization outside the acute time-window.

Given that there is a wide range for prognosis after
reperfusion, literature has supported the development
of a more standardized system of image-based criteria
for patient selection undergoing revascularization in
acute and extended time-windows.14,21–23 Rationale
for altering recanalization guidelines in stroke patients
is supported by the observed benefits from delayed
recanalization (outside 6 h) in patients with a small
completed infarct and a large area of perfusion mis-
match– resulting in minimal intracerebral hemorrhage
compared to patients that undergo recanalization of
mostly infarcted tissue.21 Leonard et al. reported that
recruitment of collateral channels significantly limited
infarct growth from reaching maximum expansion
independent of recanalization subgroup.24

Even though collateral circulation is one way to sus-
tain the ischemic penumbra, the effectiveness of lepto-
meningeal collaterals is dynamic and variable between
stroke patients; congenital differences contribute to a
spectrum of anomalous primary and secondary collat-
erals supplied by the Circle of Willis and leptomenin-
geal vessels.24,25 For this reason, two explanations exist
to explain why delayed collateral recruitment leads to
worsened outcomes in non-perfused patients: one,
when both maximal vasodilation in the ischemic area
and collateral recruitment in the adjacent regions
becomes inadequate for sustaining cellular survival,
the ischemic tissue undergoes “venous steal”– a
collateral failure phenomenon that results in the expan-
sion of the ischemic core; on the other hand, autoregu-
latory failure in the ischemic vascular territory may
lead to damage from increased hyperperfusion accom-
panied by a higher incidence of bleeding.24,26 Taken
together, delayed collateral recruitment occurs effica-
ciously after recanalization and can be detrimental
without it.24

In multicenter clinical trials, infarct volume corre-
lates moderately with standard clinical measures of
stroke outcome. Likely, the most important factor dis-
rupting this correlation is infarct location.27 In acute
ischemic stroke patients with anterior circulation prox-
imal artery occlusions, final infarct volume (FIV) was
shown to be a surrogate endpoint as it significantly
correlated to 3-month functional outcome and survival.
In detail, FIV was associated with functional outcomes
(modified Rankin Scale) and survival, in which a FIV
of 50 cm3 displayed reliability in distinguishing good
versus poor outcome, whereas a FIV of 90 cm3 was
explicit for poor outcome.28 In patients with acute
ischemic MCA stroke, infarct volume (0.2 to 187 cm3)
was significantly correlated with short-term outcomes

[length of hospitalization (r¼ 0.67)] and long-term out-
comes [Glasgow Outcome Scale (r¼ 0.68), Barthel
Index (r¼ 0.67), and outcome status (r¼ 0.65)]
(P< 0.001).29

Delayed reperfusion: Research/cases

In part due to limitations in available therapies, endog-
enously spontaneous recanalization has fortuitously
demonstrated efficacy at atypical timepoints following
ischemic stroke. For example, Vang et al. reported that
if spontaneous recanalization was observed within 24 h,
it resulted in better central motor conduction times in
87% of the patients; furthermore, if spontaneous
recanalization occurred after 24 h, better central
motor conduction times were also observed in 62%
of patients.30 Therefore, although earlier recanalization
shows higher efficacy, patients still report a significant
benefit at delayed time-points (Table 1 and Figure 1).
With the option for no recanalization versus delayed
recanalization, evidence suggests that delayed recanali-
zation may be the better option.

Because the number of patients receiving recanaliza-
tion after stroke is low with the largest variable being
delayed admission times, a more lenient time window
for intervention along with a multi-modal therapeutic
approach using stent placement, a thrombectomy
device, and/or combination treatment in the acute pos-
terior circulation may lead to higher recanalization
rates, favorable outcomes, and rescue of the penum-
bra.31 In an example of an acute isolated posterior
cerebral artery occlusion, Yamamoto et al. reported
that endovascular therapy reduced hyperintensity on
DWI and improved the homonymous hemianopia.
This is somewhat surprising as it suggests that ischemic
penumbra may have some overlap with the predicted
region of irreversible ischemia on DWI imaging.32

