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Abstract

Summary: Large-scale transcriptome studies with multiple samples per individual are widely used to study disease
biology. Yet, current methods for differential expression are inadequate for cross-individual testing for these
repeated measures designs. Most problematic, we observe across multiple datasets that current methods can give
reproducible false-positive findings that are driven by genetic regulation of gene expression, yet are unrelated to the
trait of interest. Here, we introduce a statistical software package, dream, that increases power, controls the false
positive rate, enables multiple types of hypothesis tests, and integrates with standard workflows. In 12 analyses in 6
independent datasets, dream yields biological insight not found with existing software while addressing the issue of
reproducible false-positive findings.

Availability and implementation: Dream is available within the variancePartition Bioconductor package at http://bio

conductor.org/packages/variancePartition.
Contact: gabriel.hoffman@mssm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcriptome profiling and comparison of gene expression levels
are a widely used genomic technique in biomedical research. In a
typical study, a researcher collects gene expression by RNA-seq or
microarray from multiple samples and performs differential expres-
sion analysis between subsets of samples that differ in cell/tissue
type, environmental conditions, stimuli, genotype or disease state. A
range of statistical methods have been developed for this purpose
and give state-of-the-art performance on this typical study design
(Chowdhury et al., 2018; Costa-Silva et al., 2017; Law et al., 2014;
Love et al., 2014; Pimentel et al., 2017; Ritchie et al., 2015;
Robinson et al., 2010; Tarazona et al., 2015; Yu et al., 2017, 2019).

Recent advances in the scale of transcriptomic and, more gener-
ally, functional genomic studies have enabled assaying individuals
from multiple tissues (Aguet et al., 2017; Franzén et al., 2016), brain
regions (Wang et al., 2018; Zhang et al., 2013), cell types (Van Der
Wijst et al., 2018), time points (Alasoo et al., 2018; Breen et al.,
2015) or induced pluripotent stem cell (iPSC) lines (Carcamo-Orive
et al., 2017; Hoffman et al., 2017; Mariani et al., 2015; Pasca et al.,
2011; Schwartzentruber et al., 2018; Warren et al., 2017). These
studies with multiple samples from each individual can test region-
or context-specific effects, but can also increase the statistical power
to detect effects that are shared by multiple replicates (Hoffman

et al., 2017, 2019; Pinheiro and Bates, 2000). Collecting replicates
also enables samples from the same individual to be processed in
multiple technical batches to decouple biological from technical
variation in gene expression (Blainey et al., 2014). Finally, collecting
replicates can also be beneficial when gene expression measurements
are noisy, when expression is dynamic or stochastic, or when adding
additional individuals is not feasible (Blainey et al., 2014; Hoffman
etal., 2017).

In a standard case/control study of gene expression with only
one sample per individual, typical analysis tests the expression dif-
ferences between case and control individuals. However, in repeated
measures designs with two or more samples per individual, analysis
can perform three types of statistical tests: (i) within-individual, (ii)
a combination of within- and cross-individual and (iii) cross-
individual. Within-individual analysis uses an individual-specific
baseline to, for example, examine time-course data to identify a dif-
ferential expression signature of stimulus response, or identify
individual-specific expression differences between two cell types
each measured in the same set of individuals. In this case, the ana-
lysis focuses on the differences between the samples from the same
individual, and the repeated measures from the same individual cap-
ture distinct biology. The simplest form of within-individual analysis
is a paired t-test. The combined within- and cross-individual ana-
lysis, evaluates within-individual differences between, for example,
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two time points and then compares the results between cases and
controls. Standard RNA-seq software (Law ef al., 2014; Love et al.,
2014; Pimentel et al., 2017; Ritchie et al., 2015; Robinson et al.,
2010; Tarazona et al., 2015) that model these data with fixed effects
terms perform well. Alternatively, software using linear mixed mod-
els specifically designed for longitudinal analysis of transcriptomic
data can be applied (Straube ez al., 2015).

We focus here on cross-individual analysis that considers the
shared biology of the multiple samples from the same individual.
For example, multiple iPSC lines can be generated from the same in-
dividual as biological replicates, or multiple brain regions can be
assayed from each individual in a case/control study. The repeated
measures design can be leveraged to account for biological and tech-
nical variability, and model the shared biology of these replicates to
increase the statistical power to identify differentially expressed
genes. In this case, the multiple replicates from the same individual
are considered to be statistically exchangeable after accounting for
variation due to covariates such as tissue type, region or technical
factors. Since all replicates from the same individual have the same
phenotype of interest (i.e. disease status), modeling individual as a
fixed effect is not possible because the individual effect is perfectly
confounded with the phenotype of interest. Statistically, a fixed ef-
fect regression model cannot be fit when the design matrix is not in-
vertible and so parameter estimation and hypothesis testing cannot
be performed (Rencher and Schaalje, 2008). Therefore, individual
must either be modeled as a random effect (Pinheiro and Bates,
2000), or the multiple samples from each individual must be col-
lapsed into an individual-level summary.

While summing reads from the multiple samples from the same
individual is a simple way to analyze repeated measures data, it has
a number of issues. At a basic level, it applies equal weight to each
individual even though some may have five samples while others
have only two. More problematic is the fact that summing reads
ignores any biological or technical differences between the multiple
samples from the same individual. Some samples may have been
processed in a different technical batch, or come from a different tis-
sue or region. Many methods can account for these differences in
the full dataset (Johnson et al., 2007; Leek and Storey, 2007; Stegle
et al., 2010), but summing the reads loses this information about
within-individual variation.

Moreover, analysts are often interested in tests that allow for
heterogeneity of effect sizes within subsets of samples and then per-
form a joint test of multiple coefficients. For example, in a case/con-
trol study of three brain regions, it may be of interest to allow the
case/control effect to vary between brain regions and then perform a
joint test of case/control effects with three degrees of freedom with
an F-test. Obviously, collapsing read counts at the individual level is
not compatible with this type of analysis.

