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Dorsal Anterior Cingulate Cortex Encodes the Integrated
Incentive Motivational Value of Cognitive Task Performance

Debbie M. Yee,"? “Jennifer L. Crawford,! ““Bidhan Lamichhane,! and ““Todd S. Braver!
"Psychological and Brain Sciences, Washington University, St. Louis, Missouri 63130, and *Cognitive, Linguistic, and Psychological Sciences, Brown
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Humans can seamlessly combine value signals from diverse motivational incentives, yet it is not well understood how these
signals are “bundled” in the brain to modulate cognitive control. The dorsal ACC (dACC) is theorized to integrate motiva-
tional value dimensions in the service of goal-directed action, although this hypothesis has yet to receive rigorous confirma-
tion. In the present study, we examined the role of human dACC in motivational incentive integration. Healthy young adult
men and women were scanned with fMRI while engaged in an experimental paradigm that quantifies the combined effects of
liquid (e.g., juice, neutral, saltwater) and monetary incentives on cognitive task performance. Monetary incentives modulated
trial-by-trial dACC activation, whereas block-related effects of liquid incentives on dACC activity were observed. When
bundled together, incentive-related dACC modulation predicted fluctuations in both cognitive performance and self-report
motivation ratings. Statistical mediation analyses suggest that dACC encoded the incentives in terms of their integrated sub-
jective motivational value, and that this value signal was most proximally associated with task performance. Finally, we con-
firmed that these incentive integration effects were selectively present in dACC. Together, the results support an account in
which dACC integrates motivational signals to compute the expected value of goal-directed cognitive control.
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How are primary and secondary incentives integrated in the brain to influence goal-directed behavior? Using an innovative
experimental fMRI paradigm that combines motivational incentives that have historically been studied independently
between species (e.g., monetary rewards for humans, food rewards for animals), we examine the relationship between incen-
tive motivational value and cognitive control allocation. We find evidence that the integrated incentive motivational value of
combined incentives is encoded in human dorsal ACC. Further, self-reported motivational shifts mediated the effects of incen-
tive-modulated dorsal ACC activity on task performance, revealing convergence in how self-reported and experimentally
induced motivation are encoded in the human brain. Our findings may inform future translational studies examining affec-
tive/motivational and cognitive impairments in psychopathology (e.g., anxiety, depression, addiction). j

diverse motivational incentives when allocating cognitive resour-

Introduction r ‘ /€]
A remarkable aspect of the interaction between motivation and ~ ¢€s toward pursuit of mentally demanding goals (Botvinick and
Braver, 2015). For example, when working toward a challenging

cognition is the seamless ability that humans have in integrating ) ) ; ' )
project, a worker might be motivated by a potential raise, the

praise received from their supervisor, the tasty snack they prom-
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ised themselves on completion, or most likely, a combination of
all three. Although individuals likely “bundle” values from multi-
ple incentives to influence goal pursuit (FitzGerald et al., 2009),
prior studies of human motivation have primarily examined
monetary rewards (Kouneiher et al, 2009; Padmala and
Pessoa, 2011; Bahlmann et al., 2015). Few studies have
explored how biological incentives (e.g., food/drink) influ-
ence cognitive task performance (Krug and Braver, 2014).
Yet, consideration of primary and “bundled” incentives is
theoretically important for clarifying how incentive motiva-
tional value is encoded in the brain and how it can modulate
goal pursuit. In this human fMRI study, we investigate the
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neural mechanisms underlying effects of integrated motiva-
tional incentives on cognitive control.

Several theoretical frameworks provide relevant predictions
for neural mechanisms underpinning incentive integration. In
neuroeconomics, the “common currency” account suggests that
diverse incentives are represented in a common neural represen-
tation that enables incentives to be compared, combined, and
selected under decision-making contexts (Padoa-Schioppa and
Cai, 2011; Levy and Glimcher, 2012). The explicit encoding of
incentives may reflect a valuation process that enables rank
ordering based on subjective utility. One natural form for this
utility encoding might be subjective motivational value, which is
putatively represented in ventromedial PFC (vimnPFC) and stria-
tum (Chib et al., 2009; Sescousse et al., 2015). The encoding of
incentives as subjective motivational value is relevant for theories
of motivation-cognition interaction, which suggests that cogni-
tive control is tightly coupled with motivational signals (Parro et
al,, 2018; Yee and Braver, 2018). Conversely, the expected value
of control (EVC) theory postulates that dorsal ACC (dACC)
plays a key role in integrating positive and negative outcomes to
modulate cognitive control signals (Shenhav et al., 2013, 2017).
Previous studies have demonstrated that dACC is engaged dur-
ing incentivized cognitive tasks (Parro et al., 2018) and motivated
action selection (Rushworth et al., 2004; Holroyd and Yeung,
2012). Further, dACC is sensitive to reward and punishment
(Fujiwara et al., 2009; Lake et al.,, 2019), and to benefits and costs
associated with cognitive control (Sayali and Badre, 2019;
Westbrook et al., 2019). Nevertheless, to robustly test whether
dACC is an integrative motivation-cognition hub, it is necessary
to demonstrate that dACC integrates the value of diverse incen-
tives with both positive and negative motivational value, and that
dACC signals are associated with fluctuations in self-reported
motivation and cognitive task performance. A rigorous formal
investigation of incentive integration requires an experimental
paradigm that parametrically bundles incentives to measure their
modulation of cognitive task performance.

We recently developed a novel incentive integration paradigm
which has these critical components, enabling a rigorous test of
whether dACC serves as a motivation-cognitive control hub. In
this paradigm, liquid and monetary incentives are “bundled” to-
gether, but independently manipulated in a trial-by-trial and
block-wise manner, enabling estimation of incentive-modulated
effects on both self-reported motivation and cognitive task per-
formance. The incorporation of liquids enables straightforward
examination of motivational valence effects through utilization
of positive/appetitive (juice), neutral (tasteless liquid), and nega-
tive/aversive (saltwater) incentives. Since participants directly
consume the liquids, their subjective ratings of these liquids may
indicate their motivational influence on task performance. Prior
work has demonstrated that both incentives are additively com-
bined to influence self-reported motivation and task perform-
ance (Yee et al,, 2016, 2019). We leverage this paradigm in a
human fMRI study with healthy young participants to test the
compatibility of dACC activity patterns a key claim of the EVC
account: that dACC integrates potential positive and negative
values across diverse incentives to adjust the control signal; that
is, as integrated subjective motivational value increases, so should
dACC activity and the subsequent allocation of control. To pre-
view, our results are consistent with this prediction, suggesting
that dACC modulates motivation-cognition interactions via in-
ternal representation of bundled motivational value signals, and
this representation is what enables motivation-linked modula-
tion of task performance under high cognitive control demands.
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Materials and Methods
Experimental design

Participants. A total of 51 right-handed participants (25 female; 18-
38years, mean * SD, 25.1 * 4.8 years) with normal or corrected-to-nor-
mal vision participated in the experiment. All participants provided writ-
ten consent approved by the Washington University Institutional
Review Board, and received payment for their participation ($25 per
hour), plus additional earnings of up to $15 based on task performance.
Five participants were excluded from analyses because of technical error,
participant inability to complete the task, or participant noncompliance
with task instructions. The final sample consisted of 46 participants (22
females; 18-38years, mean * SD, 25.4 * 4.9 years). All demographic
and self-report data were collected and managed using a secure web-
based application, Research Electronic Data Capture, hosted at
Washington University (Harris et al., 2009).