Conversely, the most significant prognostic indica-
tor arguing against recanalization focuses on mortality
rates. In a clinical study on the efficacy and safety of
mechanical thrombectomy (MT) in elderly patients, no
significant difference was seen between those treated
within and those treated beyond 8 h (39 vs. 20%,
p¼ 0.1), paralleling the results from the recently com-
pleted DAWN study which focused on MT up to 24 h
after symptom onset.23 Similarly, others have shown
that the mortality rate in patients greater than 80
treated with mechanical thrombectomy beyond 8 h of
symptom onset was not significantly higher than
patients treated within 8 h of symptom onset (56%
versus 32.4%, p¼ 0.055); although not statistically sig-
nificant, the mortality number was certainly higher
among the group with an initial moderate disability
compared to the group with mild disability.33 Because
of the small sample size, the lack of significance in
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mortality rates may be attributed to a statistical type-2
error, and additional studies are needed with a higher
power to establish if mortality rates are significantly
increased due to recanalization outside of 8 h from
stroke onset.

If recanalization procedures fail or are not an option
due to delayed admission times, generally poorer out-
comes, as expected, are reported. In contrast, even with
delayed intervention, improved outcomes have been
reported. In evaluating early versus late recanalization

Table 1. Literature search on delayed recanalization (>24 h).

Author (Year) Affected vessel Occlusion duration

Successful

recanalization

rate, % (N) Outcome

Zhang et al.39 ICA 17–120 days 100% (30) mRS score of 2.5� 0.6 at 3 months

Ishihara et al.78 ICA 22 days 100% (1) Preoperative mini-mental score

improved from 23/30 to 28/30

Thomas et al.79 ICA 0.75 months 100% (2) Asymptomatic at 30 days

Kao et al.80 ICA 3.5� 3.5 months 73% (22) Recanalized patients were asymptom-

atic at 6 months

Lin et al.81 ICA 7.9� 10.9 months 65% (35) No change in NIHSS at baseline, 1, and

3 month follow up

Bhatt et al.82 ICA 9 months 100% (1) Neurologically intact at 9 months

Terada et al.83 ICA 5.1� 3.6 months 93% (14) Neurological symptoms were tran-

siently aggravated but returned to

baseline after 30 days

Shojima et al.84 ICA 19.4� 7.3 months 88% (7) Recanalized patients were

asymptomatic

Iwata et al.85 ICA 4� 0.8 months 100% (4) Pre-CAS CVR was impaired at 3

months

Namba et al.86 ICA 4.3� 4.2 months 77.2% (8) 64% (7) had new DWI hyperintensities

Rostambeigi et al.87 ICA 1 month 100% (1) Asymptomatic at 3 months

Fan et al.88 ICA 21� 6.7 months 89% (16) Improvement in cognitive function of

�8 on the MoCA at 1, 3, and 6

months

Bigliardi et al.89 ICA 3 months 62% (85) The patient regained autonomy at 3 and

6 months

Hasan et al.40 ICA 2.4� 3 months 69% (22) 65% (20) experienced improved neu-

rological outcome at 2–6 months

Zhang et al.39 ICA 0.5-4 months 100% (30) mRs 2.5� 0.6 at 3 months

Vang et al.30 MCA >24 h 38% (21)

Spontaneous

Recanalization

62% (13) had improved CMCT

Ma et al.36 MCA �60 days 100% (2) Asymptomatic

Zheng et al.37 MCA 15–29 days 95% (21) 86% achieved a mRS of 0–2

Yamamoto et al.32 PCA NA 100% (1) Resolution of homonymous hemianopia

Zhao et al.38 BA >2 days 81% (17) 77% achieved a mRS score of 0–3

Grigoriadis et al.42 BA 50 h 100% (1) Fully restored neurologic function

Cognard et al.44 BA 36 h 100% (1) Complete recovery

Cross et al.45 BA 1–79 h 50% (10) 20% (4) mRS of 0–2 and Barthel index

of 95–100

Xavier et al.73 MCA, VBJ, ICA 10–169 h NA 92% (11) achieved a TIMI �2

Abou-Chebl et al.21 MCA, ICA, tandem

ICA/MCA, VBJ

18.6� 16.0 h 85% (21) No difference in ICH rate; 56% mRS

0–2; 86% TIMI 2-3

Ishibashi et al.77 MCA, ACA 25–54 h 100% (5) 50% (2) mRS of 0 in MCA; 100% (1)

mRS of 0 in ACA

Note: Continuous variables listed as mean� standard deviation or range. Counts listed as percent (number).