Despite the potential of leveraging cross-individual analysis in
repeated measures designs, standard differential expression methods
do not adequately model the complexity of these repeated measures
study designs (Law et al., 2014; Love et al., 2014; Pimentel et al.,
2017; Ritchie et al., 2015; Robinson et al., 2010; Tarazona et al.,
2015). Recent work has emphasized that applying current methods
to cross-individual analysis of repeated measures datasets can result
in loss of power or, more problematically, a large number of false-
positive findings (Germain and Testa, 2017; Jostins et al., 2012).
The advantages of repeated measures designs cannot be realized
without the proper statistical methods and software.

Statistically, repeated measures data are problematic for existing
software because samples from the same individual are correlated,
while existing methods assume statistical independence between
samples after correcting for covariates. Following our previous
work on repeated measures data in genomics (Carcamo-Orive et al.,
2017; Girdhar et al., 2018; Hoffman and Schadt, 2016; Hoffman
et al., 2017), this correlation between samples from the same indi-
vidual can be quantified in terms of the fraction of expression vari-
ance explained by variance across individuals. Genes with high
variance across individuals are expressed at similar levels within rep-
licates from the same individual. This departure from statistical

independence is substantial and must be considered in any statistical
test.

To perform differential expression testing while accounting for
this correlation structure, some analysts have adopted the
duplicateCorrelation method in the limma workflow (Germain and
Testa, 2017; Ritchie et al., 2015). Although originally designed for
replicate probes in microarrays (Smyth ez al., 2005), this method has
been applied ‘off-label’ to repeated measures study designs (Ritchie
et al., 2015). Its adoption has been driven in part by its seamless in-
tegration with limma. In the duplicateCorrelation model, the correl-
ation between replicates from the same individual for gene g is
denoted by 12 and is estimated using a linear mixed model. The
duplicateCorrelation method uses a single value genome-wide, 72,
and assumes that the correlation structure for every gene is the
same. While this assumption is necessary for dealing with small
datasets, current transcriptomic datasets are sufficiently large that
this modeling approach is problematic. In fact, Germain and Testa
(2017) reported that duplicateCorrelation reduces the false-positive
rate in simulations using real RNA-seq data.

Using a single value, 1%, genome-wide for the correlation within
individuals can reduce power and increase the false-positive rate in a
particular, reproducible way. Consider the correlation value for
gene g, ‘ré, compared to the single genome-wide value, t2. When test-
ing a variable that is constant for all replicates of an individual, for
genes where 12 > 7%, using > under-corrects for the correlation
within individuals so that it increases the false-positive rate of gene g
compared to using 73. Conversely, for genes where 7; < %, using 7>
over-corrects for the correlation within individuals so that it
decreases power for gene g. Increasing sample size does not over-
come this issue.

While the use of gene-level random effects has been proposed
previously in methodological work, a number of significant hurdles
have prevented wider adoption by analysts. Existing methods are ei-
ther very computational demanding, do not model error structure of
RNA-seq data, do not fit easily into existing workflows, or require
extensive knowledge of the theory of linear mixed models and
details of implementing these models in R. macau2 (Sun et al.,
2017) fits a Poisson mixed model for count data for RNA-seq and
uses a single random effect to account for multiple samples from the
same individual using a pairwise similarity matrix. However, this
method does not allow multiple random effects, is not able to fit
over-dispersed count models widely used for RNA-seq data (Law
et al., 2014; Love et al., 2014; Robinson et al., 2010), and is not
scalable to large datasets. Trabzuni and Thomson (2014) proposed
a method that fits all of the genes jointly in a linear mixed model,
estimates a random effect term modeling the gene by disease inter-
action, and then considers a genome-wide mixture model of the vari-
ance estimates to identify differentially expressed genes. However,
this approach does not model count data, is very computationally
demanding, and is fit with the commercial package ASReml-R
(Butler et al., 2018). Bryois et al. (2017) applied a linear mixed
model to differential expression of RNA-seq data, but do not con-
sider the count-nature of the data and do not provide software.
Recently, Yu et al. (2019) proposed a fully moderated t-statistic
(FMT) that extends the empirical Bayes method of Smyth (2004) to
linear mixed models, but application by non-specialists is
challenging.

While a number of generic statistical methods for estimation and
hypothesis for testing linear mixed models are available (Bates et al.,
2015; Kuznetsova et al., 2017; Pinheiro and Bates, 2000), practical
application of these methods to RNA-seq data has been limited due
to the challenges of (i) implementing these methods for each dataset,
(i) high computational cost to fit linear mixed models, (iii) directly
modeling count data and (iv) uncertainty about the conditions
where linear mixed models with gene-level variance terms will out-
perform existing methods.

Here, we present a statistical software package, dream (differen-
tial expression for repeated measures), that addresses each of these
hurdles by leveraging multiple open-source R packages (described
below) and outperforms existing methods for cross-individual tests
in repeated measures datasets.
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2 Materials and methods

Linear mixed models are commonly applied in biostatistics to ac-
count for the correlation between observations from the same indi-
vidual in repeated measures studies (Laird and Ware, 1982; Pinheiro
and Bates, 2000). An array of linear mixed models have been
applied to gene expression studies (Bryois et al., 2017; Carcamo-
Orive et al., 2017; Germain and Testa, 2017; Hoffman and Schadt,
2016; Hoffman et al., 2017; Ritchie et al., 2015; Smyth et al., 2005;
Straube et al., 2015; Sun et al., 2017; Trabzuni and Thomson, 2014;
Warren et al., 2017) in recent years and are reviewed above. We
start with a description of a simple linear model for differential ex-
pression analysis and build towards the dream model.

2.1 Linear models for differential expression
Consider a linear model for a single gene

Vg = XBg + & (1)

where y, is a vector of log, counts per million for gene g, the matrix
X stores covariates as columns, f, is the vector of regression coeffi-
cients and & is normally distributed error. In order to account for
heteroskedastic error from RNA-seq counts, the error takes the
form

&g ~ N (0, diag(1wy)ay) (2)
where o2 is the residual variance, and w, is a vector of precision
weights (Law et al., 2014). Precision weights can be learned from
the data to account for counting error in RNA-seq or variation in
sample quality (Law et al., 2014; Ritchie et al., 2015). In this case,
the estimates 8, can be obtained by a closed form least squares
model fit. Hypothesis testing is performed by specifying a contrast
matrix L that is a linear combination of the estimated coefficients
and evaluating the null model

Ho: LT, =0. (3)

Alternatively, an F-test jointly testing multiple coefficients can be
applied.