Incentive integration task. To examine the dissociable and bundled
effects of primary and secondary incentives on cognitive control, we
adapted the consonant-vowel odd-even cued task-switching paradigm
developed by Yee et al. (2016, 2019). On each trial, a letter-number pair
was visually presented (e.g., one letter and one number on the screen),
and participants were tasked with categorizing the target symbol based
on the task instruction briefly presented at the beginning of each trial
(e.g., classify the letter was a vowel or consonant, the number as odd or
even). The task for a given trial was indicated by a cue display, which
was randomized across trials and preceded the number-letter pair, indi-
cating either Attend Letter or Attend Number. Participants maintained
the current task and associated response rules in working memory dur-
ing a subsequent blank cue-target interval. A monetary reward cue was
also presented each trial, placed above and below the task cue, which
indicated whether the trial was associated with a low, medium, or high
reward value (displayed as $, $$, or $$$$, respectively). The values of the
monetary reward cues were randomized across trials. Although reward
cues were always presented with task cues, participants could only earn
monetary reward during incentive blocks (i.e., not during practice and
baseline blocks).

During the incentive blocks, participants could earn monetary
rewards for fast and accurate task performance (see Procedure). One key
aspect of the experimental design was the utilization of monetary reward
cues that varied on a trial-by-trial basis. A second key aspect was that
successful attainment of the monetary reward was indicated by oral lig-
uid delivery to the participant’s mouth as post-trial performance feed-
back. At the end of trials in which participants were accurate and faster
than the criterion response time (RT), they received a 1 ml drop of liquid
directly to their mouths. Participants only received liquid feedback for
successfully earning monetary reward in a given trial, and did not receive
liquid if they were incorrect, too slow, or did not respond. Importantly,
although the type of liquid received was blocked, such that the liquid
feedback could be positive/appetitive (apple juice), neutral (isotonic
tasteless solution), or negative/aversive (saltwater), the symbolic mean-
ing of the liquid was kept constant. Thus, any behavioral differences
observed between liquid types can be attributed to differential subjective
valuation of liquid feedback, and simultaneous consideration of both
monetary rewards and liquid incentives during task performance. Thus,
because receipt of both monetary reward and liquid feedback was per-
formance-contingent, participants integrated the value of both incentives
(i.e., motivational incentive integration) when performing the task.
Thus, the task enables straightforward comparison of the parametric
effects of value on task performance for each motivational incentive
(e.g., low vs medium vs high monetary rewards), as well as for “bundled”
incentives (e.g., juice + high monetary reward vs neutral + high mone-
tary reward) that reflect the effect of integrated motivational value on
cognitive task performance.

The task was programmed with Psychtoolbox 3 (version 3.0.12) in
MATLAB (version 2016b) and displayed on the projector connected to a
laptop computer. Each trial consisted of a fixation cross displayed for
300ms, a cue display with the task instruction and monetary reward
value for 500 ms, a blank display for 4000 ms (cue-target interval), a tar-
get display of the number-letter pair for 2000 ms, a second fixation dis-
play for 1000 ms, and a feedback display for 2000 ms (Fig. 1A). Finally,
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Figure 1.

Incentive integration task paradigm and behavioral results. 4, Incentive integration task paradigm. Participants performed letter-digit cued task-switching and could earn monetary

rewards and liquid incentives for accurate and fast performance (below an individualized criterion threshold). Notably, as the receipt of both monetary reward and liquid feedback was perform-
ance-contingent, participants had to integrate the value of both types of motivational incentives when performing this cognitive task (see also Extended Data Figure 1-1). B, Reward rate by
motivational incentive conditions. Participants performed better with trials with higher monetary reward. In terms of liquid effects, participants performed worse on saltwater compared with
juice or neutral trials. Error bars indicate SEM. For visualization of RT and accuracy by incentive condition, see Extended Data Figure 1-2. For mixed model results, see Extended Data Figure 1-3.
€, Self-report motivation ratings by motivational incentive conditions. Participants reported they were more motivated for higher monetary reward and more appetitive liquid incentives. Error
bars indicate SEM. A hierarchical regression revealed that the inclusion of motivation ratings significantly predicted variance in reward rate beyond the experimental effects. For hierarchical
regression results, see Extended Data Figure 1-4. D, Scatterplot of z-scored averaged reward rate and self-report motivation ratings by participant. Notably, although both measures are sensitive
to the motivational incentive conditions, there was only a weak positive association between self-reported motivation and reward rate. These data suggest that the two measures reflect over-

lapping yet dissociable motivational components of the incentivized cognitive task.

an intertrial interval of randomized duration (3000, 5000, or 7000 ms)
displayed the fixation cross before the start of the next trial. Response
mappings were counterbalanced between participants. A more detailed
schematic of the task trial with all of the timing variables is included in
Extended Data Figure 1-1.

Procedure. Participants were asked to abstain from eating or drinking
anything besides water for 2 h before the start of the session. Upon ar-
rival, participants completed a contact information questionnaire with
demographic information, along with the Behavioral Inhibition &
Avoidance Scales, a self-report survey often used to measure individual
differences in motivation to avoid aversive outcomes and approach goal-
oriented outcomes (Carver and White, 1994).

Next, participants practiced the task for 30 min in a testing room.
They first practiced single tasks (letter categorization or number catego-
rization only; order counterbalanced across participants), followed by
practice of a mixed task block (task-switching between letter and num-
ber task rules). During the three practice blocks (one letter, one number,
one mixed), participants received visual performance feedback to indi-
cate accurate performance after each trial. During the three baseline
blocks (one letter, one number, one mixed), participants no longer
received performance feedback. Additionally, participants practiced
swallowing the liquids while lying down on a bed in the testing room,
and several drops of the neutral solution liquid were delivered via a paci-
fier and plastic tubing from the computer-triggered liquid delivery
setup.

During scanning, a mixed block/event-related task design was used
to optimize characterization of nonlinear and time-sensitive neuronal

responses, and to enable simultaneous extraction of trial-related tran-
sient activity and block-related sustained activity related to task-level
processing (Petersen and Dubis, 2012). Each run consisted of 48 trials di-
vided between three blocks (16 trials per block), alternating with 30 s of
“rest” in which participants were instructed to attend a fixation cross dis-
play (see Fig. 3B). Participants performed one or two baseline runs, in
which they performed the task without earning incentives. Each partici-
pant’s reward criterion (40%) was calculated based on their response
times in the baseline runs. Following the baseline runs, participants com-
pleted six incentive blocks with liquid delivered as performance feedback
for the successful attainment of monetary reward (two juice, two neutral,
two saltwater). Liquid order was counterbalanced. Participants received
1 ml of liquid delivered directly to their mouths (see Liquid setup and
delivery procedure) if they were accurate and faster than their calculated
reward criterion (40% faster than baseline performance). If participants
were incorrect, too slow, or did not respond, they did not earn monetary
reward and did not receive any liquid during that trial.

After completion of the scanning session, participants completed a
post-task questionnaire and reported Likert ratings (1-7) of motivation
of the liquids for each of the nine task conditions (Fig. 1C). Specifically,
participants were asked how motivated they were on each of the nine
motivational incentive conditions (e.g., “How motivated were you on
the Juice $ trials?”). Participants additionally reported Likert ratings of
liking and intensity for each liquid (Extended Data Table 1-1).
Specifically, participants were asked “Please indicate on a scale of 1-7
how much you like or dislike this liquid” and “Please indicate on a scale
of 1-7 how intense you find the taste of this liquid.” All self-report
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questions posed to participants are listed in Table 1. Reward earnings
were calculated and added to their base rate earnings for experimental
participation.

Liquid setup and delivery procedure. Before the scan, the neutral and
saltwater liquid solutions were prepared in a testing room in the
Cognitive Control and Psychopathology (CCP) laboratory. The isotonic
neutral solution consisted of 1 L of distilled water, 0.0495 g of NaHCO;
(sodium bicarbonate), and 0.4668 g of KCl (potassium chloride). The
saltwater solution consisted of 500 ml of distilled water and 8.8 g of non-
iodized salt. The juice used was 100% apple juice (Mott’s) and purchased
from the store.

