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Both Default and Multiple-Demand Regions Represent
Semantic Goal Information

Xiuyi Wang, Zhiyao Gao, Jonathan Smallwood, and ““Elizabeth Jefferies
Department of Psychology, University of York, York YO10 5DD, United Kingdom

We used a semantic feature-matching task combined with multivoxel pattern decoding to test contrasting accounts of the
role of the default mode network (DMN) in cognitive flexibility. By one view, DMN and multiple-demand cortex have oppos-
ing roles in cognition, with DMN and multiple-demand regions within the dorsal attention network (DAN) supporting inter-
nal and external cognition, respectively. Consequently, while multiple-demand regions can decode current goal information,
semantically relevant DMN regions might decode conceptual similarity regardless of task demands. Alternatively, DMN
regions, like multiple-demand cortex, might show sensitivity to changing task demands, since both networks dynamically al-
ter their patterns of connectivity depending on the context. Our task required human participants (any sex) to integrate con-
ceptual knowledge with changing task goals, such that successive decisions were based on different features of the items
(color, shape, and size). This allowed us to simultaneously decode semantic category and current goal information using
whole-brain searchlight decoding. As expected, multiple-demand cortex, including DAN and frontoparietal control network,
represented information about currently relevant conceptual features. Similar decoding results were found in DMN, including
in angular gyrus and posterior cingulate cortex, indicating that DMN and multiple-demand regions can support the same
function rather than being strictly competitive. Semantic category could be decoded in lateral occipital cortex independently
of task demands, but not in most regions of DMN. Conceptual information related to the current goal dominates the multi-
variate response within DMN, which supports flexible retrieval by modulating its response to suit the task demands, along-
side regions of multiple-demand cortex.
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We tested contrasting accounts of default mode network (DMN) function using multivoxel pattern analysis. By one view,
semantically relevant parts of DMN represent conceptual similarity, regardless of task context. By an alternative view, DMN
tracks changing task demands. Our semantic feature-matching task required participants to integrate conceptual knowledge
with task goals, such that successive decisions were based on different features of the items. We demonstrate that DMN
regions can decode the current goal, as it is applied, alongside multiple-demand regions traditionally associated with cognitive
control, speaking to how DMN supports flexible cognition. J

control network (FPCN) and dorsal attention network (DAN),
has an established role in cognitive flexibility (Duncan, 2010),
showing stronger responses in more demanding conditions
across tasks (Fedorenko et al., 2013; Turnbull et al., 2019a,b) and
activation patterns that can classify task-critical details in an
adaptive fashion (Erez and Duncan, 2015; Cole et al, 2016;

ignificance Statement

Introduction

Human cognition is flexible, enabling us to select appropriate in-
formation from memory, according to current goals. Multiple-
demand (MD) cortex, which overlaps with frontal-parietal
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Bracci et al.,, 2017; Qiao et al., 2017). However, the role of other
heteromodal brain regions, such as regions of default mode net-
work (DMN)), is more poorly understood.

In a ground-breaking study, Crittenden et al. (2015) found
that regions within DMN represent task information (Soon et al.,
2008; Kahnt et al., 2011; Reverberi et al., 2012; Giordano et al.,
2013; Woolgar et al., 2016; Wen et al., 2020), alongside FPCN.
However, their task rules covaried with the stimuli and were
established when stimuli were presented; consequently, this
study cannot determine whether the DMN response reflects the


https://orcid.org/0000-0002-8197-6229
https://orcid.org/0000-0002-3826-4330
mailto:wangxiuyi16@gmail.com
mailto:beth.jefferies@york.ac.uk

3680 - J. Neurosci., April 21,2021 - 41(16):3679-3691

retrieval of task information from long-term memory or the
maintenance and application of goals to tailor ongoing cogni-
tion, in a way that resembles “adaptive coding” within MD
cortex.

DMN and DAN are proposed to subserve internally and
externally directed cognition, respectively, and functionally cou-
ple with different subsystems of FPCN (Spreng et al., 2010, 2013;
Dixon et al., 2018). DMN is highly heteromodal and is thought
to support information integration (Simony et al., 2016; Lanzoni
et al,, 2020), which is relevant to both long-term episodic mem-
ory (Sestieri et al., 2011) and semantic cognition (Binder and
Desai, 2011; Wirth et al., 2011; Krieger-Redwood et al.,, 2016).
Semantically relevant DMN regions, including left angular gyrus
(AG) and lateral temporal cortex, show less deactivation, relative
to rest, when semantic and nonsemantic tasks are compared
(Binder et al,, 1999, 2009; Humphreys et al., 2015), even when
task difficulty is taken into account (Binder et al., 2005; Seghier
et al.,, 2010; Murphy et al., 2018). These observations suggest that
DMN might support similarity structures in long-term memory,
such as global conceptual similarity (Murphy et al., 2017; Wang
et al., 2020), as well as goal information when this information is
retrieved from memory.

However, DMN-DAN interactions vary significantly across
different cognitive states and their functional connectivity fluctu-
ates between periods of anticorrelation and positive correlation
(Dixon et al, 2017). Therefore, DMN might be sensitive to
changing external task demands, together with MD cortex.
DMN is situated at the top of a cortical hierarchy, exhibiting the
greatest distance (both physically and in connectivity space)
from primary sensory/motor regions (Margulies et al., 2016). On
this heteromodal-to-unimodal gradient, FPCN and DMN
regions occupy adjacent locations and have similar representa-
tional content (Gonzéilez-Garcia et al., 2018). Moreover, DMN
supports detailed thoughts about demanding tasks as well as off-
task states (Sormaz et al., 2018). Collectively, these observations
suggest that DMN might maintain currently relevant informa-
tion that can bias ongoing processing, rather than always reflect-
ing conceptual similarity in long-term memory (Crittenden et
al,, 2015; Murphy et al., 2017; Smith et al., 2018).

In the present study, we contrasted these interpretations to es-
tablish the contribution of the DMN to controlled semantic cog-
nition and its relationship with MD regions within FPCN and
DAN. We examined whether patterns of response across DMN
capture long-term semantic similarity or the short-term behav-
ioral relevance of specific semantic features. Participants were
asked to match items from three categories according to color,
shape, or size, with the goal switching on each trial. We mini-
mized memory retrieval demands of the task switch by telling
participants explicitly what to do on each trial. In this way, our
design disentangled the representation and application of goals
for semantic retrieval from the structure of knowledge in long-
term memory. To anticipate, goal information could be decoded
in both MD regions and DMN, while semantic category decod-
ing was restricted to lateral occipital and anterior temporal
cortex.

Materials and Methods

Participants

The research was approved by the York Neuroimaging Center and
Department of Psychology ethics committees. Thirty-one healthy adults
were recruited from the University of York (26 females; age mean * SD
age, 20.60 = 1.68 years; age range, 18-25years). All participants were
right handed, native English speakers, with normal or corrected-to-
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normal vision and no history of psychiatric or neurologic illness. All vol-
unteers provided written informed consent. One participant with
incomplete data (only one of two sessions) was removed. Two more par-
ticipants were removed because of low accuracy (3 SDs below the mean).
This study provides new analyses of a dataset first reported by Wang et
al. (2020).