2.1.1 Accounting for repeated measures with a two-step model:
duplicateCorrelation

The most widely used approach for handing repeated measures in
differential expression analysis is the duplicateCorrelation() function
available in limma (Ritchie et al., 2015). This approach involves
two steps. In the first step, a linear mixed model is fit for each gene
separately, and only allows a single random effect. The model is

Vo = XBy+ Zog + &g (4)

g ~ N (0,77) (5)

where Z is the design matrix for the random effect, with coefficients
o drawn from a normal distribution with variance rﬁ. After fitting
this model for each gene, a single genome-wide variance term is
computed according to

G
72 = tanh ézl atanh (‘L’;) (6)
p=

where G is the number of genes, tanh is the hyperbolic tangent and
atanh is its inverse.

In the next step, this single variance term, 72, is then used in a
generalized least squares model fit for each gene, blocking by
individual:

Vg = XPg + & (7)

&, ~ N (0, diag(w,)%;) (8)

1 22 0 0 0
2 1 0 0 0
Z=(0 0o . 0 0) 9)
00 0 1 ¢
0 0 0 2 1

where X, is the covariance between samples and considers the cor-
relation between samples from the same individual. Note that, the
same 72 value is used for all genes.

The duplicateCorrelation method allows the user to specify a sin-
gle random effect usually corresponding to donor. So, it cannot
model multilevel design. Moreover, duplicateCorrelation estimates
a single variance term genome-wide even though the donor contri-
bution of a particular gene can vary substantially from the genome-
wide trend (Hoffman and Schadt, 2016). Using a single value
genome-wide for the within-donor variance can reduce power and
increase the false-positive rate in a particular, reproducible way as
described in Section 1.

Using the single variance term genome-wide and using the tanh
and atanh are designed to address the high estimation uncertainly
for small gene expression experiments. However, using this single
variance term has distinct limitations. First, it ignores the fact that
the contribution of the random effect often varies widely from gene
to gene (Hoffman and Schadt, 2016). Using a single variance term to
account for the correlation between samples from the same individu-
als over-corrects for this correlation for some genes and under-
corrects for others. In addition, it is a two-step approach that first
estimates the variance term and then estimates the regression coeffi-
cients. Thus, it does not account for the statistical uncertainty in the
estimate of t2. Finally, it does not account for the fact that estimat-
ing the variance component changes the null distribution of ﬁg.
Specifically, estimating variance components in a linear mixed
model can substantially change the degrees of freedom of the distri-
bution used to approximate the null distribution for fixed effect
coefficients (Giesbrecht and Burns, 1985; Halekoh and Hejsgaard,
2014; Hoffman, 2013; Kenward and Roger, 1997; Kuznetsova
et al., 2017). Ignoring this issue can lead to false positive differen-
tially expressed genes.

2.1.2 Dream model

The dream model extends the previous model to enable multiple
random effects, enable the variance terms to vary across genes, and
approximate degrees of freedom of hypothesis test for each gene and
contrast from the data to reduce false positive. The definition of the
dream model follows directly from the definition of the previous
models. First, consider a linear mixed model for gene g with an arbi-
trary number of random effects:

Yo =XB+ > Zall) + e (10)
j
j 2
o) = N(0,73)) (11)

where Z, is the design matrix for the jth random effect, with coeffi-
cients ag) drawn from a normal distribution with variance ;. As
before, heteroskedastic errors are modeled with precision weights
with

&g = N(0, diag(wy)a?). (12)

In this case, estimates of coefficients Bg and variance components
&2 must be obtained via an iterative optimization algorithm (Bates
etal.,2015).

For the linear model and generalized least squares model
described above, the degrees of freedom of the hypothesis test is
fixed at N — p, where N is the number of samples, and p is the num-
ber of covariates.

See Supplementary Methods for estimation of the approximate
degrees of freedom for the hypothesis test, and modeling precision
weights in the linear mixed model.
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Fig. 1. Performance on biologically motivated simulated data. (A, B, C, D) Performance from 50 simulations of RNA-seq datasets of 14 individuals each with 3 replicates. (A)

False discoveries plotted against the number of genes called differentially expressed by each method. (B) Precision-recall curve showing performance in identifying true differ-
entially expressed genes. Dashed line indicates performance of a random classifier. (C) Area under the precision—recall (AUPR) curves from (B). Dashed line indicates AUPR of
a random classifier. Error bars indicate 95% confidence intervals, and we note that the intervals are very small. (D) False positive rate at P < 0.05 evaluated under a null model
were no genes are differentially expressed illustrates calibration of type I error from each method. As indicated by the dashed line, a well calibrated method should give P-val-

ues < 0.05 for 5% of tests under a null model

2.1.3 Features of dream

Dream enables powerful analysis of repeated measures data while
properly controlling the false positive rate. Dream leverages open-
source R packages to combine the following features in an efficient
and user-friendly workflow:

* random effects estimated separately for
variancePartition (Hoffman and Schadt, 2016)

* ability to model multiple random effects: lme4 (Bates ez al.,
2015)

* fast hypothesis testing for fixed effects in linear mixed models

each gene:

including:
* tests of single coefficients
¢ linear contrasts specifying a linear combination of
coefficients
* joint hypothesis testing of multiple coefficients using an F-
test ImerTest (Kuznetsova et al., 2017)
* small sample size Kenward—Roger hypothesis test to increase
power: pbkrtest (Halekoh and Hejsgaard, 2014)
* precision weights to model measurement error in RNA-seq
counts: limma::voom (Law et al., 2014)
* seamless integration with the widely used workflow of limma:
limma (Ritchie et al., 2015)
* parallel processing on multicore machines with efficient memory
usage: BiocParallel, iterators (Morgan et al., 2019; Ooi and
Weston, 2019)

See Supplementary Methods for details about software, imple-
mentation, simulation and data analysis.