During both the behavioral practice and scanning session, the liquids
were dispensed using a digital infusion pump (model SP210iw, World
Precision Instruments) triggered by an output signal from the MATLAB
script and delivered via Tygon tubing and a pacifier directly to the par-
ticipant’s mouth. The infusion pump was located in the control room,
and lengthy tubing was used to ensure that the dispensed liquid was
delivered to the participants. The type of liquid delivered was manipu-
lated in a blocked fashion, counterbalanced across participants, such that
on a given block participants would receive positive/appetitive (apple
juice), neutral (isotonic tasteless solution), or negative/aversive (salt-
water) performance feedback.

Statistical analysis

Behavioral data analysis. Behavioral data were analyzed in RStudio
using the R statistical language (RStudioTeam, 2016; RCoreTeam, 2017).
All of the data were visualized using the ggplot2 package (Wickham,
2016). All of the linear mixed-effects models were conducted using the
ImerTest (Kuznetsova et al., 2015) and LME4 (Bates et al., 2015) pack-
ages. We used linear mixed models for our behavioral and ROI-based
analyses to facilitate more straightforward comparisons with analyses
conducted in our prior work with this task (Yee et al., 2016, 2019).
When applicable, 95% ClIs for the effects were calculated using the “con-
fint” function in the Ime4 package. The knitr and Rmarkdown packages
were used to create dynamic reports of the results (Xie, 2021). The be-
havioral data and analysis scripts are available on OSF: https://osf.io/
upka4/.

Bayesian multilevel mediation analysis. We conducted a Bayesian
multilevel mediation analysis to test the within-subjects mediated effects
between dACC, self-reported motivation ratings, and motivated task
performance. We adopted a Bayesian approach for the multilevel media-
tion analysis as it allows for more precise estimates of indirect effects, as
the indirect effects typically do not follow a normal sampling distribu-
tion. Moreover, Bayesian multilevel mediation analyses are more
conceptually straightforward and allow for simulation of sampling distri-
butions to estimate parameters and credible intervals that characterize
the mediated effects between our variable of interest (Yuan and
MacKinnon, 2009). All variables were within-person centered to extract
within-subject deviations across the nine motivational conditions, which
captured fluctuations relative to each participant’s subject means. The
Bayesian multilevel mediation analyses were conducted in R using the
bmlm package in (Vuorre and Bolger, 2017), which depends on the
powerful Stan Bayesian inference engine. We used the default priors
from the bmlm package (ie., default priors for regression coefficients
were normally distributed (Normal(0,1000)) and group-level SDs were
Cauchy distributed (Cauchy(0,50)). The models were implemented with
10,000 samples drawn from the posterior distribution for each of the
four MCMC chains. Half of the samples (5000) were used for sampling
(which is the default). All Rhat values were equal to 1.00, indicating
accurate estimates of the posterior distribution and model convergence.
We report the medians and the 90% credible intervals from our Bayesian
analyses. The median provides a more stable estimate of the parameter
estimates and is maximally robust against outliers. Additionally, we
chose to adopt 90% credible intervals because of suggested convention of
Bayesian posterior distributions, as some have speculated that 95% credi-
ble intervals can lack stability if insufficient posterior samples are drawn
(Kruschke, 2015; McElreath, 2020). It is worth noting that the credible
interval reflects the probability that this interval contains the true

Yee etal.  DACC Motivated Task Performance

Table 1. Self-report questions posed at the end of the study”

Questions

Motivation How motivated were you on Juice $ trials?

How motivated were you on Juice $$ trials?

How motivated were you on Juice $$$$ trials?

How motivated were you on Neutral $ trials?

How motivated were you on Neutral $$ trials?

How motivated were you on Neutral $$$$ trials?

How motivated were you on Saltwater $ trials?

How motivated were you on Saltwater $$ trials?

How motivated were you on Saltwater $$$$ trials?
Liking Please indicate on a scale of 1-7 how much you like or dislike this liquid.
Intensity  Please indicate on a scale of 1-7 how intense you find the taste of this liquid.

“For all the questions, participants completed Likert ratings on a scale from 1 (lowest) to 7 (highest). For
the motivation questions, there were nine questions: one for each of the motivational incentive conditions.
For the liking and intensity questions, there were three questions: one for each liquid type. For each liquid,
participants were asked to rate how much they liked the liquid from 1 (least liked) to 7 (most liked), as
well as how intense they found the taste of each liquid from 1 (least intense) to 7 (most intense). For Likert
ratings of liking and intensity for the liquid incentives, see Extended Data Table 1-1.

parameter estimates given our data, or to be more precise, the uncer-
tainty associated with these mediated effects.

fMRI data acquisition and preprocessing. The MRI data were
acquired on a 3 Tesla Siemens Trio scanner equipped with a 32-channel
head coil. A T1-weighed MPRAGE scan was acquired for each partici-
pant (TR =2400ms, TE =3.16 ms, flip angle =8 degrees, 64 slices, slice
thickness = 1.0 mm, FOV =256 x 256 mm). For each EPI bold run (1 or
2 baseline, 6 incentive), 360 volumes were acquired with 4 mm isotropic
voxels (TR=2000ms, TE=30.0ms, flip angle=77 degrees, 32 slices,
interleaved order, slice thickness =4 mm, FOV =384 x 384 mm, acquisi-
tion matrix 64 x 64 yielding an in-plane resolution of 4 X 4 mm).

Preprocessing for both anatomic and functional data were per-
formed using fMRIPrep version 1.1.7 (Esteban et al., 2019), which is
based on Nipype version 1.1.3 (Gorgolewski et al., 2011). The T1-
weighted (T1w) image was corrected for intensity nonuniformity
using N4BiasFieldCorrection (antsApplyTransforms [ANTSs] 2.2.0)
(Tustison et al., 2010) and used as T1w reference throughout the work-
flow. The T1w reference was then skull-stripped using antsBrainExtraction.
sh (ANTSs 2.2.0), using OASIS as target template. Brain surfaces were recon-
structed using recon-all (FreeSurfer 6.0.1) (Dale et al., 1999), and the brain
mask estimated previously was refined with a custom variation of the
method to reconcile ANTs-derived and FreeSurfer-derived segmentations
of the cortical gray matter of Mindboggle (Klein et al., 2017). Spatial nor-
malization to the ICBM 152 Nonlinear Asymmetrical template version
2009¢ (Fonov et al,, 2011) was performed through nonlinear registration
with antsRegistration (ANTs 2.2.0) (Avants et al, 2008), using brain-
extracted versions of both T1w volume and template. Brain tissue segmen-
tation of CSF, white matter, and gray matter was performed on the brain-
extracted T1w using fast (FSL 5.0.9) (Y. Zhang et al., 2001).

For each of the 8 BOLD EPI runs per participant (across all tasks and
sessions), the following preprocessing steps were performed. First, a refer-
ence volume and its skull-stripped version were generated using the custom
methodology of fMRIPrep. The BOLD reference was then coregistered to
the T1w reference using bbregister (FreeSurfer), which implements bound-
ary-based registration (Greve and Fischl, 2009). Coregistration was config-
ured with 9 df to account for distortions remaining in the BOLD reference.
Head-motion parameters with respect to the BOLD reference (transforma-
tion matrices, and six corresponding rotation and translation parameters)
were estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9)
(Jenkinson et al, 2002). BOLD runs were slice-time corrected using
3dTshift from AFNI (Cox, 1996, 2012; Cox and Hyde, 1997). The BOLD
time-series (including slice-timing correction when applied) were
resampled onto their original, native space by applying a single, compos-
ite transform to correct for head-motion and susceptibility distortions.
These resampled BOLD time-series will be referred to as preprocessed
BOLD in original space, or just preprocessed BOLD. The BOLD time-se-
ries were resampled to MNI152NLin2009cAsym standard space, generat-
ing a preprocessed BOLD run in MNI152NLin2009cAsym space. Several
confounding time-series were calculated based on the preprocessed
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BOLD: framewise displacement, DVARS, and three region-wise global
signals. Framewise displacement and DVARS are calculated for each
functional run, both using their implementations in Nipype (following
the definitions by Power et al., 2014). The head-motion estimates calcu-
lated in the correction step were also placed within the corresponding
confounds file. The BOLD time-series were resampled to surfaces on the
following spaces: fsaverage. All resamplings were performed with a single
interpolation step by composing all the pertinent transformations (ie.,
head-motion transform matrices, susceptibility distortion correction
when available, and coregistrations to anatomic and template spaces).
Gridded (volumetric) resamplings were performed using ANTs, config-
ured with Lanczos interpolation to minimize the smoothing effects of
other kernels (Lanczos, 1964). Nongridded (surface) resamplings were
performed using mri_vol2surf (FreeSurfer).