CMCT: central motor conduction time; TIMI: thrombolysis in myocardial infarction; ACA: anterior cerebral artery; ICA: internal carotid artery; MCA:

middle cerebral artery; PCA: posterior cerebral artery; VBJ: vertebrobasilar junction; BA: basilar artery; mRS: modified Rankin Score; MoCA: Montreal

Cognitive Assessment; Pre-CAS CVR: pre-cerebral artery stenting cerebral vascular reserve; NA: not available.
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at 7 days after MCA occlusion, the final infarct volume
was 80 cm3 in patients with recanalization under 6 h,
93 cm3 in those recanalized beyond 6 h, and 194 cm3

in those without recanalization.34 Anecdotally in a

case study, a 55-year old male suffered global aphasia
and right side hemiplegia, resulting from a left proxi-
mal MCA occlusion, and after intravenous thrombol-
ysis, the NIHSS improved from 11 to 4 points.35

However, after 7 h, the NIHSS scores increased from
4 to 13 points, and endovascular thrombectomy was

performed to remove the remaining clot around 11 h
after symptom onset, resulting in an unexpected
NIHSS score of 3 at discharge and a modified
Rankin Scale score of 0 at 3months.35 Therefore,
failed recanalization after administration of intrave-
nous rtPA may be salvaged by immediate EVT of the

large artery occlusion and result in a more favorable
outcome compared to patients without intervention.

In two case reports of patients with chronic right
MCA occlusion presenting with a 2-month history of

TIA of left-sided weakness, recanalization was success-
ful in both via stenting: one patient remained asymp-
tomatic at the 29-month follow-up, while the other

patient developed symptomatic in-stent restenosis at
12-months which was resolved with repeat angioplas-

ty.36 In 22 patients, stenting in non-acute symptomatic
atherosclerotic MCA total occlusion resulted in �95%
successful recanalization at 15–29 days after symptom

onset, of which �86% achieved a favorable outcome
(mRS score of 0–2).37

In 21 patients with basilar artery occlusion (BAO),
endovascular recanalization performed beyond 48 h

from time last known well resulted in successful recan-
alization in 81%. At 3-months, one death occurred
(pneumonia). No recurrent cases of TIA or stroke

ensued, and 77% of patients demonstrated a favorable

Figure 1. Time of reperfusion in stroke per study. Histogram of the highest reported time of reperfusion in days for each stroke
study discussed: (a) ICA (internal carotid artery), MCA (middle cerebral artery), and VBJ (vertebrobasilar junction); (b) BA¼ basilar
artery; (c) ICA (internal carotid artery).
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outcome (mRS scores 0-3). Time between initial symp-
toms and treatment ranged from 13 to 365 days, while
time between image-documented BAO and treatment
ranged from 6 to 43 days. This report included 21
patients who were endovascularly recanalized at
>2 days (a medium time to treatment of 27 days). Of
note, the time between initial symptoms and recanali-
zation was 365 days for 2 patients. Of these two
patients, recanalization improved mRS for one of two
patients (mrS score improved from 3 to 0 in 90 days
after treatment). Although proposed but not quanti-
fied, favorable outcomes in delayed reperfusion time
points (especially 365 days) may depend on the variable
extent of collateralization in each patient and his/her
ability to maintain blood flow to the penumbra.38

Evaluating a hybrid operation (endarterectomy and
carotid stenting) to recanalize internal carotid artery
occlusions, this hybrid procedure implemented at an
average of 41 days (ranging from 17-120 days) after
symptom onset resulted in 100% recanalization and
mRS scores improved from 3.4� 0.6 at admission to
2.5� 0.6 at 3-months from symptom onset.39