3 Results

3.1 Biologically motivated simulations demonstrate

performance of dream
The performance of dream was compared to current methods on
biologically motivated simulations that were designed to reproduce

some of the properties observed in real data (see Supplementary
Methods). The methods can be divided into six categories:

1. dream (i) using default settings, (ii) a Kenward-Roger (KR) ap-
proximation that is more powerful but much more computation-
ally demanding, (iii) a fully moderated t-statistic (FMT) (Yu
et al., 2019) using either a variance component (vc) or Welch—
Satterthwaite (ws) to estimate the degrees of freedom of the test

2. duplicateCorrelation from the limma/voom workflow (Ritchie
etal., 2015)

3. macau2 (Sun et al., 2017)

In addition, DESeq2 (Love et al., 2014) and limma/voom(Law
et al., 2014) serve as representatives of differential expression meth-
ods that do not directly consider repeated measures designs and are
run:

1. including all samples but ignoring the repeated measures design
with only a single replicate per individual

3. summing the reads across biological replicates from the same
individual

Two dream methods (default and KR) are more powerful than
the other methods (Fig. 1). Across a range of simulations of 4-50
individuals each with 2-4 biological replicates, these two dream
methods have a lower false-discovery rate (Fig. 1A, Supplementary
Fig. S1), better precision—recall curves (Fig. 1B, Supplementary Fig.
S2) and larger area under the precision-recall (AUPR) curve
(Fig. 1C, Supplementary Fig. S3). The fully moderated t-statistics
methods (FMT.vc and FTM.ws) had slightly lower AUPR, but,
more importantly, did not control the false-positive rate. A test of
differential expression must control the false-positive rate accurately
to be useful in practice. As expected (Germain and Testa, 2017;
Jostins et al., 2012), the methods that include all samples but ignore
the correlation structure do not control the false-positive rate
(Fig. 1D). Importantly, analysis that sums reads from multiple repli-
cates controls the false-positive rate as expected, and has better
power than using only a single replicate. Yet summing has lower
power than methods that model the correlation structure of the full
dataset. Aggregating results across many simulation conditions
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Fig. 2. Performance summary for simulations with a range of individuals and replicates. Simulations were performed on 4-50 individuals with between 2 and 4 replicates. For
each condition, 50 simulations were performed for a total of 1800. (A) False-positive rate at P < 0.05 for simulations versus the number of individuals and replicates. Black
dashed line indicates target type I error rate of 0.05. (B) Number of genes passing FDR cutoff of 5% under the null simulations. Values shown are averaged across 50 simula-

tions. (C) AUPR for simulations versus the number of individuals and replicates

reveals trends as the number of individuals and replicates increases
(Fig. 2). The lack of type I error control for methods that ignore the
correlation structure, as well as macau2, is present in all simulation
conditions (Fig. 2A, Supplementary Fig. S4). Even more concerning,
increasing the number of repeated measures can dramatically in-
crease the false-positive rate. Notably, duplicateCorrelation shows a
slight increase in type I error at larger sample sizes. For macau2, the
type I error is very inflated for small samples sizes but decreases for
larger datasets. Higher type I error can translate into hundreds of
false positive differentially expressed genes even when no genes are
truly differently expressed (Fig. 2B). Importantly, both versions of
dream accurately control the type I error with sufficient sample size.

Two versions of dream (default and KR) give the highest AUPR
across all simulation conditions (Fig. 2C) while properly controlling
the false-positive rate. In addition, macau2 also produces a

competitive AUPR, but lack of type I error control and high compu-
tational cost is problematic (Supplementary Fig. S5A). While dream-
KR gives the best performance, especially at small sample sizes, the
computational time required can be prohibitive. Using dream with
the default settings performs nearly as well in simulations, but can
be 2-20x faster (Fig. 3, Supplementary Fig. S5B). For datasets with
greater than 500 individuals, dream is also 5-10x faster than
duplicateCorrelation. The tradeoff between statistical performance
and computational time is an important factor when deciding which
method to apply to real data. We note that macau2, dream-KR and
duplicateCorrelation all have quadratic time complexity with re-
spect to the number of samples, while all other methods are linear
time. In practice, macau2 and dream-KR are the most time inten-
sive, followed by dream which is substantially faster (Fig. 3,
Supplementary Fig. S5A). Finally, FMT.vc and FMT.ws are post-
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processing steps based on the results of dream that require <5 add-
itional seconds.

3.2 Null simulations using real RNA-seq data

Since simulated counts cannot fully reproduce the biological, tech-
nical and random variability of real data, we used counts from 317
RNA-seq samples of induced pluripotent stem cells from 101 indi-
viduals (Carcamo-Orive et al., 2017). Subsets of the data were gen-
erated using N € (5,10, 20,40) individuals and R € (2, 3) replicates
per individual. A continuous variable to be the focus of the differen-
tial expression analysis was simulated for each sample. For this pur-
pose, a normally distributed variable independent of the gene
expression data was simulated with 99% of the variance across indi-
viduals and 1% of the variance within individuals. (We note that
simulating binary values for this variable gives similar results.) For

10.0 1

—_
o
1

Run time (minutes)
(logyo scale)
o

10 20 30 40 50
Individuals

Fig. 3. Run time for each method as the number of individuals increases. Times are
shown for simulations in Figure 2 with three replicates per individual. Colors are
same as for previous figure. Error bars indicate 95% confidence interval. We note
that times for dream + FMT.vc and dream + FMT.ws are omitted here because
they are post-processing steps based on the results of dream that require <5 add-
itional seconds

each (N, R) pair five independent simulations were performed and
the results were aggregated.

The dream-KR method gave the most accurate control of false-
positive rate across all simulations, and dream with default settings
performed well with N > 10 individuals (Supplementary Figs S6,
S§7). Post-processing with FMT.vc or FMT.ws gave too many small
P-values for small N and too few small P-values for larger N. As
expected, ignoring this correlation structure with limma for DESeq2
gave inflated false-positive rate in all conditions. The
duplicatedCorrelation method and macau2 give increased false-
positive rate for small N. Using a single replicate per individual or
summing reads across replicates accurately controlled the false-
positive rate with sufficient sample size.