The preprocessed BOLD runs were smoothed with a 4 mm FWHM
kernel using 3dBlurtoFWHM from AFNI, as well as scaling (voxels were
demeaned) using 3dTstat and 3dcalc from AFNIL Finally, the images
were reoriented to LPI orientation using AFNT’s 3dresample function.

fMRI data analysis. To optimize analyses for the mixed block/event-
related task design (Visscher et al., 2003; Petersen and Dubis, 2012), a
GLM was applied to extract B estimates and ¢ statistics for both the sus-
tained liquid block conditions and the transient event-related motiva-
tional conditions for each participant. Specifically, AFNI's 3dDeconvolve
function was used to set up the GLM and build an input matrix with the
hemodynamic regression model, which contains the duration modulated
block effects (dmblock) for baseline, juice, neutral, and saltwater runs, as
well as a parameter tent function expansion for every 2 s between 0 and
24 s after the onset of the cue stimulus (TENTzero) for each of the nine
motivation conditions (three levels of money, three levels of liquid,
rewarded trials only), and unrewarded trials. The TENTzero function
eliminates the first and last basis functions from the set, forcing the
deconvolved HRF to be zero at the start and end of the response win-
dow. Importantly, this function enables modeling the HRF without
assuming a specific shape for the hemodynamic response (e.g., gamma).
Such an estimation approach is advantageous for the complex multie-
vent (i.e., cue, delay, target, feedback) trials used here.

The GLM was run with 3dREML(it from AFNI, which performs a
generalized least squares time-series regression (also known as “prewhit-
ened” least squares) combined with a restricted maximum likelihood
(REML) estimation of an Autoregressive Moving Average Model
(ARMA(1,1)) temporal correlation structure, which has been argued to
substantially improve reliability in task fMRI studies (Olszowy et al.,
2019). For each participant, we computed whole-brain 3 estimates for
the four block types (baseline, juice, neutral, saltwater), nine tent func-
tions for each of the motivation conditions (3 monetary reward levels x
3 liquid types) (see Eq. 1). A tent function regressor for incorrect trials
and the six motion parameters generated from fMRIPrep realignment
were included in the GLM as nuisance regressors. Additionally, TRs
were censored (current and previous) if the derivative values were esti-
mated (in fMRIPrep) to have a Euclidean norm >0.9 mm as follows:

BOLD = XB_pyeiine T XB B_Juice + XBp New T XBp_san

+ XB EV1_Juice + XIB EV2_Juice + XIB EV4_Juice + XB EV1_Neut
+ XB EV2_Neut + Xﬁ EV4_Neut + XB EV1_Salt + X:B EV2_Salt

+ XBrvisa T & 1

Next, these mixed block/event-related 3 estimates were extracted for
each of the 400 parcels from the Schaefer cortical atlas, divided into
seven functional networks (Schaefer et al., 2018). The Schaefer atlas was
selected because its approach of using a gradient-weighted Markov ran-
dom field to integrate local gradient and global similarity metrics across
resting-state fMRI, and task-based fMRI acquisition protocols yielded
the most homogeneous parcellations and thus correspond with higher
precision to cortical areas compared with prior parcellation schemes
(Yeo et al., 2011; Gordon et al., 2016). Additionally, given our a priori
hypotheses in subcortical regions, B estimates were calculated for 19
subcortical ROIs that were anatomically defined from Freesurfer. 8
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Table 2. Parcels included in bilateral dACC ROl mask
MNI coordinates (RAS)

Parcel ID ParcelnNumber X y z

107 LH_SalVentAttn_Med_1 —6 22 32
108 LH_SalVentAttn_Med_2 —6 0 40
110 LH_SalVentAttn_Med_4 —6 10 48
311 RH_SalVentAttn_Med_1 8 18 26
312 RH_SalVentAttn_Med_2 8 2 2

estimates were averaged for all voxels within each parcel/region using
3dROlIstats from AFNI.

For the dACC ROI analyses, five parcels from the Schaefer
cortical parcellation scheme (400 parcels, 7 networks, 2 mm vox-
els) were identified and averaged, using criteria that were con-
servative and anatomically focused in corresponding to bilateral
dACC based on a prior meta-analysis on motivated cognitive con-
trol (Parro et al., 2018). Specifically, the following parcels were
included in bilateral dACC: 107 (LH_SalVentAttn_Med_1), 108
(LH_SalVentAttn_Med_2), 110 (LH_SalVentAttn_Med_4), 311
(RH_SalVentAttn_Med_1), and 312 (RH_ SalVentAttn_Med_2).
MNI coordinates of these five parcels corresponding to dACC are
listed in Table 2.

Results

Motivational incentive integration effects: reward rate and
self-reported motivation ratings

In the task, participants have the opportunity to earn monetary
and liquid incentives on every trial if their performance is accu-
rate and faster than a criterion RT cutoff (defined individually
for each participant from their performance in a baseline condi-
tion). Consequently, we used the reward rate, defined as the per-
centage of trials in which the participant earned the available
reward, as the primary dependent behavioral measure of moti-
vated cognitive task performance. All participants (n=46) per-
formed above the expected rate of 40%, indicating that they
significantly improved their performance relative to baseline
levels (45 of 46 participants showed statistically significant
improvements in performance according to a binomial test;
successes = 117 trials =288, p=0.05). Additionally, participants
were significantly faster (f45) = 16.298, p < 0.001) and less accu-
rate (ts) = 7.582, p <0.001) during the incentive blocks com-
pared with the baseline block; this shift along the speed-
accuracy curve suggests that participants strategically increased
their effort in when bundled incentives were added to the task,
to optimize reward rates (Fig. 2). Finally, RT switch costs (a
critical measure of cognitive control) were significantly reduced
between baseline and incentive blocks (t(s) = 2.956, p =0.005),
demonstrating overall increased recruitment of cognitive con-
trol during incentive blocks relative to baseline blocks.
Nevertheless, we focused on reward rate as our primary index
of motivated task performance because it is the most proximal
measure indexing the extent to which the expected value of a
given trial (i.e., the integrated value of the incentives) could
modulate the degree of control specified (as opposed to RT
switch costs that typically reflect the preparation of target-
related processes and would be most strongly modulated by
manipulating the task preparation time) (Wylie and Allport,
2000).

We found that different types of motivational incentives are
integrated to modulate cognitive task performance. Specifically,
we estimated a general linear mixed model with contrast-coded
monetary reward (low = —1, medium =0, high=1) and liquid
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Figure 2.