In evaluating internal carotid artery strokes, Hasan
et al. recommend a classification system on occlusion
type to better evaluate the efficacy of endovascular
therapy: type A, a tapered occlusion with supraclinoid
reconstitution of the ICA; type B, an abrupt occlusion
with a supraclinoid reconstitution; type C, a completely
absent ICA from the bifurcation with supraclinoid
reconstitution; and type D, a completely absent ICA
from the bifurcation without supraclinoid reconstitu-
tion.40 Using these classifications of stroke subgroups,
in a review of literature on chronically occluded inter-
nal carotid artery patients, Zanaty et al. reported that
reperfusion (ranging from 15-days to 840-days) via
endovascular technique (ET) or hybrid surgery (HS,
i.e., ET plus carotid endarterectomy) resulted in the
following efficacy: in type A and B, recanalization
rates were 95% with a 14% complication rate; in
type C, ET resulted in a recanalization rate of 46%
with a complication rate of 46%, while HS resulted
in a recanalization rate of 88% with a complication
rate of 14%; and in type D, a recanalization rate of
29% with a 30% complication rate.41 In successful
recanalization, intervention sustained the penumbra,
normalized mean transit time, and improved
Montreal cognitive assessment scores.

Investigating atypical delayed recanalization time-
points, in a case study of a 6-year old boy with acute
BAO, complete clinical recovery was achieved after
recanalization at 50 h from symptom onset, and one
month after the procedure, the patient’s strength in
both arms and legs fully recovered.42 Although adults
with basal artery occlusion incur a mortality rate up to
90%, outlying examples of adolescent patients treated

with delayed-recanalization, in the temporal window of
2043 to 36 h,44 report markedly favorable outcomes.
This subgroup offers unique insights into potential
interventional targets. For this reason, research is
needed to better understand such cases where late
recanalization results in an ironic positive outcome.
Also, recanalization in adults with BAO was successful
in 50% of patients, 60% of which survived and 30% of
which had good neurological outcomes; two patients
received intervention at 72 and 79 h after BAO and
surprisingly reported a Modified Rankin Score of 2
at three months after intervention.45

Taken together, recanalization has been shown
effective at different timepoints following occlusion in
stroke; the variable and in some cases high efficacy of
delayed recanalization merits further investigation to
understand optimized interventional targets for specific
occlusion-types and sub-populations. Recanalization
up to 72 h and beyond, depending on the stroke type,
has shown efficacy and improved functional outcome
in animal models as well as patients. In addition to the
DAWN46 and DEFUSE47 trials supporting the exten-
sion of recanalization to 24 h, mounting evidence from
case studies and basic science research has supported
the re-evaluation of interventions even beyond a 24 h
window.

Variables affecting reperfusion

Numerous variables dictate the rate of successful reper-
fusion intervention. For instance, if the duration of
reperfusion procedures extended past 60min, patients
had significantly higher mortality and disability rates
compared to patients in whom recanalization was per-
formed in less than 60min.48 The time window for
intervention with tPA is in part dependent on the evo-
lution of clot lysability; initially, low levels of thrombin
form a porous fibrin scaffold, which is easily dissolved
by tPA. Then, after fibrin accumulation and increased
crosslinking via factor XIII (typically after 150min
from symptom onset), the thrombus stabilizes and cre-
ates a compact interface, less porous and more resilient
to tPA.49 Therefore, MT and other methods of recan-
alization may be prefered outside of the acute time
frame for IV tPA. Not only does pathophysiology
depend on the age of a clot but also on the origin.
For example, when evaluating recanalization rates in
different types of thrombotic/embolic ischemia, inde-
pendent of the organ, coronary artery thrombi were
recanalized at a rate of 90% compared to 52% in
other stroke subtypes (large artery and undefined
origin occlusions).50 Generally, the standard criteria
for thrombolysis exclude patients with unclear timing
of stroke onset, but using positive perfusion-diffusion
mismatch and absence of well-developed fluid-
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attenuated inversion recovery changes of acute diffu-
sion lesions, Cho et al. reported that reperfusion, either
via intravenous tPA or mechanical clot disruption cou-
pled with urokinase (<6 h), resulted in no detectable
differences in rates of recanalization at 5-days, early
neurological improvement, 3-month modified Rankin
Scale scores, and symptomatic ICH compared to clear
time of onset stroke subjects.51