Another 240 native English speakers who did not take part in the
main fMRI experiment rated the color and shape similarity (154 females;
age range, 18-24 years).

Design and procedure

Participants completed the following two fMRI sessions. In the first ses-
sion, they performed a semantic feature-matching task, in which we var-
ied the goal (i.e., the feature to be matched) and the semantic category of
the probe word. This allowed us to directly contrast the decoding of
goal-relevant features and long-term semantic similarity. In the second
session, participants completed easy and hard spatial working memory
and arithmetic tasks (Fedorenko et al., 2011, 2013; Blank et al., 2014)
designed to localize MD and DMN regions. The contrast of hard versus
easy versions of these tasks robustly activates MD cortex (Fedorenko et
al.,, 2013; Blank et al., 2014), while the easy versus hard contrast activates
DMN (McKiernan et al., 2003; Leech et al, 2011; Fedorenko et al.,
2013). In this way, we could establish the overlap between regions repre-
senting goal and category information in MD and DMN at the individ-
ual level.

Behavioral tasks

Semantic feature-matching task

Participants matched probe and target concepts (presented as words)
according to a particular semantic feature (color, shape, or size), speci-
fied at the start of each trial in a rapid event-related design (Fig. 1). Two-
third of trials were matching trials in which probe and target shared the
target feature (ie., color: strawberry and cherry are both red) and one-
third were nonmatching trials in which probe and target did not share
the target feature (i.e., color: lemon and raspberry have different colors,
although they are semantically related). Participants pressed a button
with their right index finger to indicate a matching trial and responded
with their right middle finger to indicate a nonmatching trial. All the
probe words belonged to one of the following three categories: animal,
tool, and plant. This gave rise to nine combinations of goal feature and
probe category, with 36 items for each condition. These trials were di-
vided evenly into four runs. The order of runs and trials within each run
was randomized across subjects. Each run lasted for 600 s. The target
words were drawn from a wider range of categories than the probe
words. Probe and target words were matched on word length (number
of letters), word frequency (based on SUBTLEX-UK: subtitle-based
word frequencies for British English; van Heuven et al., 2014) and word
concreteness (Brysbaert et al., 2014) across conditions, respectively.
Participants were provided with feedback during task training but not
during the main experiment.

To maximize the statistical power of the rapid event-related fMRI
data analysis, the stimuli were presented with a temporal jitter, random-
ized from trial to trial (Dale, 1999). The interstimulus intervals (between
goal cue and probe word, and probe and target word) and the intertrial
interval varied from 1 to 3 s. Each trial started with a fixation, followed
by a goal cue slide specifying the feature to match (color, shape, or size),
presented for 1 s. This was followed by the second fixation and then the
probe word, presented for 1 s. Finally, there was the third fixation fol-
lowed by the target word, triggering the onset of the decision-making pe-
riod. The target remained visible until the participant responded, for a
maximum of 3 s. After participants pressed the button, a fixation was
presented for 3 s minus the response time (RT) of that trial. The goal
cue, probe, and target words were presented centrally on the screen.
Both response time and accuracy were recorded.

A trial consisted of three events, as follows: (1) a goal cue to indicate
the relevant feature for the trial; (2) a probe word; and (3) a target word,
which was followed by a response. Based on these events, we separated
each trial into three different time periods, as follows: a “goal cue pe-
riod,” a “probe word period,” and a “target word period.” Our main
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analysis concerned the probe word period since, for this time point, we
were able to perform both goal and category decoding for the same
items. We also performed secondary analyses using the goal cue period
and the target word period.

Spatial working memory task

Participants had to keep track of four or eight sequentially presented
locations in a 3 x 4 grid (Fedorenko et al., 2011), giving rise to easy and
hard spatial working memory conditions. Stimuli were presented at the
center of the screen across four steps. Each of these steps lasted for 1 s
and highlighted one location on the grid in the easy condition and two
locations in the hard condition. This was followed by a decision phase,
which showed two grids side by side. One grid contained the locations
shown on the previous four steps, while the other contained one or two
locations in the wrong place. Participants indicated their recognition of
these locations in a two-alternative, forced-choice paradigm via a button
press, and feedback was immediately provided. Each run consisted of 12
experimental blocks (6 blocks/condition and four trials in a 32 s block)
and four fixation blocks (each 16 s long), resulting in a total time of 448
s. This task included two runs containing the two conditions, in a stand-
ard block design. Condition order was counterbalanced across runs, and
run order was counterbalanced across participants for each task.

Math task

In this task, participants performed addition with smaller or larger num-
bers, giving rise to easy and hard conditions. Participants saw an arith-
metic expression on the screen for 1.45 s and were then given two
numbers as potential answers, for 1.45 s. Each trial ended with a blank
screen lasting for 0.1 s. Each run consisted of 12 experimental blocks

A-C, lllustration of semantic feature-matching task, spatial working memory task, and math task. D, The behavioral performance of semantic feature matching task. :p << 0.01;

(with four trials per block) and four fixation blocks, resulting in a total
time of 316 s. This task included two runs containing the two conditions,
presented in a standard block design. Condition order was counterbal-
anced across runs, and run order was counterbalanced across partici-
pants for each task. All the stimuli were presented using Psychopy
(Peirce, 2007).

FMRI data acquisition

Structural and functional data were collected on a 3 T MRI scanner
(Prisma, Siemens) at the York Neuroimaging Center. The scanning pro-
tocols included a T1-weighted MPRAGE sequence with whole-brain
coverage. The following structural scan was used: acquisition matrix,
176 x 256 x 256; voxel size, 1 x 1 x 1 mm?; repetition time (TR) = 2300
ms; and echo time (TE) =2.26 ms. Functional data were acquired using
an EPI sequence with an 80° flip angle and using GRAPPA (generalized
autocalibrating partial parallel acquisition) with an acceleration factor of
2in 3 x 3 x 4 mm voxels in 64 axial slices. The functional scan used was
as follows: 55 3-mm-thick slices acquired in an interleaved order (with
33% distance factor); TR = 3000 ms; TE = 15 ms; and FOV =192 mm.

MRI data preprocessing

Functional and structural data preprocessing for classification was con-
ducted using the FMRIB Software Library (FSL version 6; fsl.fmrib.ox.ac.
uk/fsl/fslwiki/FEAT/). The T1-weighted structural brain images were
extracted. Structural images were registered to the MNI-152 template
using the FMRIB linear image registration tool (FLIRT). fMRI data pre-
processing included motion correction, slice-timing correction, and
high-pass filtering at 100 s. Motion-affected volumes were detected and
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then were fully removed from the fMRI data (using scrubbing; Power et
al,, 2012). No spatial smoothing was applied at this point to preserve
fine-grained patterns of voxel activations (Haynes and Rees, 2006).