RT, accuracy, and RT switch costs between baseline and incentive blocks. A, Comparison of RT in baseline and incentive task blocks demonstrates that motivational incentives are

associated with a significant reduction in RTs (ms) between baseline and incentive blocks for younger adults (ts) = 16.298, p << 0.001). In other words, younger adults are faster with incen-
tives compared with without incentives. B, Younger adults showed a significant drop in accuracy between baseline and incentive blocks (fss) = 7.582, p << 0.001). Together, these data demon-
strate that the participants are both faster and more accurate with monetary and liquid motivational incentives. This shift down the speed-accuracy curve to increase reward rate demonstrates
that participants increase their effort in accordance with the bundled incentives. All error bars in all plots indicate 95% Cls. C, RT switch costs were significantly reduced between baseline and
incentive blocks, thus revealing that increased recruitment of cognitive control during the incentive blocks relative to the baseline blocks (t4s) = 2.956, p = 0.005). For mixed model results of

RT switch costs by motivational incentives, see Extended Data Figure 2-1.

valence (saltwater = —1, neutral=0, juice=1) as fixed effects
with participant as a random effect [reward rate ~ money X liq-
uid + (1 | subject)]. The model revealed significant effects of
both monetary (b=0.03, t=4.41, p<<0.001) and liquid incen-
tives (b=0.01, t=2.30, p=0.022), but no significant interaction
(b=0.00, t=—0.21, p=0.830). The liquid incentive effects were
motivationally valenced, as expected by our prior work, in that
performance was better when positive (juice) relative to negative
(saltwater) liquids were offered as incentives. Post hoc analyses
further revealed a significant difference between neutral and salt-
water (b=0.03, t=2.12, p=0.034), but no significant effects
between juice and neutral (b=0.00, t=0.08, p=0.936). Thus, the
liquid effects on reward rates were primarily driven by impaired
performance when saltwater was offered as incentive feedback
(Fig. 1B), although, in our prior behavioral studies, we observed
both performance facilitation effects because of juice, as well as
performance impairments because of saltwater (Yee et al., 2016,
2019; Crawford et al., 2020). It is noteworthy that we did not
detect an interaction between monetary rewards and liquid
incentives, suggesting the presence of pure additive effects.
Additional analyses of RT and accuracy (using the same linear
mixed models as before, except now with RT and accuracy as de-
pendent variables) revealed that reward rate improvements were
primarily driven by a faster RT for higher monetary reward (b =
—16.25, t = —4.93, p < 0.001), with no speed-accuracy trade-off
(Extended Data Figs. 1-2, 1-3). However, analyses of switch
costs indicated no further effects of monetary rewards and liq-
uid incentives (all p values > 0.05; Extended Data Fig. 2-1)
beyond the general switch-cost reduction observed in the in-
centive blocks relative to baseline [RT ~ switch x liquid x
money + (1 | subject)]. Switch trials were dummy coded
(switch=1, repeat=0), money and liquid were contrast-coded
same as in previous models. This lack of effect is not particularly
surprising, given that switch costs were overall quite small under
incentive conditions (~20ms), and so likely did not have suffi-
cient dynamic range to exhibit sensitivity to the more subtle para-
metric incentive manipulations. More generally, because of the
long cue-target intervals used in the current design, switch costs
may not be the most sensitive index of cognitive control for this

study, which supports our use of reward rate as the primary indi-
cator of motivated cognitive task performance.

We next examined the relationship between self-report moti-
vation ratings and cognitive task performance. Interestingly,
these ratings predicted unique variance in reward rate beyond
the experimental manipulation itself. Self-reported measures of
motivation were collected for each of the nine trial types (e.g.,
How motivated were you on Juice $trials?) after task completion.
A linear mixed-effects model [motivation ratings ~ money x
liquid + (1 | subject)] revealed that these motivation ratings
were significantly predicted by both monetary (b=0.69, t=9.31,
p<<0.001) and liquid incentives (b=0.75, t=10.04, p < 0.001),
such that participants reported more motivation for higher mon-
etary reward and more appetitive liquid incentives (Fig. 1C). We
conducted a hierarchical regression to examine whether self-
reported motivation predicted unique variance in reward rate
over and above the experimentally manipulated motivational
variables [Model 1: reward rate ~ money X liquid + (1 | sub-
ject); Model 2: reward rate ~ money x liquid + motivation rat-
ings + (1 | subject)]. The hierarchical regression revealed that,
when self-reported motivation ratings were added to the model
with experimental fixed effects (e.g., monetary reward, liquid va-
lence), their inclusion increased predicted reward rate variance
over and above the experimentally manipulated motivational
variables (X2(3) = 20.311, p<0.001) (Extended Data Fig. 1-4).
These results indicate that self-reported fluctuations in motiva-
tion are an important contributor to cognitive task performance
in that they predict unique variance beyond the effects of mone-
tary and liquid incentives.

Critically, the self-report findings suggest two key interpreta-
tions. First, participants could access their subjective motiva-
tional states. Second, although these subjective states were
modulated by monetary and liquid incentives, the induced moti-
vation from the incentives may have been a more proximal influ-
ence on task performance. That is, although both reward rate
and self-report motivation ratings are sensitive to the incentive
manipulations, the weak association between these metrics
(r=0.22, t(4q) = 1.541, p=0.13) (Fig. 1D) suggests that they might
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Figure 3.  dACC encodes both monetary rewards and liquid incentives in bundled 3 estimates. A, Bilateral dACC ROI mask. This ROl encompasses the peak voxels of dACC based on a prior

meta-analysis on motivated cognitive control (Parro et al., 2018). B, Mixed block/event-related design for incentive integration task. Participants performed eight task blocks total, with two
baseline blocks and six incentive blocks. Each participant’s reward criterion (40%) was calculated based on performance in the baseline run and used to determine the RT threshold by which
fast and accurate performance would lead to earned monetary and liquid incentives. Monetary reward value randomly varied on a trial-wise basis. Liquid type was blocked and counterbal-
anced, and delivered as performance feedback for successful attainment of monetary reward (colored arrows). Participants did not receive money nor liquid for slow, incorrect, or abstained
responses. A GLM was applied to extract the 3 estimates for the sustained liquid block conditions and transient event-related motivation conditions for each participant (Petersen and Dubis,
2012). €, Trial-wise 3 estimates are illustrated for each of the nine motivational incentive conditions. Darker colors represent higher monetary reward level. Gray rectangles represent cue-
related activity, demonstrating a significant monetary reward effect 4-6 s after cue onset. D, Bundled 3 estimates in dACC are calculated by combining the 3 estimates for sustained liquid
effects and cue-related monetary reward effects from the event-related hemodynamic response. We assume an additive relationship between the monetary and liquid effects in terms of BOLD
signal representation of integrated incentive value. Reward rate was significantly predicted by dACC bundled [3, revealing that dACC represented the aggregate motivational value of primary
and secondary incentives and is associated with parametric modulation of motivated cognitive task performance. For mixed model results of dACC 3 estimates by motivational incentives, see

Extended Data Figure 3-1.

reflect overlapping yet dissociable motivational components of
the incentivized cognitive task.

dACC encodes both monetary and liquid incentives in
bundled p estimates

We next focused on fMRI data to test whether dACC activity
was predicted by monetary and liquid incentives. The dACC
ROI encompasses the peak voxels of dACC based on a prior
meta-analysis on motivated cognitive control (Fig. 3A), indicat-
ing that this ROI is consistently recruited during cognitive con-
trol tasks during which a reward incentive can be earned based
on task performance (Parro et al., 2018). For each participant, a
GLM was applied to extract B estimates for sustained activation
for each liquid block condition and event-related activation to
the monetary incentive cues for each trial type (estimating activ-
ity 4-6 s after cue onset), using a deconvolution approach to esti-
mate the time course of activation. Specifically, we averaged the
two estimates after the cue onset (f=4 s and t=6 s) to compute
an averaged B value of the event-related activation associated
with each of the monetary incentive cues (Fig. 3C), accommodat-
ing the hemodynamic delay in peak amplitude (Buckner, 1998;
Taylor et al., 2018).