When recanalization cannot be achieved, the
OPTIMAL study, a prospective trial evaluating the
penumbra inside 12 h from symptom onset, reported
that clinical outcome is dependent on the early
improvement in penumbra perfusion from collateral
vessels.52 Along these lines, high arterial blood pres-
sure, a product of cardiac output and systemic vascular
resistance, was shown to reduce infarction volume and
improve functional outcome because penumbra perfu-
sion from collaterals was increased compared to
patients with lower blood pressure.53 During arterial
occlusion, collateral vasculature is recruited, and if suf-
ficient flow is established, flow to the penumbra is
restored, thereby reducing the final size of the infarct
core. On this basis, if cardiac output is optimized to
increase collateral flow to the penumbra, patients
potentially may achieve a more favorable outcome.52

For example, in a randomized pilot study, Hillis et al.
reported that pharmacologically induced blood pres-
sure elevation, increased collateral flow, and subse-
quently improved outcome.53 Also, in a case report,
increasing blood pressure to enhance collateral flow
has shown efficacy in the preservation of the penum-
bral brain tissue for over several days.54 Taken togeth-
er, in addition to clot lysis treatments, stroke
interventions need to continue to target increased col-
lateral perfusion to reduce ischemic damage.

With 25-50% of patients presenting with hypergly-
cemia, some of which ironically are not diabetic and
have hyperglycemia caused by cortisol and norepineph-
rine release, Alvarez-Sabin et al. report a significant
negative correlation between neurological improve-
ment after recanalization and elevated glucose levels;
however, elevated glucose has limited effect on out-
comes in patients with delayed recanalization or no
recanalization.55 In literature, hyperglycemia may exac-
erbate infarct injury by increased intracellular acidosis,
inflammation, mitochondrial dysfunction, BBB perme-
ability, and bioenergetic failure in the penumbra.55,56

With the risk of negative outcomes after recanaliza-
tion, researchers have noted that one third of patients
in the ER did not improve once recanalization therapy
was initiated within 3 h from symptom onset, and four-
fifths of this cohort persisted with low neurological
scores at 24 h.57 However, by 3-months, recanalized
groups with a poor early treatment response reported
favorable outcomes, suggesting that the brain may

have been “stunned” in the acute phase following ische-

mia, which may be attributed to strokes of greater

severity than imaging estimates, no-reflow phenome-

non with or without persisting distal occlusion, proxi-

mal re-occlusion, and/or reperfusion injury.57

Of the 30% of patients that are admitted to the

emergency department within the acute therapeutic

window of 3 h, 7% receive rt-PA and 1�6% receive

endovascular therapy.58 Some of the disparity in

stroke intervention is due to atypical manifestations,

known as “stroke chameleons.” For example, in a ret-

rospective analysis of patients diagnosed with ischemic

stroke or TIA, 25-30% of patients with a final diagno-

sis of ischemic stroke or TIA did not receive the correct

admitting diagnosis. Furthermore, most of these
patients were misdiagnosed with disorders such as

altered skin sensation, alteration of consciousness, or

dysarthria, and would be later corrected with more

accurate and thorough neurological assessment and

neuroimaging.58 Thus, improved time to diagnosis

could benefit from further discussion and research of

these “stroke chameleons.”
Patient response to thrombectomy is in part the

result of fast versus slow expansion of the ischemic

core. Variables affecting the rate at which ischemic

core expands (fast versus slow) are still poorly under-

stood; however, collateral flow likely plays a critical

but incompletely quantified contribution.17 MRI per-

fusion weighted imaging (PWI) and time to peak (TTP)

maps in a dog model support a slow versus fast stroke

evolution model. Voxel wise analysis of PWI images at

30minutes after stroke is able to predict slow versus

fast stroke evolution. Slow stroke evolution was

defined as less than 50% of final infarct volume at

4 hours, and fast stroke evolution was defined as great-

er than 50% of final infarct volume at 2 hours.