Experimental design and statistical analysis

Classification analysis examining categorical distinctions between goal
states focused on the probe word period when both goal and semantic
category were manipulated. First, a univariate analysis was used to iden-
tify the regions showing stronger activation when performing the task
relative to rest. Univariate fMRI analyses used one-sample two-tailed ¢
tests to compare responses against baseline. Second, we conducted a uni-
variate analysis to establish the parameter estimates for each feature and
each category. Next, whole-brain searchlight classification analysis
revealed regions in which the multivariate response classified the goal
and/or semantic category. We performed supplementary whole-brain
searchlight classification analyses during the goal cue and target word
periods. These analyses examined goal but not category decoding since
the goal cues preceded the presentation of concepts, and category was
not manipulated for the target word. We also conducted temporal gener-
alization classification analysis (training a classifier in one time period
(e.g., during the presentation of the probe word) and then testing it in a
different time period (e.g., during the goal cue or target word) to reveal
the representational content during the probe period.

A complementary analysis used whole-brain searchlight representa-
tional similarity analyses (RSA) during the probe period to examine the
representation of goal-relevant semantic features; this analysis identified
regions in which neural similarity was higher when the goal-relevant fea-
tures were more similar. Both classification and RSAs used one-sample
one-tailed f tests to test for greater-than-chance representation of each
information type. For each analysis, multiple comparisons (across brain
voxels) were accounted for by controlling the familywise error (FWE) at
0.05, unless noted otherwise.

Univariate analysis of the semantic feature-matching task

To estimate the effects of task demands during the semantic feature-
matching task and to extract the -value for each feature and/or probe
word, general linear models (GLMs) were built. The epochs of each trial
included the goal cue period, two interstimulus interval periods, the
probe word period, and the target word period. Trials were modeled by
convolving each epoch with a canonical hemodynamic response func-
tion (HRF). When each epoch of interest was modeled, all the remaining
periods and incorrect trials were modeled as regressors of no interest to
separate different trial periods. For example, when building the GLM to
extract the B -value for each feature for probe word, trials were modeled
as epochs lasting from probe onset to probe offset convolved with a ca-
nonical HRF. We modeled other time points as regressors of no interest,
including the goal cue period from goal cue word onset to offset, the tar-
get word period from target word onset to response, the two interstimu-
lus interval periods and the incorrect trials. We included the within-trial
interstimulus intervals as regressors of no interest (removing them from
the implicit baseline) since participants were maintaining feature and
probe information during these two periods. Six head motion parame-
ters were further included in the GLM as regressors of no interest to con-
trol for potential confounding effects of head motion. After model
estimation, the whole-brain S-weight image for the period of interest,
contrasting the relevant time point with the implicit baseline (i.e., the fix-
ation period preceding the goal cue words), was used to capture the rele-
vant pattern of activation.

Univariate analysis of the main task effect. To estimate the effects of
task demands during the semantic feature-matching task, spatial
smoothing with a 5 mm FWHM Gaussian filter was applied. The main
effect of task was modeled using epochs lasting from the target onset to
response, thus controlling for lengthened BOLD responses on trials with
longer response times. The four runs of each task were included in a
fixed-effects model for each individual. Group-level analyses were con-
ducted using a cluster-forming threshold of z> 3.1, with p < 0.05 (cor-
rected for FWE rate using random field theory).

First-level univariate model of probe word period for classification
analysis. To extract the 8 -value for each feature (color, shape, and size),
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for each run, in each voxel of the brain for goal decoding, the prepro-
cessed unsmoothed data were analyzed in subject native space. A GLM
was built for each run for each participant. One regressor was created for
each feature. Trials were modeled as epochs lasting from probe onset to
probe offset. To increase the statistical power, we created more data
points by randomly but evenly dividing all the correct trials of each fea-
ture in each run into three subdatasets and then averaging them within
each subdataset (for similar implementations, see Connolly et al., 2012;
Cole et al., 2016; Hebart et al., 2018). This resulted in three data points
per feature per run per subject (e.g., nine observations), which were z-
scored within each run at each voxel (Hanke et al., 2009; Connolly et al.,
2012).

Univariate models were also used to extract the 3 -value for each cat-
egory (animal, tool, and plant), for each run, in each voxel of the brain
for category decoding. The procedure reproduced the methods above,
except that three regressors were created for each category for each run.
This resulted in three data points per feature per run per subject (e.g.,
nine observations), which were z-scored within each run for each voxel.

Obtaining whole-brain activation pattern of each probe word for
RSA. For each probe word, a GLM was estimated, which included one
regressor containing the onset of a given probe word and another regres-
sor containing the onsets of all other probe word trials. This approach
has been shown to be more representative of the true activation magni-
tudes unique to each trial type than other model estimation methods for
rapid event-related designs (Mumford et al.,, 2012). These activation
maps were z-scored within each run for each voxel.

Decoding analysis of goal information during probe word period

We performed a whole-brain searchlight decoding analysis to investigate
which regions represent categorical goal information (ie., regions that
classify the distinction between color, shape, and size trials). Classifiers
were trained and tested on individual subject data transformed into MNI
standard space using the z-scored 3 -values for each feature. Classification
training and testing were performed using a leave-one-run-out cross-vali-
dation strategy. There were 27 total brain patterns (9 patterns/feature) to
train the classifier and 9 total brain patterns (3 patterns/feature) to test the
classifier each time. We tested the discriminability of patterns for the three
goals using a whole-brain searchlight with a radius of 6 mm (number of
voxels = 123; Kriegeskorte et al., 2006) with linear support vector machines
(SVMs; Vapnik and Chapelle, 2000; LIBSVM, http://www.csie.ntu.edu.tw/
~¢jlin/libsvim/) implemented within PyMVPA (Hanke et al, 2009).
Classification accuracy for each sphere was assigned to the central voxel of
the sphere to produce decoding accuracy maps. The resulting maps were
smoothed with a Gaussian kernel (6 mm FWHM). We performed a group
analysis based on pattern-information maps to determine whether accu-
racy maps were above chance levels (accuracy, >0.33; Kriegeskorte et al.,
2006). We conducted a one-sample permutation ¢ test using the
Randomize tool in FSL (5000 permutations; https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/Randomize/). Threshold-free cluster enhancement (TFCE; Smith
and Nichols, 2009) was used to identify significant clusters. The final
results were thresholded at a TFCE cluster-corrected p value < 0.05 after
controlling for FWE rate.

Decoding analysis of category information during probe word period

We performed a whole-brain searchlight decoding analysis to investigate
whether there are any regions that represent task-unrelated semantic cat-
egory information. The procedures were as above, except we extracted
the z-scored -values for each category (animal, tool, plant) for training
and testing.