Since count magnitude is related to the amount of measurement
error, inadequate modeling of the uncertainty can result in a false-
positive rate related to count magnitude (Young ef al., 2010). While
the simulations indicate an increased false-positive rate with
increased log, counts per million for many methods, dream using
default settings or KR gave accurate control of false-positive rate
across the range of expression magnitudes for N > 5 (Supplementary
Fig. S8).

3.3 Analysis of expression profiling datasets with

dream gives biological insight

Applying dream to empirical data gives biological insight for three
neuropsychiatric diseases with different genetic architectures. To
avoid using arbitrary P-value or FDR cutoffs to identify differential-
ly expressed genes, gene set enrichments were evaluated using
cameraPR (Ritchie et al., 2015; Wu and Smyth, 2012) to compare
the differential expression test statistics from genes in a given gene
set to the genome-wide test statistics.

Alzheimer’s disease is a common neurodegenerative disorder
with a complex genetic architecture (Lambert et al., 2013)(Fig. 4).
In analysis of RNA-seq data from 4 regions of post-mortem brains
from 26 individuals (Wang et al., 2018), dream identified known
patterns of dysregulation in genes involved in adipogenesis, inflam-
mation and monocyte response associated with Braak stage, a
neuropathological metric of disease progression (Fig. 4A,
Supplementary Fig. S9). Here, we allow the disease effect to be dif-
ferent in each brain region and then test if the sum of the four coeffi-
cients is significantly different from zero using a linear contrast.
Applying duplicateCorrelation only recovered a subset of these find-
ings and produced larger false-discovery rates across many
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Fig. 4. Application to transcriptome data from Alzheimer’s disease. (A) Gene set enrichment FDR for genes associated with Braak stage. Results are shown for dream and
duplicateCorrelation. Lines with broad and narrow dashes indicate 10% and 5% FDR cutoff, respectively. (B) Comparison of —log;, P-values from applying dream and
duplicateCorrelation to Braak stage. Each point is a gene, and is colored by the fraction of expression variation explained by variance across individuals. Black solid line indi-
cates a slope of 1. Dashed line indicates the best fit line for the 20% of genes with the highest (red) and lowest (blue) expression variation explained by variance across individu-
als. (C) Expression of TUBB2B stratified by individual and colored by Braak stage so that each box represents the expression in the multiple samples from a given individual.
Bar plot of variance decomposition shows that 68.4% of variance is explained by expression variance across individuals. Since this value is much larger than the genome-wide

mean, duplicateCorrelation under-corrects for the repeated measures
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biologically relevant gene sets. Notably, the difference between
dream and duplicateCorrelation is due to the way that these meth-
ods account for expression variation explained by variance across
individuals (Fig. 4B). Genes with correlation within individuals, réz,,
that is larger than the genome-wide average, 12, are susceptible to
being called as false positive differentially expressed genes by
duplicateCorrelation. Conversely if 12 < 72, then dream will tend to
give a more significant P-value than duplicateCorrelation. For ex-
ample, consider TUBB2B where rf, = 68.4% compared to the
genome-wide 1> =38.8%. Here, duplicateCorrelation under-
corrects for the correlation structure and gives a P-value of 1.3e-10
while dream uses a gene-specific correlation to give P-value of only
7.7¢-4 (Fig. 4C). Finally, we note that performing a joint F-test of
these coefficients with four degrees of freedom gives similar results
(Supplementary Fig. S10).

Childhood onset schizophrenia is a severe neurodevelopment dis-
order, but the genetic cause is complex with patients having a higher
rate of schizophrenia-associated copy number variants, as well as
higher schizophrenia polygenic risk scores (Ahn et al., 2016). RNA-
seq data was generated from iPSC-derived neurons and neural pro-
genitor cells from 11 patients with childhood onset schizophrenia
(Hoffman et al., 2017) and 11 controls with up to 3 lines per donor
and cell type. Differential expression analysis was performed in each
cell type (Fig. 5). The relationship between results from dream and
duplicateCorrelation is again well captured by the correlation across
individuals at the gene level (Fig. SA). Analysis with dream identi-
fied gene sets involved in neuronal function at the 5% and 10%
FDR levels that were not identified by duplicateCorrelation (Fig. 5B,
Supplementary Fig. S11).

Timothy syndrome is a monogenic neurodevelopmental disorder
caused by variants in the calcium channel CACNA1C. Induced
pluripotent and derived cell types were generated from two affected
and four unaffected individuals an expression was assayed by micro-
array (Pasca et al., 2011; Tian et al., 2014). Since up to six lines
were generated per donor for each cell type, it is necessary to ac-
count for the repeated measures design. Analysis with dream
removed many differentially expressed genes identified by
duplicateCorrelation where the signal was driven by variation across
individual rather than variance across disease status (Supplementary
Fig. $12).

3.4 False positives driven by genetic regulation

Since the relationship between results from dream and
duplicateCorrelation depend on 72 and 72, we examined which genes
had large T§ values and were thus highly susceptible to being called
as a false positive differentially expressed gene by
duplicateCorrelation. Since ré is a metric of the expression variation
across individuals, we hypothesized that this variation was driven by
genetic regulation of gene expression. To test this, we use large-scale
RNA-seq datasets from the post-mortem human brains from the
CommonMind Consortium (Fromer et al., 2016) and whole blood
from Depression Genes and Networks (Battle et al., 2014) where
eQTL analysis had already been performed. Transcriptome imput-
ation was performed by training an elastic net predictor for each
gene expression trait using only cis variants (Gamazon et al., 2015;
Huckins et al., 2019). For each gene, the fraction of expression vari-
ation explainable by cis-regulatory variants was termed ‘¢QTL R>.

Comparing the eQTL R of each gene to the —log,, P-values
from differential expression using dream and duplicateCorrelation
revealed a striking trend (Fig. 6, Supplementary Fig. S13). For differ-
ential expression analysis with Braak stage from the Alzheimer’s
dataset, genes that were more significantly differentially expressed
by duplicateCorrelation compared to dream had a much higher ex-
pression variation explainable by cis-eQTLs in post-mortem brain
(Fig. 6A). This strong trend was also seen in differential expression
results for childhood onset schizophrenia in neural progenitor cells
(Fig. 6B) and neurons (Fig. 6C).