Interestingly, there was no difference in sex, age,

weight, or vital signs between slow versus fast evolving

stroke groups; although, stroke evolution rate is likely

at least in part related to degree of collateralization.

The ability to predict variability in infarct evolution

will aid in randomization of future stroke studies.59

Dangers of reperfusion: Edema and

hemorrhage

In order to accept the paradigm of delayed recanaliza-

tion beyond the conventional window, risk of intrace-

rebral hemorrhage as well as baseline disability must be

considered. Studies have shown endovascular therapy

to have a higher rate of success and a lower rate of

intracerebral hemorrhage than the conventional intra-

venous t-PA therapy. For example, 1week after endo-

vascular intervention for large vessel occlusion in
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patients originally presenting >8 h after stroke symp-
tom onset, 70% of patients showed a reduction of >4
points in NIHSS scores.60 And, with the presence of a
large perfusion mismatch and small ischemic core, a
fifty-five patient study– 34 early presenting (3.4�
1.6 h) and 21 late presenting (18.6� 16.0 h)– reported
that delayed time to treatment did not increase ICH,
8.8% early versus 9.5% late (P¼ 1.0).21 In addition to
these findings, in randomized trials of MT (excluding
patients over the age of 80 years with a premorbid dis-
ability), Slawski et al. evaluated the effects of acute and
delayed recanalization and reported a 90-day mortality
rate of 38.5% in patients with pre-existing morbidity,
slightly up compared to mortality rates in patients
without pre-existing morbidity, 28% and 27.5% in
the HERMES and STRATIS, respectively.33 Also,
when assessing patients treated within 8 h after symp-
tom onset (n¼ 71) compared to those treated beyond
8 h after symptom onset (n¼ 25), no detectable differ-
ences were noted in the rate of favorable outcome or
mortality rate at 90 days between these two groups.33

Given variability in the outcomes of numerous exam-
ples of delayed recanalization, optimizing and refine-
ment of standard age range, classification of pre-
existing morbidity, and time to treatment may help to
optimize post-intervention outcomes.

Given that recanalization may exacerbate injury, a
study evaluated the time course of reperfusion associ-
ated HT and found that acute recanalization resulted in
a hemorrhagic transformation rate of �20% compared
to �53% in delayed recanalization.61 In this study, sev-
eral classifications of reperfusion induced hemorrhages
were used: HI1 as small petechiae, HI2 as more con-
fluent petechiae, PH1 as hematoma involving �30% of
the infarcted area with some mild space-occupying
effect, and PH2 as hematoma involving >30% of the
infarcted area with significant mass effect or clot
remote from the infarcted area. Of note, HI1-HI2
patients had lower infarct volumes and modified
Rankin Scale scores compared to both PHI-PH2 and
those without HT.61 When evaluating acute vs late
recanalization, hemorrhagic transformation occurred
in 43.7% of patients receiving therapy, and in patients
with acute recanalization and subsequent hemorrhagic
transformation, �90% were HI1-HI2, whereas 20%
were PH1-PH2. In contrast, in patients with hemor-
rhagic transformation after late recanalization, only
11% were H1-H2, while 80% were PH1-PH2.61

Because of the potential risk, hemorrhagic transforma-
tion due to recanalization requires close monitoring of
patients, and given a dearth of efficacious pharmaco-
logical therapies, better delineated and/or new thera-
pies, possibly even combination treatments, targeting
hemorrhagic transformation are needed to better atten-
uate some of these deleterious outcomes.