As predicted, the results of this analysis revealed that dACC is
sensitive to liquid valence via sustained responses and monetary
reward via cue-related transient activation during each trial,
which is consistent with the incentive delivery structure of the
task paradigm and the duration of hemodynamic response lag.
To first validate that dACC was independently sensitive to each
incentive type, we conducted two linear mixed models with con-
trast-coded monetary reward and liquid valence predicting the
block and event-related cue S estimates, respectively [Bpjock ~
money X liquid + (1 | subject); B cyent ~ money X liquid + (1 |
subject)]. The models revealed that the block 8 estimates were
predicted by liquid incentives (b=0.02, t=4.58, p < 0.001) but
not monetary reward (b=0, t=0, p=1.000), whereas the cue 8
estimates were predicted by monetary reward (b=0.04, t=5.55,
p<<0.001), but not liquid valence (b=0, t=-0.31, p=0.759).
Next, we “bundled” the 3 estimates corresponding to the liquid
incentive effects (blocked) and monetary reward effects (event-
related, 4-6 s after cue onset), which enabled us to calculate nine
dACC bundled S estimates for each participant corresponding
to the nine motivational conditions from the incentive integra-
tion task (e.g., $$-Juice, $$$$-Neutral; Fig. 3D). A critical
assumption made was that summing the block and event-related
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B estimate values would reflect the additive effects of both liquid
and monetary incentives in the BOLD signal (i.e., the integrated
value). This seems a plausible assumption since the liquid effects
were sustained throughout the task block, and thus by definition,
available on every trial (i.e., to be added to the cue-triggered
event-related activity). Importantly, the mixed model revealed
that higher values of dACC bundled S estimates were associated
with higher monetary reward (b=0.04, t=4.66, p <0.001) and
more appetitive liquid incentives (b=0.02, t=2.98, p=0.003),
confirming that neural signals associated with primary and sec-
ondary incentives can be combined additively to represent the
aggregate motivational value from both incentive types.
Paralleling the behavioral results, there was no significant inter-
action between these two factors (b=0, t=0.26, p=0.794), sug-
gesting simple additive effects. All model results are shown in
Extended Data Fig. 3-1.

Reward rate predicted by dACC bundled betas (f5)

Given the hypothesized role of dACC as a region that integrates
various sources of motivational value into a modulatory signal
that adaptively allocates cognitive control (Shenhav et al., 2013,
2017), we aimed to test whether experimentally manipulated
within-subjects variability in dACC was significantly associated
with similar within-subject variability in reward rate, our metric
of motivated cognitive task performance. Such an association
would provide compelling evidence demonstrating that dACC
computes the aggregate value of both motivational incentives
and predicts motivated task performance. We conducted a linear
mixed-effects model with reward rate predicted by dACC
bundled B estimates and “incentive conditions” (contrast-
coded as the sum of liquid and monetary reward contrast
codes). Our analyses revealed that reward rate was significantly
predicted by both incentive conditions (as expected from prior
analyses) (b=0.02, t=2.91, p<0.001), but also the dACC
bundled B8 (b=0.09, t=2.41, p=0.016). A critical and impor-
tant observation is that the inclusion of dACC bundled B
explained significant additional variation in reward rate beyond
the experimentally manipulated incentive effects, suggesting a
role of dACC in encoding subjective motivational value.
Moreover, these data are consistent with the EVC account of
dACC as a hub for integrating value and cost information to
derive an optimal control signal that balances task demands
against potential rewards.

Self-report motivation ratings predicted by dACC bundled
betas (f)

A secondary aim was to understand the putative relationship
between the extent to which motivated cognitive task perform-
ance (i.e., reward rate) and self-reported motivation measures
may be encoded in dACC activation. As self-report measures of
motivation have been historically viewed as the “gold standard”
for assessing human motivational states (Hermans, 1970), we
investigated the extent to which human dACC neural signals
may encode self-reported motivation to exert cognitive control
to maximize earnings of the bundled incentives. Here, we con-
ducted a similar mixed model as above, except now with self-
report motivation ratings (rather than reward rate) as the de-
pendent measure. Our analyses revealed that self-reported moti-
vation ratings were predicted by both incentive condition
(b=0.67, t=9.78, p<<0.001) and dACC bundled B (b=1.64,
t=3.96, p<<0.001). These results are particularly intriguing
because this association reveals that dACC neural signals also
reflect a subjective (and accurate) measure of the valuation of the
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bundled motivational incentives in the current task context.
Moreover, such ratings may tap into a complementary motiva-
tion-related construct distinct from motivation associated with
the exerted effort on a cognitively demanding task.

dACC effects on reward rate mediated by self-report
motivation ratings

Given the observed strong associations between dACC and
reward rate, as well as between dACC and self-reported motiva-
tion ratings, we next examined the putative relationship between
within-subjects variability across different incentive conditions
in dACC, reward rate, and motivation ratings. In particular,
given the utility of self-report ratings as a powerful metric for
measuring subjective motivational states, we hypothesized that
such ratings might partially explain the proximal motivational
impact of the incentives on the associative modulatory relation-
ship between dACC activity and reward rate. Such a within-sub-
jects mediation would be compelling, as it would reveal the
extent to which dACC may encode these two behavioral metrics
as similar or distinct indices of an individual’s current motiva-
tional state.

First, we conducted three linear mixed models and confirmed
that experimentally manipulated incentives demonstrated quan-
tifiable effects on within-subjects variability in dACC, reward
rate, and self-report ratings. As indicated previously, incentive
conditions significantly predicted dACC bundled 8 (b=0.03,
t=4.04, p<<0.001), reward rate (b=0.02, t=3.36, p<0.001),
and motivation ratings (b=0.72, t=10.35, p < 0.001) (Fig. 44,
red dashed lines). Thus, these data demonstrate that the incen-
tive manipulations influence all three variables, while also sug-
gesting that these motivational variables may be mediated or
moderated by each other.

Next, we conducted a Bayesian multilevel mediation analysis
and observed that incentive-modulated effects on the relation-
ship between dACC and reward rate were mediated by such vari-
ability in motivation ratings, as prior linear mixed models
confirmed incentive effects across all three variables. The within-
subjects mediation analysis used averaged values across each of
the nine possible motivational incentive conditions for each par-
ticipant. This enabled us to compare within-subjects variability
across incentive conditions between these variables (dACC,
reward rate, motivation ratings). Notably, this approach elimi-
nated the need for including contrast-coded incentive effects in
linear mixed models that were used to validate assumptions
about associations between these variables before conducting the
mediation analysis. Linear mixed models (without contrast-
coded incentive effects) confirmed that dACC activity signifi-
cantly predicted both reward rate (b=0.14, t=3.77, p <0.001)
and motivation ratings (b=2.77, =5.98, p <0.001). Moreover,
in a linear mixed model of reward rate with motivation ratings as
the mediator, controlling for the predictor revealed that motiva-
tion ratings significantly predicted reward rate (b=0.02, =5.53,
p < 0.001), and more importantly, the inclusion of these ratings
weakened the effect of dACC, although it still remained statisti-
cally significant (b=0.08, t=2.15, p=0.032).

These variables were submitted to a Bayesian multilevel medi-
ation (using the bmlm package in R) to estimate the medians
and 90% credible intervals for the posterior distributions for
each path parameter (Fig. 3, blue lines). The mediation analysis
revealed that motivation ratings partially mediated the relation-
ship between dACC and reward rate [mediated effect = 0.05, Cly,
= (0.01, 0.10); proportion mediated effect=0.42, Cly, = (0.06,
1.10)], significantly reducing the direct effect [c=0.13, Clyg =
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individuals correlated with reward rate
and motivation ratings, it would suggest
that dACC also reflects more stable levels
of task engagement (between-subjects var-
iability), beyond integrating task-related
changes in incentive values toward moti-
vated task performance (within-subjects
variability). We averaged and normalized
subject-level values for dACC activation,
reward rate, and motivation ratings (ie.,
rather than across the nine incentive con-
ditions). Our results revealed a moderate
association between dACC and reward
rate (r=0.28, tq) = 1.902, p=0.064), as
well as between dACC and motivation rat-
ings (r=0.33, ) = 2.32, p=0.025) (Fig.
4B). Individuals with higher average
dACC activity showed a trend toward
reporting overall higher motivation ratings
(and to a lesser extent, achieved higher
reward rates).