To see how widespread this trend was, we performed 12 differ-
ential expression analysis from 6 independent expression datasets.
Comparing the differential expression results with the eQTL R?
from brain and whole blood showed correlations that were highly
significant in all datasets, but more importantly, that were surpris-
ingly large. While the correlation with eQTL R* from brain was
larger in most cases because we considered many brain and neuronal
datasets, the signal from whole blood was still very robust.
Moreover, expression datasets from iPSC, iPSC-derived adipocytes
and iPSC-derived hepatocytes showed the same trend.

The analysis of these last three cell types from Warren et al.
(2017) is notable because the cohort was designed to have an equal
number of individuals who were homozygous reference as homozy-
gous alternate at rs12740374, a SNP associated with cardiometa-
bolic disease. Even though the variable used in the differential
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Fig. 6. Genes falsely called differentially expressed tend to be under strong genetic regulation. For each gene, the fraction of expression variation explainable by cis-eQTLs is
compared to the difference in —log;, P-value from duplicateCorrelation and dream differential expression analysis. Due to the large number of genes, a sliding window ana-
lysis of 100 genes with an overlap of 20 was used to summarize the results. (A—C) For each window, the average fraction of expression variation explainable by cis-eQTLs (i.e.
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analysis is performed on (A) Alzheimer’s Braak stage from post-mortem brains, and schizophrenia status from (B) iPSC-derived neural progenitor cells and (C) iPSC-derived
forebrain neurons. Spearman rho correlations and P-values are shown along with loess curve. (D) Summary of Spearman rho correlations between eQTL R? and the difference
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Results are shown for eQTL R? from brains from the CommonMind Consortium (Fromer et al., 2016) and whole blood from Depression Genes and Networks (DGN) dataset
(Battle et al., 2014). Note that, differential expression analysis compared disease to control individuals in each tissue from each dataset, except for AMP-AD/MSSM where

Alzheimer’s Braak stage is a quantitative metric, and Warren et al. (2017) where the variable of interest was the SNP rs12740374

expression analysis was itself the allelic state at this SNP, the results
from the duplicateCorrelation analysis compared to dream were still
strongly correlated with eQTL R?. Thus, this trend is independent of
the biology of cell type and trait of interest, but is instead driven by
genetic regulation of gene expression.

4 Discussion

As study designs for transcriptome profiling experiments becomes
more complex (Aguet et al., 2017; Alasoo et al., 2018; Breen et al.,
2015; Carcamo-Orive et al., 2017; Franzén et al., 2016; Hoffman
et al., 2017; Mariani et al., 2015; Pasca et al., 2011;
Schwartzentruber et al., 2018; Van Der Wijst et al., 2018; Wang
et al., 2018; Warren et al., 2017; Zhang et al., 2013), proper statis-
tical methods must be used to take full advantage of the power of
these new datasets and, more importantly, protect against false-
positive findings. The results of our biologically motivated simula-
tion study indicate that analyzing the full repeated measures dataset
while properly accounting for the correlation structure gives the best
performance for identifying differential expression, compared with

methods that omit samples, use individual-level summaries or ignore
the correlation structure.

We have demonstrated that dream has superior performance in
biologically motivated simulations while retaining control of the
false-positive rate. Moreover, dream accurately controls the false-
positive rate in null simulations using real RNA-seq data.
Furthermore, dream is able to identify biologically meaningful gene
set enrichments in two neuropsychiatric disorders with different
genetic architectures where the current standard for repeated meas-
ures designs in transcriptomics, duplicateCorrelation, cannot.

Relating the performance of dream and duplicateCorrelation to
the expression variation across individuals at the gene level gives a
first principles framework for understanding the empirical behavior
of these methods. Based on this understanding, we observe how
genes with expression variation across individuals below the
genome-wide mean benefit from increased power using dream.
Meanwhile, genes with expression variation across individuals
above genome-wide mean benefit from proper control of the false-
positive rate compared to duplicateCorrelation.

We further demonstrated how genes under strong genetic regulation
are being particularly susceptible to being called as false positives by
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differential expression analysis with duplicateCorrelation. Since this ef-
fect is attributable to strong eQTL’s, these differential expression results
can be reproducible across multiple datasets despite being false-positive
findings unrelated to the biological trait of interest. Notably, dream
uses a gene-specific variance term r§ and so it is not susceptible to these
artifactual findings.

While borrowing information across all genes using an empirical
Bayes approach can improve the performance of differential expres-
sion testing (Smyth, 2004), adapting this approach to linear mixed
model is challenging. The fully moderated t-statistic of Yu et al.
(2019), applied as a post-processing step after dream, did not im-
prove the area under the precision recall curve and showed an
inflated false-positive rate in most simulations. While this approach
is intriguing, further work must be done in before it can be applied
by analysts.

Since RNA-seq data measure gene expression in terms of counts,
it is tempting to model the counts directly with a generalized linear
mixed model (GLMM) instead of using a linear mixed model on
log, counts per million with precision weights. Our work is moti-
vated by Law et al. (2014) who demonstrated that modeling the
mean and variance using a weighted linear model can give better
performing hypothesis tests for small samples sizes compared with
generalized linear models that model the full data more accurately
but have poorer finite-sample hypothesis tests. In repeated measures
designs, the application of a Poisson or negative binomial GLMM is
problematic. Producing accurate P-values is challenging enough for
linear mixed models (Halekoh and Hejsgaard, 2014; Kuznetsova
et al., 2017), and adding a Poisson or negative binomial model with
a relatively small sample size leads to poor control of the false posi-
tive rate (Yu et al., 2020). Moreover, GLMM’s are extremely com-
putationally demanding and are 10-100 times slower than a linear
mixed model. We note that while this work was in revision, Yu
et al. (2020) proposed a bivariate negative binomial model but it is
only applicable to the specific case of a paired design, where each in-
dividual is observed once in each of two conditions.