Imaging modalities in stroke

Since hemorrhagic transformation (HT) remains a sig-
nificant etiology for ischemia-reperfusion injury, stud-
ies have suggested that TTP mapping on admission
may identify patients at risk of HT after ischemic
stroke. For example, when evaluating computing
tomography perfusion (CTP) as a predictor for HT in
patients receiving reperfusion therapy (ie IV rt-TPA),
Shinoyama et al. reported the ability to categorize
reperfusion candidates into two groups: high-HT risk
and low-HT risk.62 In the low-HT risk group, no TTP
map-defect was observed, possibly due to an increased
presence of collaterals, increasing their tolerance to
ischemia and/or reperfusion injury.62 Also, with
delayed recanalization outside the 6 h window after
stroke onset, Renu et al. reported that parenchymal
hematoma was predicted by CBV and CBF values
2.5% below mean CBV and CBF values.63 But a
higher-powered sample size is needed to validate
these relationships. Dual-energy CT allows for distinc-
tion between contrast staining, suggestive of BBB dis-
ruption and brain hemorrhage. Since BBB disruption
drives HT and edema formation, dual-energy CT
showed strong associations between post-
endovascular therapy BBB damage and poor clinical
outcomes, as well as contrast staining and delayed
HT.64

In a study evaluating recanalization outside the 4.5 h
window, investigators reported that delayed recanaliza-
tion via PCT-guided intravenous rtPA resulted in sim-
ilar recanalization rates to patients treated inside the
acute window; moreover, both hemorrhagic transfor-
mation rates and favorable outcomes were also similar
among groups.65 Taken together, compared to MRI,
PCT is efficient and readily available, and its parame-
ters, such as CBV, MTT, CBF maps, can be easily
evaluated; however, this comes at the cost of potential-
ly less brain coverage, increased radiation exposure,
and less sensitivity for the detection of minor strokes
or stroke mimics.65

Hyperintensity on DWI occurs after a reduction in
the apparent diffusion coefficient of water (ADC) and
represents a restriction in the diffusional movement of
water, resulting from ion pump failure.66 As a comple-
mentary technique, PWI displays information about
the perfusion of the infarct core as well as the sur-
rounding brain tissue.66 Because PWI-DWI mismatch
may not precisely predict the volume and evolution of
the penumbra, a retrospective study on patients with
acute stroke and a PWI-DWI mismatch demonstrated
that TTP-Tmax perfusion delay mismatch volume and
FLAIR vascular hyperintensity (FVH) were also asso-
ciated with the final infarct volume.67 Although some
patients exhibit spontaneous resolution of neurological
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deficits, a significant subpopulation (8 out of 50 [16%])
experienced subsequent worse outcomes; Alexandrov
et al. report that transcranial doppler and angiography
imaging at the time of admission on all potential stroke
patients may identify and confirm patients with a
potential occlusion or stenosis independent of neuro-
logical symptoms.25 Taken together, evaluation of
occlusion and/or stenosis type and size are important
factors to address when attempting delayed recanaliza-
tion in combination with neuroprotectants.

When transcortical collateralization is robust, recan-
alization may significantly improve outcome and
reduce infarct size when administered within 8 h of
symptom onset.68 Standard angiograms may be used
to confirm robust leptomeningeal collateralization in
patients that may benefit from delayed recanalization.
For instance, when retrograde leptomeningeal collater-
al flow is unable to compensate for antegrade perfusion
loss, physicians may use angiography to monitor for
progressive collateral failure, resulting in infarct expan-
sion.69 Favorable outcome after delayed recanalization
may be attributed to the presence of congenital collat-
erals compared to unfavorable outcome in patients
with limited collaterals. With recanalization rates rang-
ing from 30% to 60% of patients in the first 6 to 24 h
after t-PA treatment, continuous transcranial doppler
monitoring may be considered as a tool for real-time
assessment of recanalization, and since the clearance of
rtPA is very rapid, e.g., only 1% of the drug remains
after 15min of infusion, additional interventions may
be needed if the clot remains after the initial recanali-
zation attempt.70

Since thrombus length is an important determinant
of vessel recanalization using intravenous rTPA, liter-
ature has shown that thrombus length of >8mm (eval-
uated using a sliced non-contrast CT and contrast
enhanced CT (80 seconds post CTA contrast injection))
resulted in a < 1% rate of recanalization.71 Because CT
angiography can overestimate thrombus length,
delayed phase contrast enhanced CT may be used to
more accurately predict thrombus length.71 This data
supports the use of thrombus size to help guide the
decision for intervention. In evaluating pre-
thrombolysis arteriograms, recanalization graded via
a modified Thrombolysis in Myocardial Infarction
flow grade (mTIMI 2–3) was achieved in �95% of
patients with a clot outline sign– a slow antegrade con-
trast opacification distal to the thrombus.72 This asso-
ciation may provide essential information in acute
thrombolytic therapy.