These between-subjects dACC effects
were not as reliable as the within-sub-
jects dACC effects previously demon-
strated. In particular, when both subject-
level dACC activity and motivation rat-
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Figure 4.

tion ratings.

(0.04, 0.21); ¢’ = 0.07, Clgyy = (-0.01, 0.15)]. We also conducted
an alternative model, which revealed a weaker partially mediated
effect of reward rate on the relationship between dACC and
motivation ratings [mediated effect=0.44, Cly, = (0.06, 0.90);
proportion mediated effect=0.13, Clyy = (0.02, 0.31)], which,
critically, did not significantly reduce the direct effect [c=3.30,
Clgo = (1.73, 4.85); ¢’ = 2.84, Clyy = (1.32, 4.34)]. Thus, although
dACC is significantly associated with incentive motivational task
performance, this relationship is partially mediated by the var-
iance explained by the self-report motivation ratings. Notably,
these mediation models reveal that the subjective motivational
incentive value is the more proximal factor that modulates task
performance, rather than the incentive-driven performance
modulation driving the motivation ratings. As such, these results
provide compelling evidence that dACC encodes the integrated
incentives primarily in terms of their subjective motivational
value, which in turn modulates task performance. Parameter
estimates are listed in Extended Data Figures 4-1 and 4-2.

In addition to examining within-subjects variability, we also
tested whether between-subjects” differences in dACC activation
were associated with reward rate and motivation ratings. That is,
if baseline differences in overall dACC activation across

Dorsal ACC Beta Estimates

dACC effects on reward rate mediated by self-report motivation ratings. A, Within-subjects mediation analysis
of dACC. Three linear mixed-effects models were conducted to confirm the effects of incentive conditions in dACC, reward
rate, and motivation ratings (see red dashed lines). The models revealed that incentive conditions significantly predicted
dACC bundled 3, reward rate, and motivation ratings. Next, a Bayesian multilevel within-subjects mediation analysis was
conducted to test for a relationship between these three variables. The mediation analyses revealed that the relationship
between within-subjects variability in dACC and reward rate was mediated by within-subjects variability in motivation ratings
(see blue lines). Inclusion of motivation ratings partially mediated the association between dACC and reward rate proportion
mediated effect =0.42, Cloy = (0.06, 1.10); 90% credible intervals are used as the range of the posterior distribution for
each of the path parameters. ***p << 0.001. For parameter estimates, see Extended Data Figures 4-1 and 4-2. B, Between-
subjects correlations of dACC. Left, Scatterplot of z-scored averaged dACC 3 estimates and reward rate by subject revealed
an association between dACC and reward rate (though beneath threshold for statistical significance). Right, Scatterplot of z-
scored averaged dACC B estimates and self-report motivation ratings also revealed association between dACC and motiva-

ings were included in a model predicting
subject-level individual differences in av-
erage reward rate, neither variable was
statistically reliable (dACC: b=0.23, t=
1.47, p=0.149; motivation ratings: b=0.15,
t=0.99, p=0.328). Thus, our data suggest
that the dACC accurately encodes context-
specific motivational states that are primar-
ily modulated in a dynamic fashion (i.e., by
incentive cues) rather than by more stable
or global trait-like differences in motiva-
tion. Notably, although the utilization of
an a priori ROI as well as hypothesized
motivational processes reduced poten-
tial false-positive concerns regarding
the between-subjects effects, these re-
sults should still be interpreted with caution. The modest
sample size of the current study (N =46) suggests that it is
potentially underpowered to detect individual differences
effects in dACC, or alternatively, could produce a biased infla-
tion of the estimated effects (Dubois and Adolphs, 2016;
Cremers et al., 2017). Validation of the individual differences’
relationships between dACC and motivated processes would
require collecting a sufficiently powered sample (Barch et al.,
2013; Turner et al., 2018) and/or conducting a priori power
analyses with given effect sizes to determine the estimated reli-
ability of the findings expected in a novel sample (Mumford,
2012).

dACC selectively encodes subjective motivational value and
modulates motivated task performance

Finally, we complemented our analyses of dACC activity pat-
terns by examining other relevant brain ROIs. In particular, a
number of well-established brain regions have been implicated
in value-based decision-making (e.g., striatum, vmPFC) and
other reward-related processes, such as taste processing (e.g.,
anterior insula). Consequently, we tested whether the subjective
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Figure 5.

dACC selectively encodes subjective motivational value and modulates motivated task performance. A, To test for whether motivational incentive integration effects

were present in other brain regions, bundled 3 estimates were calculated for a priori ROIs associated with value-based decision-making (striatum, vmPF(C) and taste processing
(anterior insula). Mixed models were implemented with selected ROIs and plotted to compare with dACC effects on reward rate and motivation ratings. Error bars indicate 95%
(ls. Right, Only dACC significantly predicted reward rate. Left, Motivation ratings were also significantly predicted anterior insula, caudate, and putamen, in addition to dACC,
suggesting that self-reported motivation of incentives is encoded across multiple valuation brain regions. These data reveal the specificity of the relationship between dACC and
reward rate, demonstrating that dACC encodes the translation of motivational value and is transformed into effortful actions on a cognitively demanding task. *p << 0.05.

**p < 0.01. ***p < 0.001. B, Visualization of valuation brain ROls.

motivational value signal associated with task performance was
also encoded in these other value-related brain regions. We
conducted the same linear mixed models with reward rate and
motivation ratings predicted by the motivational incentive
conditions and bundled B, except now using bundled 8 from
other ROIs associated with value-based decision-making
(Bartra et al., 2013; Sescousse et al., 2013, 2015) as well as taste
processing (Small, 2010). Of these selected ROIs, it is noteworthy
that only dACC significantly predicted reward rate. In contrast,
motivation ratings were additionally significantly predicted by
caudate (b=0.74, t=2.29, p=0.022), putamen (b=1.29, t=3.22,
p=0.001), and anterior insula (b = 1.36, t=2.87, p=0.003) (Fig. 5).
These data reveal that, although several regions appear to predict
motivation ratings (suggesting that multiple brains regions may
track the subjective motivation of the incentives), the specificity of
the association between dACC and reward rate robustly supports
the EVC theory, that is, that dACC may play a significant and
selective role in modulating how motivational values are translated
in effortful action during the performance of a cognitively
demanding task.

Discussion

We found novel evidence that dACC represents the integrated
subjective motivational value of bundled primary and secondary
incentives and, moreover, that this bundled neural signal is asso-
ciated with changes in motivated cognitive task performance.
We leveraged key features of our incentive integration paradigm,
which enables estimation of the combined effect of both mone-
tary and liquid incentives on brain activity and task performance
while also allowing for examination of motivational valence
effects through the use of both appetitive and aversive liquid
feedback. Our findings support predictions of the EVC frame-
work (Shenhav et al., 2017), which postulates that dACC integra-
tes the motivational value of potential outcomes (e.g., the
appetitive value of earning monetary reward subtracting the

aversive value of the saltwater) to determine the optimal alloca-
tion of cognitive control. We find clear evidence that dACC acts
as an integrative motivation-cognition hub, thus facilitating the
pursuit of cognitively effortful goals (Holroyd and Yeung, 2012).
Although prior work has demonstrated the role of dACC in
using reward information to optimally allocate effort in rodents
(Hosking et al., 2014; Holroyd and McClure, 2015), ours is the
first study to demonstrate the role of human dACC in encoding
subjective motivational value across integrated incentives to
modulate behavioral performance in a task with high cognitive
demands. In particular, consistent with EVC predictions, we
found that reward rate tracked the subjective motivational value
of cognitive control over task performance (i.e., in terms of both
the integrated incentives available and self-reported motivation),
and that this relationship was mediated by fluctuations in dACC
activity.