Goal-decoding analysis of goal cue and target word periods

Our main analysis examined the probe word period, which allowed
decoding of both goal and semantic category. To understand the nature
of goal representation during the probe word period, we performed sec-
ondary analyses of the goal cue and target word periods, examining the
decoding of goal information. The goal cue period was modeled using a
fixed duration (1 s). For the target word period, as there were differences
in response time across conditions, we included this variable as a para-
metric regressor in the GLM for all trials with a fixed duration (1 s; for
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similar implementations, see Todd et al., 2013; Waskom et al., 2014;
Erez and Duncan, 2015). In addition, we used another method to control
for the lengthened BOLD response as a result of longer response times:
we modeled the event duration using a variable epoch approach, from
target onset to response. We then computed the voxel-wise 3 -patterns
and performed the whole-brain searchlight analysis as before. The results
were largely unchanged.

To further investigate what drives goal representation during the
probe period, we conducted whole-brain searchlight decoding analyses
examining temporal generalization (Isik et al., 2014; King and Dehaene,
2014) of these activation patterns. The procedures followed the whole-
brain searchlight analyses above, except that we trained a classifier dur-
ing one task period, and tested the classifier during another period. For
example, we trained the classifier using the voxel-wise 8 weight images
corresponding to different goals during the goal cue period and tested
the classifier in the probe period and vice versa. We also examined goal
decoding across probe and target periods. Training and testing samples
were always taken from different runs to ensure full separation of the sig-
nal across these time periods. We directly compared decoding accuracy
maps capturing the generalization between probe and target periods
with levels of generalization between goal cue and probe periods using
paired ¢ tests. The final results were thresholded at a TFCE cluster-cor-
rected p value < 0.05.

Representational similarity analysis of the probe word period

To examine the extent to which neural patterns during the probe period
reflected the similarity of goal-relevant but not goal-irrelevant semantic
features across trials, we conducted RSA (Kriegeskorte et al., 2008) using
a searchlight procedure (Kriegeskorte et al., 2006) in each individual par-
ticipant. RSA allowed us to relate neural pattern similarity elicited by the
probe word to (1) the patterns of feature similarity across probe words,
for both task-relevant and task-irrelevant features; and (2) to overall
semantic similarity, based on word usage. For example, the neural pat-
terns elicited by probes such as “watermelon” and “cucumber” in the
color-matching task were related to color feature similarity (high simi-
larity for this pair as both items are green, and task relevant for this
color-matching task), shape feature similarity (low similarity for this
pair, and task irrelevant), and overall semantic similarity (high similarity
for this pair as both items are “fruits and vegetables”).

Object feature representational dissimilarity matrices. Participants
rated the pairwise color and shape similarity of all the probe words in
the color trials (N=72) and shape trials (N=72) on a 7 point scale (1,
most dissimilar; 7, most similar). For each object feature, color, and
shape, representational similarity matrices (RSMs) were obtained by
averaging across individual similarity matrices. The group mean object
color representational dissimilarity matrix (RDM) and shape RDM were
identified by subtracting the color and shape group mean RSMs from
the maximum similarity score on the rating scale. Ratings were not avail-
able for size similarity.

Semantic distance-based RDM. The semantic distance-based RDM
reflected the distance between word vectors in terms of their co-occur-
rence patterns over a large corpus of text. We used the published pre-
trained vectors trained on part of the Google News dataset, using the
word2vec algorithm  (https://code.google.com/archive/p/word2vec/).
The model contains 300-dimensional vectors for 3 million words and
phrases. The phrases were obtained using a simple data-driven approach
described in the study by Mikolov et al. (2013). The word2vec algorithm
computes continuous vector representations of words based on the skip-
gram architecture (Mikolov et al, 2013). The semantic distance was
measured as 1 - the cosine angle between feature vectors of each word
pair. One probe word from the color trials and two probe words in the
shape trials were not included in the word2vec corpus and therefore
excluded from the semantic distance calculation.

Voxel-wise whole-brain searchlight RSA. We examined the neural
dissimilarities in probe activation during color and shape trials sepa-
rately, and compared these neural dissimilarities to RDMs for task-rele-
vant features (either color or shape), task-irrelevant features (either color
or shape), and global semantic dissimilarity. To investigate semantic
color representation, for each voxel within the gray matter mask, we
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extracted the multiword activation patterns within a sphere centered at
that voxel (radius = 6 mm, corresponding to 123 voxels) and computed a
72 x 72 neural RDM, using 1 - Pearson correlations of all word pairs in
the color trials over all voxels within the sphere. Then we calculated the
Spearman’s rank correlation between the neural RDM and the color
RDM, as well as the partial Spearman’s rank correlation, controlling for
semantic distance-based RDM. We calculated the Spearman’s rank cor-
relation between the neural RDM and shape RDM. We also calculated
the Spearman’s rank correlation between the neural RDM and semantic
distance-based RDM. The resulting correlation maps were Fisher trans-
formed and spatially smoothed using a 6 mm FWHM Gaussian kernel.
A one-sample permutation ¢ test was conducted. The final results were
thresholded at a TFCE cluster-corrected p value < 0.05. We present
overlapping regions for the correlation and partial correlation group-
level ¢ tests where both were significantly greater than zero.

We performed a whole-brain searchlight RSA to investigate whether
there are any regions that represent object shape knowledge of shape tri-
als. The procedures were as above, except we extracted the z-scored
B-values for each probe word in the shape trials and calculated the
Spearman’s rank correlation between the neural RDM and shape RDM
and the partial Spearman’s rank correlation, controlling for semantic dis-
tance-based RDM.

Regions of interest-based RSA. Given that for shape trials, in a whole-
brain analysis, we did not find a significant correlation between the neu-
ral RDM and shape RDM, to guard against type II errors, we examined
whether object shape was represented in regions of interest (ROIs) that
represent goal (see Fig. 4F; regarding the definition of these ROIs, see
subsection ROI-based decoding analysis of goal information).

In an ROI-based RSA, we computed the neural RDM of all word
pairs within each ROI. We then calculated the Spearman’s rank correla-
tions between the neural RDM and the shape RDM and the Spearman’s
partial rank correlations after controlling for the semantic distance-based
RDM for each participant for each ROL The correlation values were z-
transformed. To examine whether the correlations were different from
zero, one-sample f tests were conducted for each ROI. Since multiple
ROIs were included, the permutation-based maximum ¢ statistic method
was used for adjusting the p values of each ROI to control the FWE rate.

Localizer task analysis

In the spatial working memory task and math tasks, we examined the
contrast of hard versus easy trials to define MD regions, and the contrast
of easy versus hard trials to define DMN regions. The two runs of each
task were included in a fixed-effects model for each individual. Group-
level analyses were conducted using a cluster-forming threshold of
z>3.1, corrected at p < 0.05 (for FWE rate using random field theory).
Results were visualized using BrainNet Viewer (Xia et al,, 2013).