Given that PET studies have reported salvageable
penumbral tissue several days after stroke onset,
delayed recanalization at 10-168 h via stent placement
(six balloon mounted stents, five Wingspan and one
Enterprise self-expanding intracranial stent), was

achieved in 92% of patients and resulted in favorable
outcomes in 60% of patients (mRS � 2 at 90 days).54,73

Thus many patients may benefit from evaluation and
consideration for recanalization at later time-points
than the current precedent. In a qualitative clinical
pilot study evaluating intracranial stenting for acute
ischemic stroke beyond 8 h from symptom onset,
Xavier et al. reported a recanalization rate of 91.7%
after stenting compared to 35% and 70% intravenous
thrombolytic recanalization rates in Prolyse in Acute
Cerebral Thromboembolism (PROACT)-II and multi-
MERCI trials, respectively.73 Stent-supported angio-
plasty, therefore, is an alternative approach compared
to clot retrieval and thrombolytic strategies in delayed-
recanalization treatment of penumbral tissue. In sup-
port of this conclusion in severe acute ischemic stroke
patients with large intracranial vessel occlusions in the
anterior circulation outside the 4.5 h rtPA window,
thrombectomy via Penumbra System and Solitaire
devices reached a successful recanalization rate of
�94%, of which 37% reached a favorable (mRS
score 0–2) functional outcome, and 54% reached an
acceptable (mRS score 0–3) functional outcome by
3months.74

In a study evaluating the combination of PET/MRI,
Werner et al. report that without significant delays in
MRI diagnostic routines and without compromising
standard MRI diagnosis, hybrid imaging of both
PET and MRI imaging provide complementary infor-
mation which may more accurately identify salvageable
tissue.75 With the increasing window of opportunity for
reperfusion, a more flexible window for time to treat-
ment may allow hybrid imaging (PET/MRI) to identify
ideal candidates with volumes of penumbra large
enough to justify intervention at delayed time points,
thereby providing the necessary information to balance
between intervention related risk and the benefit of
reperfusion.

Clinical combination treatments

In a randomized, open-labeled, blinded endpoint clin-
ical trial, patients with internal carotid artery or middle
cerebral artery occlusions were treated with the combi-
nation of fingolimod and alteplase at 3-6 h, and after
treatment, greater perfusion, lesion reduction, and sup-
pression of infarction volume were observed compared
to the alteplase treated group.23 Due to the significant
impact of neuroinflammation in stroke, a clinical trial
has started evaluating the efficacy of fingolimod in con-
junction with mechanical thrombectomy for patients
with proximal large vessel occlusion within 6 h after
symptom onset.76 Alternatives to typical tPA inhibitors
have also been investigated. In 4 patients, argatroban,
an inhibitor of thrombin, was also shown to effectively
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induce 100% recanalization when administered

>24 hours, ranging from 25–54 hours after symptom

onset.77 Therefore, other treatment options in combi-

nation with thrombolysis and/or surrogate treatments

may improve outcome after stroke and could potential-

ly have a more granular effect on apoptosis, BBB dis-

ruption, and neuroinflammation.

Future directions

In conclusion, outside of reperfusion interventions,

thousands of treatment agents and numerous clinical

trials have failed due to the pathophysiological com-

plexity of stroke. This review highlights significant

findings outside of the conventional reperfusion

window in narrative fashion (Table 2); future research

can focus on systematic review to evaluate functional

improvement after stroke. With current clinical trials

extending the reperfusion window up to 24 h, the

research in this review supports even further investiga-

tion into delayed-reperfusion time-points ranging from

2 days to as long as 26months after infarct depending

on stroke type. Given the complex cascade of inflam-

mation, apoptosis, edema, and BBB disruption after

stroke, investigation of combination approaches cou-

pled with reperfusion may also be an important direc-

tion for stroke management research.
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