Here, we focus on cross-individual analysis of repeated measures
design because of the limitations of existing statistical software for
this application, and the concern about false-positive findings raised
by recent work (Germain and Testa, 2017; Jostins et al., 2012).
Analysis of repeated measures data is a broad field (Laird and Ware,
1982; Pinheiro and Bates, 2000) that includes with-individual and
combined cross- and within-individual tests. Existing statistical
methods for RNA-seq data perform well on those applications (Law
et al., 2014; Love et al., 2014; Pimentel et al., 2017; Ritchie et al.,
2015; Robinson et al., 2010; Tarazona et al., 2015).

Since dream is built on top of the limma (Ritchie ef al., 2015)
and variancePartition (Hoffman and Schadt, 2016) workflow, it can
easily accommodate expression quantifications from multiple soft-
ware packages including featureCounts (Liao et al., 2014), kallisto
(Bray et al., 2016), salmon (Patro et al., 2017) and RSEM (Li and
Dewey, 2011), among others. Moreover, dream works seamlessly
for differential analysis of ATAC-seq or histone modification ChIP-
seq data. Finally, with scaleable single-cell RNA-seq on the horizon,
future studies will need to perform differential expression analysis
with thousands of cells (i.e. repeated measures) from each individual
(Van Der Wijst et al., 2018). The power, type I error control, simple
R interface, speed and flexibility of dream enables analysis of tran-
scriptome and functional genomics data with repeated measures
designs.

Acknowledgements

The authors thank Laura Huckins for providing the eQTL R? values, and
Kiran Girdhar, Roman Kosoy, Jaroslav Bendl, Noam Beckmann and Kelsey
Montgomery for feedback on the software.

Funding

This work was supported by NIMH [U01MH116442, ROIMH109677,
ROIMH109897, ROIMH110921], NIA [R01AG050986] and Veterans

Affairs merit [BX002395 to P.R.]. G.E.H is partially supported by a
NARSAD Young Investigator Award 26313 from the Brain and Behavior
Research Foundation. This work was supported in part through the computa-
tional resources and staff expertise provided by Scientific Computing at the
Icahn School of Medicine at Mount Sinai.

Conflict of Interest: none declared.

References

Aguet,F. et al. (2017) Genetic effects on gene expression across human tissues.
Nature, 550,204-213.

Ahn,K. et al. (2016) Common polygenic variation and risk for
childhood-onset schizophrenia. Mol. Psychiatry, 21, 94-96.

Alasoo,K. et al.; HIPSCI Consortium. (2018) Shared genetic effects on chro-
matin and gene expression indicate a role for enhancer priming in immune
response. Nat. Genet., 50, 424-428.

Bates,D. et al. (2015)Fitting linear mixed-effects models using lme4.]J. Stat.
Softw., 67, 1-48.

Battle,A. et al. (2014) Characterizing the genetic basis of transcriptome diver-
sity through RNA-sequencing of 922 individuals. Genome Res., 24, 14-24.

Blainey,P. et al. (2014) Points of significance: replication. Nat. Methods, 11,
879-880.

Bray,N.L. et al. (2016) Near-optimal probabilistic RNA-seq quantification.
Nat. Biotechnol., 34, 525-527.

Breen,M.S. et al. (2015) Gene networks specific for innate immunity define
post-traumatic stress disorder. Mol. Psychiatry, 20, 1538-15435.

Bryois,]. et al. (2017) Time-dependent genetic effects on gene expression im-
plicate aging processes. Genome Res., 27, 545-552.

Butler,D.G. et al. (2018) ASReml-R Reference Manual Version 4. VSN
International Ltd, Hemel Hempstead, HP1 1ES, UK.

Carcamo-Orive,l. et al. (2017) Analysis of transcriptional variability in a large
human iPSC library reveals genetic and non-genetic determinants of hetero-
geneity. Cell Stem Cell, 20, 518-532.¢9.

Chowdhury,H.A. et al. (2018) Differential expression analysis of RNA-seq
reads: overview, taxonomy and tools. IEEE/ACM Trans. Comput. Biol.
Bioinf.,17,1-1.

Costa-Silva,]. et al. (2017) RNA-Seq differential expression analysis: an
extended review and a software tool. PLoS ONE, 12,e0190152.

Franzén,O. et al. (2016) Cardiometabolic risk loci share downstream cis- and
trans-gene regulation across tissues and diseases. Science, 353, 827-830.

Fromer,M. et al. (2016) Gene expression elucidates functional impact of poly-
genic risk for schizophrenia. Nat. Neurosci., 19, 1442-1453.

Gamazon,E.R. et al.; GTEx Consortium. (2015) A gene-based association
method for mapping traits using reference transcriptome data. Nat. Genet.,
47,1091-1098.

Germain,P.L., and Testa,G. (2017) Taming human genetic variability: tran-
scriptomic meta-analysis guides the experimental design and interpretation
of iPSC-based disease modeling. Stem Cell Rep., 8, 1784-1796.

Giesbrecht,F.G., and Burns,].C. (1985) Two-stage analysis based on a mixed
model: large-sample asymptotic theory and small-sample simulation results.
Biometrics, 41,477.

Girdhar,K. et al. (2018) Cell-specific histone modification maps in the human
frontal lobe link schizophrenia risk to the neuronal epigenome. Nat.
Neurosci., 21,1126-1136.

Halekoh,U., and Hejsgaard,S. (2014) A Kenward-Roger approximation and
parametric bootstrap methods for tests in linear mixed models — the R
Package pbkrtest. J. Stat. Softw., 59, 3-4.

Hoffman,G.E. (2013) Correcting for population structure and kinship using
the linear mixed model: theory and extensions. PLoS ONE, 8, ¢75707.

Hoffman,G.E., and Schadt,E.E. (2016) variancePartition: interpreting drivers
of variation in complex gene expression studies. BMC Bioinformatics, 17,
483.

Hoffman,G.E. et al. (2017) Transcriptional signatures of schizophrenia in
hiPSC-derived NPCs and neurons are concordant with post-mortem adult
brains. Nat. Commun., 8,2225.

Hoffman,G.E. et al. (2019) New considerations for hiPSC-based models of
neuropsychiatric disorders. Mol. Psychiatry, 24, 49-66.