To investigate whether regions that represent goal information over-
lap with MD cortex or DMN, we compared the goal-decoding results
with both our localizer contrasts and intrinsic connectivity networks
defined by Yeo et al. (2011).

ROI-based decoding analysis of goal information

To more precisely locate the regions that represent goal information, we
conducted ROI-based classification analysis within participant-specific
functional ROIs within DAN, FPCN, and DMN. Within these networks,
we selected the voxels that were most strongly activated for each partici-
pant by the functional localizer tasks. For DAN and FPCN, individual
subject ROIs were defined using the hard > easy contrast in the spatial
working memory and math localizer tasks (see Fig. 4A). For DMN, indi-
vidual subject ROIs were defined using the easy > hard contrast (see
Fig. 4B). We selected the top 50% of voxels with the highest ¢ values,
within network regions defined by Schaefer et al. (2018).

We conducted ROI-based classification for the probe and target
word periods. We created a null model to assess the significance of
decoding performance at the group level. We first randomly shuffled the
class labels within run, with 5000 permutations for each participant.
This established an empirical distribution of decoding accuracy scores
under the null hypothesis where there is no association between BOLD
activation and class labels (Ojala and Garriga, 2010). To control for
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multiple comparisons across regions and time periods, we constructed a
distribution of the maximum accuracy across these tests on each resam-
ple (Nichols and Holmes, 2002). Then we took the mean of the null dis-
tribution for each test as an empirical measure of chance and subtracted
this from the observed accuracy. We computed a one-sample permuta-
tion ¢ test across the group for each test (for similar implementations,
see Waskom et al., 2014).

Relationship between behavioral performance and classification results
Since activity in DMN and MD cortex is known to be modulated by task
difficulty, we tested the possibility that goal discrimination in these net-
works is related to behavioral measures of task difficulty. We defined
seven ROIs (see Fig. 4F) that could decode the goal in these networks
(Schaefer et al., 2018). We then correlated the classification accuracy in
each ROI with the absolute difference in response time between task
features.

Data availability
All summary data, materials, and codes used in the analysis are accessi-
ble in the Open Science Framework at https://osf.io/vn7ws/.

Results

Behavioral results

There was no significant difference in accuracy across trials
probing the three feature goals (F(523=1.027, p=0.360).
However, there were significant differences in response time
(F2,213) = 12.444, p<0.0001). Color decisions were faster than
both shape decisions (p < 0.006) and size decisions (p < 0.0005),
which did not differ (p < 0.163). There were no significant differ-
ences in accuracy (F(;,13)=0.688, p <0.504) or response times
across categories (F(513)=0.742, p < 0.478; Fig. 1D).

Univariate activation in the semantic feature-matching task
There was activation in MD and visual regions when performing
the semantic feature-matching task, including bilateral middle
frontal gyrus, bilateral intraparietal sulcus, bilateral presupple-
mentary motor area, bilateral medial occipital cortex, left premo-
tor cortex, and left lateral occipital cortex (LOC; Fig. 2A). To
examine whether the activation pattern was stable, we reran the
analysis using a longer period to define the task, from the onset
of the probe word, including the fixation between probe and tar-
get word, plus the target word period, as the task regressor. We
captured the activation pattern by contrasting this long task pe-
riod with the implicit baseline. We got a similar result, which is
provided at https://osf.io/vn7ws/. The unthresholded map for
the semantic feature-matching task correlated with the unthre-
sholded MD localizer maps derived from the spatial working
memory task (r=0.38, p<<0.0001) and math task (r=0.44,
P <0.0001), suggesting that semantic feature matching was rela-
tively demanding.

Decoding of goal information during goal cue, probe, and
target word periods

We performed a decoding analysis to identify regions that could
represent goal information. This analysis considered the effect of
task similarity on neural similarity and should be sensitive to cat-
egorical representations of goal feature (i.e., the difference
between color and shape trials, regardless of whether the colors
of the probe concepts were similar between trials). We found
that goal was decodable during the probe word period in left in-
ferior frontal gyrus, left superior parietal lobule, left intraparietal
sulcus, left AG, left LOC, and left posterior middle temporal
gyrus (Fig. 2E). Given the spatial proximity of DMN and MD
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regions, we reran the decoding analysis without smoothing at the
group level and found similar results (Fig. 2B).

Decoding of goal information during the probe word period
might potentially reflect visual or language processes related to
the goal cue word (since each goal was defined with a different
word). If this was the case, we would expect to see similar goal
classification results in the earlier goal cue period, as well as later
during the presentation of the probe words, within visual and/or
language regions. Alternatively, decoding of goal during the probe
word period might reflect rule maintenance and implementation.
If this were the case, we reasoned that the classification results
would overlap between probe and target periods, when the goal
was being maintained and implemented, but not between probe/
target and goal cue periods (before the goal could be implemented
as no concept had been presented at that stage of the task).

In the goal cue period, we found that goal information could
be decoded in bilateral calcarine sulcus and lingual gyrus (Fig.
2D). This likely reflects the early visual representation of the ortho-
graphic goal cue words (i.e., the words “color,” “shape,” and
“size”). This decoding map did not overlap with the searchlight
analysis of the probe word period. In the target word period, goal
information could be decoded in bilateral inferior frontal gyrus,
bilateral superior parietal lobe, bilateral intraparietal sulcus, bilat-
eral AG, precuneus cortex, posterior cingulate cortex (PCC), pos-
terior inferior temporal gyrus, and posterior middle temporal
gyrus (Fig. 2F). There was a 68% overlap in the voxels that could
classify goal during the probe and target word periods. Decoding of
the target word period yielded similar results when we controlled
response time in a different way by modeling the event duration
using a variable epoch approach (these results were highly correlated;
r=0.70, p < 0.0001; results are provided at https://osf.io/vn7ws/).

We used spatial correlations to assess the similarity of
goal decoding during the goal cue, probe, and target word
periods. There was a significant correlation between the
decoding accuracy maps for the goal cue and probe word pe-
riod (r=0.42, p<0.0001). There was also a correlation
between decoding accuracy for probe and target word peri-
ods (r=0.55, p<<0.0001), and this correlation was signifi-
cantly stronger (z=39.71, p=0.0001). To illustrate this
pattern, we defined the regions that represented goal infor-
mation in each period as ROIs and then extracted the decod-
ing accuracy of each ROI in each period (Fig. 2C).

To further investigate what drives goal representation during
the probe period, we conducted whole-brain searchlight tempo-
ral generalization decoding. We reasoned that if the goal decod-
ing during the probe period reflects visual or language processes
related to the goal cue word, a classifier trained during the goal
cue period should be able to decode goal in the probe period, at
least within visual and/or language regions. Alternatively, if the
decoding of goal during the probe period reflects rule mainte-
nance and implementation, a classifier trained during the target
period should be able to decode goal in the probe period within
common brain regions.