A notable observation was the discovery that activity in the
dACC was associated with not only task performance, but also
with self-reported motivation, which is intriguing since these
motivation ratings explained unique variance in reward rate
beyond the incentive manipulations. Additionally, these motiva-
tion ratings partially mediated the relationship between dACC
and reward rate, providing suggestive evidence that such ratings
may reflect the more proximal impact of the incentive conditions
encoded in dACC activity. Moreover, the self-reported motiva-
tional effects of the incentive manipulations may be somewhat dis-
tinct, although functionally related to the motivational effects
inferred from behavioral enhancements observed during incentiv-
ized task performance (Bonner and Sprinkle, 2002). Alternatively,
these motivation ratings may simply reflect a more accurate sub-
ject-specific indication of incentive salience based on the ordinal
levels from the manipulation.

It is important to acknowledge a limitation regarding the
inclusion of self-report motivation ratings. Although the use of
these ratings was prompted by our group’s prior work
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demonstrating that they predict unique variance beyond experi-
mentally manipulated incentive effects (Yee et al., 2016, 2019),
they do not capture the dynamic variability likely present in sub-
jective motivation, as it gets modulated by performance, feed-
back, or physiological states (e.g., satiety). Although some have
examined the dynamic variability in self-reported mood and
behavior over the span of days/weeks (Moskowitz and Young,
2006; Rutledge et al.,, 2014), how subjective motivation varies
dynamically throughout the course of a behavioral task context
remains to be explored. Future work should aim to investigate
the extent to which both measures (i.e., motivated task perform-
ance, self-report) reflect convergent versus divergent neural sig-
nals underpinning motivation, and explore the temporal
dynamics of motivation within a task. It is important to note that
including both measures simultaneously incurs its own set of limi-
tations, and would require consideration of how self-report probes
potentially alter the demand characteristics of motivated task per-
formance (Velten, 1968; Polivy and Doyle, 1980). Nevertheless,
such investigations have the potential to reconcile the frequently
observed discrepancies between how both measures (self-report,
behavioral performance) reflect motivated cognition (Dang et al.,
2020). As such, this work could advance current understanding of
how distinct sources of motivational information are represented
in the brain.

Interestingly, we found evidence of an incentive integration
neural mechanism present in the dACC, but not in other brain
regions classically associated with representing the neural com-
mon currency of subjective value (Peters and Buchel, 2010; Levy
and Glimcher, 2012). It is possible that these other regions may
also be involved in integrating incentive value, but that the effects
were not detected in the ROI-based analysis used here, and could
require methods with greater granularity to detect putative heter-
ogeneous processes within these ROIs. Nevertheless, our results
are consistent with prior work showing a distinction between the
subjective value signals associated with explicit economic choices
(i.e., choosing one good over another) versus when such values
are relevant for behavioral actions (Camille et al., 2011; Cai and
Padoa-Schioppa, 2012; Kolling et al., 2016). The former process
(value-based decision-making) involves explicit valuation and
comparison of incentives, whereas the latter process (motivated
cognitive control) involves implicit processing and utilization of
incentive value for adaptive mobilization of cognitive control.
Although a key feature of this study is the utilization of both
monetary and liquid incentives, our task significantly deviates
from prior studies evaluating the expectation of primary and sec-
ondary incentives (Chib et al., 2009; Kim et al., 2011; S. Q. Park
etal, 2012; Z. Zhang et al., 2017).

Most prior evidence supporting the neural common currency
account arises from human and animal studies, which include an
explicit valuation phrase or when an economic choice is required
between available goods (Padoa-Schioppa and Conen, 2017;
Fromer et al., 2019). Because our task paradigm is optimized for
motivated cognitive control, it is unsurprising that only dACC
appeared to encode the incentive condition effects on reward
rate. These results are consistent with prior work demonstrating
that cost-benefit valuation in physical effort tasks elicits activa-
tion in dACC, but not vmPFC (Croxson et al., 2009; Klein-
Flugge et al.,, 2016). Furthermore, this distinction is supported by
our observation that motivation ratings were associated with
bundled S in dorsal striatum (e.g., caudate, putamen), a region
well known to be associated with motivated action selection
(Balleine et al., 2007; Balleine and O’Doherty, 2010; Miller et al.,
2014). Future work could bridge this gap via including an
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additional valuation phase for bundled incentives (e.g., $$$
$reward + saltwater) or a choice component, in which pref-
erences can be expressed (e.g., $$$$reward + saltwater vs $
$reward + juice). Such a paradigm might more clearly reveal
regions involved in value-based decision-making (e.g.,
vmPFC, ventral striatum) and/or motivated cognitive con-
trol (e.g., dACC, dorsal striatum).

A broader question relates to developing a mechanistic
understanding of how dACC integrates incentives during moti-
vated cognitive control. The dACC contains a heterogeneous
population of neurons and underpins a diverse array of cog-
nitive, motor, and affective functions (Bush et al., 2002;
Heilbronner and Hayden, 2016; Vega et al., 2016). However,
in light of our key findings supporting the role of dACC as a
hub for motivation-cognition interactions by integrating the
combined appetitive and aversive values of diverse incentives
(Parro et al., 2018), the precise calculations by which differ-
ent neurons, voxels, or subregions within the dACC perform
incentive value integration remain to be elucidated. One pos-
sibility is that distinct neural patterns or voxel clusters within
dACC may distinctly encode positive outcomes (e.g., mone-
tary rewards, juice) and negative outcomes (e.g., punish-
ments, saltwater). Such patterns seem plausible, given recent
work demonstrating that dACC neurons respond to rewards
and punishments in nonhuman primates (Monosov, 2017;
Monosov et al., 2020) and rodents (Schneider et al., 2020).
Alternatively, dACC voxels may be multiplexed to encode
both positive and negative outcomes, or even context-spe-
cific incentives and actions (Hayden and Platt, 2010). An im-
portant future direction would be investigation with higher
spatial resolution of when and how dACC integrates diverse
incentives to represent the subjective motivational value in
cognitive control contexts.

Finally, developing greater insight into how incentive motiva-
tion is integrated and represented provides a crucial foundation
from which to elucidate the neural mechanisms underpinning
how subjective value signals modulate cognitive task representa-
tions in PFC. Whereas prior work has shown that lateral PFC
signals are enhanced when higher monetary rewards are present
(Kouneiher et al., 2009; Dixon and Christoff, 2012; Bahlmann et
al,, 2015; Duverne and Koechlin, 2017), how such cognitive task
PFC representations interface with the subjective motivational value
computation in dACC remains an open question. Multivariate anal-
yses (e.g., decoding or representational similarity analysis) could be
exploited to probe how value signals are integrated (in dACC) to
modulate neural representations of cognitive task rules (in lateral
PFC) and ultimately translated to measurable changes in behavior
(Wisniewski et al., 2015; Etzel et al, 2016). Such findings could
inform systems-level neural representations of how diverse motiva-
tional incentives combine into subjective motivational value to sup-
port cognitive task goals.

Broadly, given the diversity of incentives that people regularly
encounter (e.g., social rewards), an open question relates to
understanding how people evaluate and integrate multiple
diverse incentives in the real world (Lehner et al., 2017). Our
innovative approach provides an initial step toward more careful
study of real-world effort allocation, through which incentives
can vary along both categories (e.g., monetary, liquid, social) and
dimensions (e.g., appetitive, aversive), and are seamlessly inte-
grated (e.g., consideration of both monetary rewards and social
praise) (H. R. Park et al, 2018; Crawford et al, 2020).
Importantly, such insight into the neural mechanisms underpin-
ning how motivational incentives are integrated to modulate
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effortful tasks can provide a mechanistic framework to advance
understanding of how motivational or cognitive deficits arise in
clinical disorders, such as anxiety, depression (Clery-Melin et al.,
2011; Huang et al., 2015; Grahek et al., 2019), or addiction (Koob
and Moal, 2008; Volkow et al., 2017).
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