Huckins,L.M. et al.; CommonMind Consortium. (2019) Gene expression im-
putation across multiple brain regions provides insights into schizophrenia
risk. Nat. Genet., 51, 659-674.

Johnson,W.E. et al. (2007) Adjusting batch effects in microarray expression
data using empirical Bayes methods. Biostatistics, 8, 118-127.



Linear mixed model for related measures designs

201

Jostins,L. et al. (2012) Misuse of hierarchical linear models overstates the sig-
nificance of a reported association between OXTR and prosociality. Proc.
Natl. Acad. Sci. USA, 109, E1048-E1048.

Kenward,M.G., and Roger,].H. (1997) Small sample inference for fixed effects
from restricted maximum likelihood. Biometrics, 53, 983-997.

Kuznetsova,A. et al. (2017) ImerTest package: tests in linear mixed effects
models. J. Stat. Softw., 82.

Laird,N.M., and Ware,].H. (1982) Random-effects models for longitudinal
data. Biometrics, 38, 963.

Lambert,].C. et al.; European Alzheimer’s Disease Initiative (EADI). (2013)
Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for
Alzheimer’s disease. Nat. Genet., 45, 1452-1458.

Law,C.W. et al. (2014) Voom: precision weights unlock linear model analysis
tools for RNA-seq read counts. Genome Biol., 15, R29.

Leek,].T., and Storey,].D. (2007) Capturing heterogeneity in gene expression
studies by surrogate variable analysis. PLoS Genet., 3, e161.

Li,B., and Dewey,C.N. (2011) RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC Bioinformatics,
12,323.

Liao,Y. et al. (2014) featureCounts: an efficient general purpose program for
assigning sequence reads to genomic features. Bioinformatics, 30, 923-930.

Love,M.IL et al. (2014) Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2. Genome Biol., 15, 550.

Mariani,]. et al. (2015) FOXG1-dependent dysregulation of GABA/glutamate
neuron differentiation in autism spectrum disorders. Cell, 162, 375-390.

Morgan,M. et al. (2019) BiocParallel: Bioconductor facilities for parallel
evaluation.

Ooi,H., and Weston,S. (2019) iterators: Provides Iterator Construct. R pack-
age wversion 1.0.12 https://CRAN.R-project.org/package=iterators. (1
January 2020, date last accessed)

Pasca,S.P. et al. (2011) Using iPSC-derived neurons to uncover cellular pheno-
types associated with Timothy syndrome. Nat. Med., 17, 1657-1662.

Patro,R. et al. (2017) Salmon provides fast and bias-aware quantification of
transcript expression. Nat. Methods, 14, 417-419.

Pimentel,H. et al. (2017) Differential analysis of RNA-seq incorporating quan-
tification uncertainty. Nat. Methods, 14, 687-690.

Pinheiro,]., and Bates,D. (2000) Mixed-Effects Models in S and S-Plus.
Springer, New York.

Rencher,A., and Schaalje,G. (2008) Linear Models in Statistics. John Wiley &
Sons. Hoboken, New Jersey.

Ritchie,M.E. et al. (2015) limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res., 43, e47-e47.
Robinson,M.D. et al. (2010) edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics, 26,

139-140.

Schwartzentruber,]. et al.; HIPSCI Consortium. (2018) Molecular and func-
tional variation in iPSC-derived sensory neurons. Nat. Genet., 50, 54-61.
Smyth,G.K. (2004) Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat. Appl. Genet. Mol.

Biol., 3, 1-25.

Smyth,G.K. et al. (2005) Use of within-array replicate spots for assessing dif-
ferential expression in microarray experiments. Bioinformatics, 21,
2067-2075.

Stegle,O. et al. (2010) A Bayesian framework to account for complex
non-genetic factors in gene expression levels greatly increases power in
eQTL studies. PLoS Comput. Biol., 6,e1000770.

Straube,]. et al.; PROOF Centre of Excellence Team. (2015) A linear mixed
model spline framework for analysing time course ‘Omics’ data. PLoS One,
10, e0134540.

Sun,S. et al. (2017) Differential expression analysis for RNAseq using Poisson
mixed models. Nucleic Acids Res., 45,e106-e106.

Tarazona,S. et al. (2015) Data quality aware analysis of differential expression
in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res., 43, gkv711.
Tian,Y. et al. (2014) Alteration in basal and depolarization induced transcrip-
tional network in iPSC derived neurons from Timothy syndrome. Genome

Med., 6, 1-16.

Trabzuni,D., and Thomson,P.C. (2014) Analysis of gene expression data using
a linear mixed model/finite mixture model approach: application to regional
differences in the human brain. Bioinformatics, 30, 1555-1561.

Van Der Wijst,M.G. et al.; LifeLines Cohort Study. (2018) Single-cell RNA
sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs.
Nature Genetics, 50, 493-497.

Wang,M. et al. (2018) The Mount Sinai cohort of large-scale genomic, tran-
scriptomic and proteomic data in Alzheimer’s disease. Sci. Data, 5, 180185.

Warren,C.R. et al. (2017) Induced pluripotent stem cell differentiation enables
functional validation of GWAS variants in metabolic disease. Cell Stem
Cell, 20, 547-557.¢7.

Wu,D., and Smyth,G.K. (2012) Camera: a competitive gene set test accounting
for inter-gene correlation. Nucleic Acids Res., 40, e133-e133.

Young,M.D. et al. (2010) Gene ontology analysis for RNA-seq: accounting
for selection bias. Genome Biol., 11, R14.

Yu,L. et al. (2017) Power analysis for RNA-Seq differential expression studies.
BMC Bioinformatics, 18, 234.

Yu,L. et al. (2019) Fully moderated t-statistic in linear modeling of mixed
effects for differential expression analysis. BMC Bioinformatics, 20, 1-9.
Yu,L. et al. (2020) Power analysis for RNA-Seq differential expression studies
using generalized linear mixed effects models. BMC Bioinformatics, 21,

198.

Zhang,B. et al. (2013) Integrated systems approach identifies genetic nodes

and networks in late-onset Alzheimer’s disease. Cell, 153, 707-720.


https://CRAN.R-project.org/package=iterators
https://CRAN.R-project.org/package=iterators