When we examined the multivariate response across the goal
cue and probe periods, there was one small cluster (216 voxels)
in left middle temporal gyrus (FWE corrected, p < 0.05; Fig. 2G).
There were extensive regions that could decode goal information
between the probe and target periods, including left middle tem-
poral gyrus, PCC, and LOC (FWE corrected, p < 0.05; Fig. 2H).
The decoding accuracy between the probe and target periods was
significantly higher than between the goal cue and probe periods
in bilateral PCC (FWE corrected, p < 0.05; Fig. 2I). This provides
confirmatory evidence that DMN shows a multivariate response
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Figure 2.

Regions involved in the semantic feature matching task that represent goal in each period and across periods. A, Univariate response to the semantic feature matching task. B,

Regions that represent goal information for probe period (no smoothing). €, Schematic summarizing the decoding accuracy of each set of regions found to represent goal information during
the goal cue period (green), probe (red), and target (blue) periods. D—F, Regions that represent goal information for each period (smoothed). G, H, Temporal generalization decoding between
goal cue and probe periods and between probe and target periods. /, The regions where decoding accuracy between probe and target periods are significantly higher than decoding accuracy

between goal cue and probe periods. All the maps are thresholded at FWE-corrected p << 0.05.

relating to goal information, beyond visual or lexical responses
to the goal cue word.

Regions representing goal information overlap with DMN
and MD cortex
To investigate whether regions that represent goal information
fall within DMN and MD cortex (i.e., DAN and FPCN), we com-
pared the decoding results to seven networks derived from a rest-
ing-state parcellation of 1000 brains (Yeo et al., 2011). Regions
representing goal information during the probe and target peri-
ods overlapped primarily with DAN, FPCN, DMN, and visual
networks (Fig. 3).

To confirm this overlap of the goal-decoding results with
both DMN and MD cortex, the decoding results were compared

with the localizer task data. Consistent with previous findings,
DMN regions (showing a stronger response to easy vs hard tri-
als) included AG, PCC, medial prefrontal cortex, and lateral an-
terior temporal lobes (ATLs) bilaterally. In contrast, MD regions
(responding to hard vs easy trials) included inferior frontal sulcus,
premotor cortex, intraparietal sulcus, and LOC (FWE corrected,
z=3.1, p<0.05; Fig. 4A). Regions that represented goal informa-
tion overlapped with both group-level MD cortex and DMN maps
during the probe (Fig. 4B) and target period (Fig. 4C).

Individual ROI-based goal decoding

To more precisely locate the regions that represented goal infor-
mation, we conducted ROI-based classification analysis within
participant-specific functional ROIs, defined using the localizer
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Figure 3.  Regions representing goal information overlap with DMN and networks contributing to MD cortex (DAN and FPCN) defined by Yeo et al. (2011). 4, The seven networks identified
by Yeo et al. (2011). B, C, Overlap between regions representing goal information and large-scale networks during the probe and target word periods, respectively. D, E, Pie chart shows the per-
centage of voxels within each decoding map falling within each network defined by Yeo et al. (2011) during the probe and the target word periods, respectively. Values <<3% are not shown.
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Figure 4.  Top panels, Regions representing goal information overlap with DMN and MD cortex defined by the localizer tasks. A, DMN and MD cortex defined using the localizer tasks. B, €,
The overlap between regions representing goal information and DMN (blue) and MD cortex (red) during the probe and the target period, respectively. Regions that overlap with neither DMN
nor MD cortex are in green. Bottom panels, ROIs defined for the ROI-based goal-decoding analysis. D, E, ROIs within the DAN (16~23) and FPCN (34~35) and within the DMN (38~50), as
defined by Schaefer et al. (2018). F, ROls that could decode goal information (FWE corrected, p << 0.05). The numbers refer to the ROl index provided by Schaefer et al. (2018).

tasks, selecting the most responsive voxels within DAN, FPCN, and  f,;=3.032, p=0.029); postcentral gyrus (no. 17: mean decoding
DMN ROIs defined by Schaefer et al. (2018; Fig. 4D,E). All p values  accuracy =0.383, SD =0.070, t7)=3.791, p=0.005); and superior
were FWE corrected and ROISs that survive correction are shownin  parietal lobe (no. 18: mean decoding accuracy = 0.376, SD = 0.083,
Figure 4F. Goal information could be decoded in three ROIs within  #(57) =2.807, p=0.051); two ROIs within FPCN: intraparietal sulcus
DAN: LOC (no. 16: mean decoding accuracy =0.380, SD=0.082,  (no. 34: mean decoding accuracy=0.387, SD =0.062, t,7) =4.570,
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words. C, The two ROIs defined for the ROI-based category classification analysis.

p=0.0001); and middle and inferior frontal gyrus (no. 35: mean
decoding accuracy =0.366, SD =0.058, 7, =2.985, p=0.012); plus
two ROIs in DMN: AG (no. 41: mean decoding accuracy = 0.380,
SD =0.074, t27,=3.464, p=0.020); and PCC (no. 50: mean decod-
ing accuracy = 0.375, SD = 0.057, t(57) = 3.943, p =0.004). There were
no other significant regions (p > 0.05).

Goal classification is not related to task difficulty

Activity in DMN and MD cortex is highly sensitive to task diffi-
culty. Therefore, we tested the possibility that the goal discrimi-
nation results were driven by differences in difficulty among the
three goals. We selected ROIs within DAN, FPCN, and DMN
that could decode goal information (Fig. 4F). We did not find
any significant correlations between decoding accuracy and
response time differences in these regions (r < 0.28, uncorrected
p > 0.1), suggesting that decoding accuracy was unrelated to dif-
ferences in difficulty between conditions.

Category information is represented in LOC

In addition to classification of the current goal (e.g., color, shape,
size decisions), our experimental design allowed us to examine
regions that could classify the semantic category of the probe
word. In this way, we were able to contrast the representation of
current goal and long-term semantic information. Probe cate-
gory was decoded in left LOC (mean decoding accuracy = 0.362,
SD=0.027; Fig. 5A), in the categorical classification analysis.
This cluster overlapped with the goal-decoding results for the
probe period (Fig. 5B), suggesting that processing in this brain
region reflects both current task demands and semantic similar-
ity. Since the probe and target words were not always drawn
from the same category, semantic information about the target
might add noise to the representation of probe category if the
two periods are not fully separated. A supplementary analysis
examined whole-brain searchlight decoding of category using
only trials in which the probe and target belonged to the same
category, a total of 137 of 216 trials (63%). Category could still be
decoded in left LOC, with no additional clusters.

We reasoned that if the organization of conceptual processing
in DMN reflects long-term semantic similarity, regions of this
network might represent category information, even when this is
not necessary for the task. The whole-brain analysis above did
not identify regions of DMN that could decode semantic cate-
gory. However, to guard against type II errors, we examined
whether category information could be decoded in key semantic
sites within DMN by performing ROI-based classification

B Probe category and goal overlap
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C Semantic regions within DMN

overlap anterior temporal lobe angular gyrus

A, Region that represents category information of probe words (FWE corrected, p << 0.05). B, Overlap of category classifier with regions that represent goal information of probe

analysis. The semantic DMN sites were defined by overlapping
the DMN network defined by the localizer tasks (Fig. 4A) with
semantic regions defined using a meta-analytic mask for the
term “semantic” from Neurosynth (Yarkoni et al, 2011). We
identified two main regions for analysis in left AG and left ATL
by overlapping these voxels with the Schaefer parcellation
(Schaefer et al., 2018; Fig. 5C). We applied Bonferroni correction
to account for the fact that we included two ROIs; consequently,
the final threshold was p < 0.025. We found that category classi-
fication was not different from the chance level (i.e., 0.33) in left
AG (mean decoding accuracy=0.346, SD=0.013; t;7 =1.236,
p=0.227) and was trending above chance in left ATL (mean
decoding accuracy = 0.353, SD = 0.010; ¢(57) = 2.274, p = 0.031).

Given that the Bonferroni correction might be too stringent, we
repeated the ROI-based analysis running the permutation-based
decoding analysis via a simple shuffling procedure for the labels.
This established an empirical distribution of accuracy scores under
the null hypothesis where there is no association between BOLD
activations and class labels (Ojala and Garriga, 2010). We then
adapted the permutation-based maximum ¢ statistic method (i.e.,
maximum decoding accuracy) to adjust the p values of each ROI
for multiple comparisons to control the FWE rate. No ROIs sur-
vived this correction (FWE corrected, p > 0.05).

Goal-related semantic feature representation in DAN, FPCN,
and DMN

The classification analysis above examined the effects of task goal
(i.e., differences among color, shape, and size trials) and semantic
category (probe words from the animal, plant, and tool catego-
ries) on neural similarity. We found that DMN and MD cortex
represented the current task goal but were largely insensitive to
semantic category. To establish whether brain regions are also
sensitive to goal-relevant feature similarity within a task, we
examined the extent to which neural similarity could be
explained by rated feature similarity for task-relevant and task-
irrelevant features, controlling for global semantic similarity,
using RSA. For example, within the color trials, regions that rep-
resent goals might have more similar neural patterns across trials
involving matching probes with more similar colors (e.g., for the
probes CHERRY and LIPSTICK). In contrast, neural similarity
during color-matching trials might not be associated with shape
similarity, since this feature is goal irrelevant (e.g., the neural pat-
tern for CHERRY might not be more similar to items like
MARBLE that have the same shape). In these analyses, we also
controlled for the global semantic similarity of the probe words
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Figure 6. A, The regions in which there was a greater than zero (FWE corrected, p << 0.05) correlation between the neural RDM of color trials and the color RDM, plus significant partial cor-
relations between these two RDMs after controlling for semantic distance. B, Overlap between regions representing color feature information and large-scale networks identified by Yeo et al.
(2011). €, Pie chart shows the percentage of voxels in B falling within each network defined by Yeo et al. (2011). D, E, The regions in A overlapped with the regions that represented categori-

cal goal information during the probe and target periods, respectively.

to exclude the possibility that neural similarity reflects the full
meaning of the probe word, with the goal-relevant feature being
part of this concept. We reasoned that if the neural RDM was
correlated with the goal-related RDM, but not with the goal-
unrelated feature similarity RDM or semantic distance-based
RDM, these results would suggest that the semantic meaning of
the goal cue was represented selectively. Alternatively, if there
was a correlation between the neural RDM and the semantic dis-
tance-based RDM, it would suggest that the full meaning of the
probe word was represented.

For color trials, we found that regions in FPCN, DAN, and
DMN exhibited a significant correlation between the neural
RDM and color RDM and a significant partial correlation after
controlling for the semantic distance-based RDM (FWE cor-
rected, p <0.05; Fig. 6A). To investigate whether regions that
represent goal information fall within DMN and MD cortex (i.e.,
DAN and FPCN), we compared these RSA results to seven net-
works derived from a resting-state parcellation of 1000 brains
(Yeo et al.,, 2011). Regions representing goal information over-
lapped primarily with DMN, FPCN and somatomotor networks
(Fig. 6B,C). DMN showed the greatest overlap with the color
feature representation map, sugesting that this network is
relevant to the representation of goal-relevant semantic fea-
tures. These regions overlapped with regions representing
categorical goal information during the probe and target
periods (Fig. 6D,E). For these color trials, no regions
showed significant correlations between the neural RDM
and the task-irrelevant shape RDM or the semantic dis-
tance-based RDM. These results therefore suggest that goal rep-
resentation in DMN, DAN, and FPCN during the probe period

for color trials reflected goal-related semantic knowledge of the
probe words.

For shape trials, we did not find a significant correlation
between the neural RDM and shape RDM, whether or not the
semantic distance-based RDM was partialled out. However, to
guard against type II errors, we examined whether object shape
was represented in key ROIs that represent goal information
(Fig. 4F) by conducting ROI-based RSA. Inferior frontal gyrus
(no. 34) was the only ROI showing a significant correlation
(t(27)=3.883, p=0.003, FWE corrected) between the neural
RDM and shape RDM. This ROI also showed a partial correla-
tion (t,7)=3.421, p=0.008, FWE corrected) after controlling for
the semantic distance-based RDM. None of the ROIs showed a
significant correlation between the neural RDM and the task-
irrelevant shape RDM or the semantic distance-based RDM.

Discussion
This study contrasted two different accounts of DMN function.
Semantic DMN sites might decode semantic similarity regardless of
task demands, consistent with their putative role as a store of heter-
omodal concepts. Alternatively, DMN might show sensitivity to
changing task demands, consistent with evidence that this network
contains “echoes” of all other networks and dynamically alters con-
nectivity patterns depending on the context (Braga et al., 2013;
Spreng et al., 2013; Vatansever et al., 2015; Dixon et al., 2017, 2018).
We used a semantic feature-matching task, which required
participants to integrate conceptual knowledge with changing
task goals. Our design disentangled the representation of current
goal from long-term semantic memory. We replicated previous
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findings that regions of DAN and FPCN represent current goals.
We additionally demonstrated that goal information is reflected
within regions of DMN, including AG and PCC. Semantic cate-
gory information that was not relevant to the ongoing task could
be decoded in LOC, but there was no evidence from this study
that DMN regions could decode category in the same way (with
the possible exception of ATL). These results show that goal-
related conceptual information dominates the multivariate
response within DMN.

By examining the generalization of goal decoding across dif-
ferent time periods of the task, we showed that goal decoding
during semantic retrieval does not reflect visual or phonological
processes relating to the goal cue word, since these effects would
have been maximized during cue presentation—at this time
point, we found no decoding of goal beyond visual cortex. Our
results are consistent with a recent study that revealed separate
representational formats between goal cue and object stimulus
periods (Hebart et al., 2018). Future studies could use two differ-
ent formats to indicate the same behavioral goal for semantic re-
trieval and then conduct cross-format generalization to further
assess the abstract representation of goal.

The strong similarity between probe and target decoding
results and successful decoding across these periods suggests that
categorical goal representations are maintained and applied to
semantic retrieval, and this process involves both MD and DMN
regions. Waskom et al. (2014) similarly found that goal informa-
tion could be decoded in inferior frontal sulcus within MD cor-
tex when goals were applied to stimuli; however, our observation
that this pattern extends to DMN is novel. While goal decoding
in heteromodal cortex was constrained to periods involving
semantic retrieval, and not task preparation, in other contexts,
goal representations in DMN may be critical for task prepara-
tion; for example, when participants are maintaining the goal in
working memory (Soon et al, 2008) or retrieving complex
instructions from long-term memory (Crittenden et al., 2015;
Smith et al.,, 2018).

The network showing the strongest categorical goal represen-
tation in the target period was DAN, consistent with evidence
that goal-relevant stimulus features in DAN are amplified during
memory retrieval (Favila et al., 2018; Long and Kuhl, 2018). The
goal representation in both DMN and DAN indicates that these
networks can support the same function rather than being
strictly competitive.

Our goal classification results within regions of DMN cannot
be easily explained by difficulty or spatial adjacency to MD cor-
tex. There was no correlation between decoding accuracy and
RT differences between goal features, and DMN and MD cortex
were both able to decode goal information, even when RT (as a
proxy for difficulty) was regressed out. Moreover, although
DMN is often adjacent to regions of MD cortex, DMN regions
that are relatively distant from MD areas, such as middle tempo-
ral gyrus, were able to decode goal information.

While our classification accuracies were relatively low, similar
levels of performance have been reported when examining goal
representation across MD cortex (Waskom et al., 2014; Erez and
Duncan, 2015; Bhandari et al., 2018). The fMRI decoding accu-
racy of prefrontal cortex often hovers just above chance levels,
even for task features that are known to be robustly represented
by the activity of prefrontal neurons in nonhuman primates
(Woolgar et al., 2011; Stokes et al., 2013; Bhandari et al., 2018).
Whole-brain searchlight analyses typically yield even lower clas-
sification accuracies than ROI approaches (Waskom et al., 2014),
explaining why previous studies applied a MD mask to identify

J. Neurosci., April 21,2021 - 41(16):3679-3691 - 3689

regions for decoding (Waskom et al., 2014; Erez and Duncan,
2015; Cole et al., 2016; Bracci et al., 2017; Qiao et al., 2017). This
bias toward executive cortex has limited our understanding of
the role of DMN in cognitive flexibility.

The association between neural patterns and goal-relevant
features, and the absence of a correlation with both goal-irrele-
vant features and global semantic similarity, suggests that MD
and DMN represent goal-related semantic information but not
global conceptual information. This observation extends previ-
ous findings that task-relevant but not irrelevant dimensions of
stimuli are represented in MD cortex, especially on correct trials
(Bracci et al., 2017; Henderson and Serences, 2019).

We found goal-related semantic information was represented in
DMN and MD regions for color trials but not for shape trials except
in the inferior frontal gyrus. This inconsistency might potentially
relate to differences between these feature types, given that categori-
cal representations of color have been found within the brain,
including in prefrontal cortex (Bird et al., 2014), while we are not
aware of evidence for similar categorical representations of shape,
other than basic shapes such as circle, square, triangle, which do not
correspond to the majority of the items used in our task.

The regions revealed by the RSA of color trials were also
more extensive than those revealed by goal classification analysis,
perhaps because the RSA examined finer-grained neural similar-
ity between individual trials based on the similarity of the goal-
relevant semantic feature (e.g., cherry and lipstick elicit more
similar neural patterns in color-matching trials because both
probes are red). In contrast, the classification analysis examined
the effect of task type on neural similarity (i.e., the categorical dif-
ference between color and shape goals, regardless of whether the
colors of the probe concepts were similar between trials).

Our results allow us to reject accounts of the neural basis of
semantic cognition that anticipate strong functional dissimilar-
ities between DMN and MD cortex in all circumstances. For
example, the observation that deactivation of DMN during
demanding tasks is positively associated with behavioral per-
formance (Anticevic et al., 2012) has motivated proposals that
DMN is not critical for controlled cognition (Shapira-Lichter et
al,, 2013; Axelrod et al., 2017) or not critical for externally ori-
ented tasks (even when these tasks require conceptual process-
ing; Humphreys et al., 2015; Chiou et al., 2020). Our findings are
incompatible with these views. Our results extend previous find-
ings that DMN supports relatively “automatic” semantic retrieval
(Vatansever et al., 2017) by demonstrating that DMN also sup-
ports more demanding tasks, like MD cortex.

Other accounts of DMN have emphasized functional subsys-
tems, identified through patterns of intrinsic connectivity and
functional recruitment (Andrews-Hanna et al., 2010). Chiou et
al. (2020) found that “core” DMN regions (e.g., AG and PCC)
show more task-related deactivation and selective recruitment
for “internal cognition,” compared with lateral temporal DMN
regions implicated in semantic processing. By this view, the task-
negative and controlled memory accounts of DMN can be recon-
ciled by attributing these patterns of functional recruitment to
different DMN subsystems. Our findings are not fully compati-
ble with this account, since our goal-decoding results extended
over both DMN subsystems: both core regions (e.g., PCC) and
lateral temporal DMN regions could classify task goals during
semantic retrieval. Our findings are more consistent with recent
findings that DMN and MD cortex have functional similarities,
despite their well documented activation differences. For exam-
ple, they can have similar representational formats (Gonzéilez-
Garcia et al, 2018) and occupy adjacent positions on the
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principal gradient of connectivity (Margulies et al, 2016;
Mckeown et al., 2020).

An adequate account of the role of DMN in semantic cogni-
tion needs to explain its stronger activation typically seen when
the meanings of inputs are well aligned with recent experience or
long-term memory, as well as the sensitivity of this network to
changing task goals. One possibility is provided by views that en-
visage DMN regions as “integrative hubs” (Braga et al., 2013),
drawing together inputs from highly diverse networks, including
unimodal regions relevant to the varied features of concrete con-
cepts (Margulies et al., 2016; Lanzoni et al., 2020). In this frame-
work, each the feature-matching task requires a specific pattern
of interactive processing between DMN hubs and specific unim-
odal regions relevant for the task. The distinct multivariate
responses that we uncovered within DMN for each task goal
might have corresponded to these different task states.

Although there is no evidence from this study that semantically
relevant DMN regions can decode category information irrelevant
to the task (with the possible exception of ATL), LOC could decode
both category and goal. Consequently, our results support the view
that LOC represents a mixture of task and object information
(Harel et al., 2014; Hebart et al., 2018), as opposed to the view that
visual responses in LOC are largely context and task invariant
(Bracci et al,, 2017; Bugatus et al,, 2017; Xu, 2018a,b).
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