
Data and text mining

treeheatr: an R package for interpretable decision tree

visualizations

Trang T. Le and Jason H. Moore*

Department of Biostatistics, Epidemiology and Informatics, Institute for Biomedical Informatics, University of Pennsylvania,

Philadelphia, PA 19104, USA

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren
Received on May 3, 2020; revised on July 9, 2020; editorial decision on July 14, 2020; accepted on July 17, 2020

Abstract

Summary: treeheatr is an R package for creating interpretable decision tree visualizations with the data represented
as a heatmap at the tree’s leaf nodes. The integrated presentation of the tree structure along with an overview of the
data efficiently illustrates how the tree nodes split up the feature space and how well the tree model performs. This
visualization can also be examined in depth to uncover the correlation structure in the data and importance of each
feature in predicting the outcome. Implemented in an easily installed package with a detailed vignette, treeheatr can
be a useful teaching tool to enhance students’ understanding of a simple decision tree model before diving into
more complex tree-based machine learning methods.

Availability and implementation: The treeheatr package is freely available under the permissive MIT license at
https://trang1618.github.io/treeheatr and https://cran.r-project.org/package¼treeheatr. It comes with a detailed vi-
gnette that is automatically built with GitHub Actions continuous integration.

Contact: ttle@pennmedicine.upenn.edu or jhmoore@upenn.edu

1 Introduction

Decision tree models comprise a set of machine learning algorithms
widely used for predicting an outcome from a set of predictors or
features. For specific problems, a single decision tree can provide
predictions at desirable accuracy while remaining easy to under-
stand and interpret (Yan et al., 2020). These models are also import-
ant building blocks of more complex tree-based structures such as
random forests and gradient-boosted trees.

The simplicity of decision tree models allows for clear visualiza-
tions that can be incorporated with rich additional information such
as the feature space. However, existing software frequently treats all
nodes in a decision tree similarly, leaving limited options for
improving information presentation at the leaf nodes. Specifically,
the R library rpart.plot displays at each node its characteristics
including the number of observations falling in that node, the pro-
portion of those observations in each class and the node’s majority
vote. Despite being potentially helpful, these statistics may not im-
mediately convey important information about the tree such as its
overall performance. Function visTree() from the R package
visNetwork draws trees that are aesthetically pleasing but lack gen-
eral information about the data and are difficult to interpret. The
state-of-the-art Python’s dtreeviz produces decision trees with
detailed histograms at inner nodes but still draw pie chart of differ-
ent classes at leaf nodes. ggparty is a flexible R package that allows
the user to have full control of the representation of each node.
However, this library fixes the leaf node widths, which limits its

ability to show more collective visualizations. We have developed
the treeheatr package to incorporate the functionality of ggparty but
also utilize the leaf node space to display the data as a heatmap, a
popular visualization that uncovers groups of samples and features
in a dataset (Galili et al., 2018; Wilkinson et al., 2009). A heatmap
also displays a useful general view of the dataset, e.g. how large it is
or whether it contains any outliers. Integrated with a decision tree,
the samples in each leaf node are ordered based on an efficient seri-
ation method.

After simple installation, the user can apply treeheatr on their
classification or regression tree with a single function:

heat_tree (x, target_lab ¼ ‘Outcome’)

This one line of code above will produce a decision tree-heatmap
as a ggplot object that can be viewed in RStudio’s viewer pane,
saved to a graphic file, or embedded in an RMarkdown document.
This example assumes a classification problem, but one can also
apply treeheatr on a regression problem by setting task ¼
‘regression’.

This article is organized as follows. In Section 2, we present an
example treeheatr application using its functions on a real-world
clinical dataset from a study of COVID-19 patient outcome in
Wuhan, China (Yan et al., 2020). In Section 3, we describe in detail
the important functions and corresponding arguments in treeheatr.
We demonstrate the flexibility that the user has in tweaking these
arguments to enhance understanding of the tree-based models

VC The Author(s) 2020. Published by Oxford University Press. 282

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted

reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37(2), 2021, 282–284

doi: 10.1093/bioinformatics/btaa662

Advance Access Publication Date: 23 July 2020

Applications Note

http://orcid.org/0000-0003-3737-6565
https://trang1618.github.io/treeheatr
https://cran.r-project.org/package=treeheatr
https://cran.r-project.org/package=treeheatr
https://academic.oup.com/


applied on their dataset. Finally, we discuss general guidelines for
creating effective decision tree-heatmap visualization.

2 A simple example

This example visualizes the conditional inference tree model built to
predict whether or not a patient survived from COVID-19 in
Wuhan, China (Yan et al., 2020). The dataset contains blood sam-
ples of 351 patients admitted to Tongji hospital between January 10
and February 18, 2020. Three features were selected based on their
importance score from a multi-tree XGBoost model, including lactic
dehydrogenase (LDH), lymphocyte levels and high-sensitivity C-re-
active protein (hs_CRP). Detailed characteristics of the samples can
be found in the original publication (Yan et al., 2020).

The following lines of code compute and visualize the condition-
al decision tree along with the heatmap containing features that are
important for constructing this model (Fig. 1):

heat_tree (

x ¼ ctree(Outcome � ., data ¼ covid),

label_map ¼ c(�0�¼ ‘Survived’,�1�¼ ‘Deceased’)

)

The heat_tree() function takes a party or partynode object
representing the decision tree and other optional arguments such as
the outcome label mapping. If instead of a tree object, x is a data.-
frame representing a dataset, heat_tree() automatically computes
a conditional tree for visualization, given that an argument specify-
ing the column name associated with the phenotype/outcome, tar-
get_lab, is provided.

In the decision tree, the leaf nodes are labeled based on their ma-
jority votes and colored to correlate with the true outcome. On the
right split of hs_CRP (hs_CRP � 52.5 and hs_CRP > 52.5), al-
though individuals of both branches are all predicted to survive by
majority voting, the leaf nodes have different purity, indicating dif-
ferent confidence levels the model has in classifying samples in the
two nodes. These seemingly non-beneficial splits present an oppor-
tunity to teach machine learning novices the different measures of
node impurity such as the Gini index or cross-entropy (Hastie et al.,
2009).

In the heatmap, each (very thin) column is a sample, and each
row represents a feature or the outcome. For a specific feature, the
color shows the relative value of a sample compared to the rest of
the group on that feature; higher values are associated with lighter

colors. Within the heatmap, similar color patterns between LDH
and hs_CRP suggest a positive correlation between these two fea-
tures, which is expected because they are both systemic inflamma-
tion markers.

Together, the tree and heatmap give us an approximation of the
proportion of samples per leaf and the model’s confidence in its clas-
sification of samples in each leaf. Three main blocks of different
lymphocyte levels in the heatmap illustrate its importance as a deter-
mining factor in predicting patient outcome. When this value is
below 12.7 but larger than 5.5 (observations with dark green
lymphocyte value), hs_CRP helps further distinguish the group that
survived from the other. Here, if we focus on the hs_CRP > 35.5
branch, we notice that the corresponding hs_CRP colors range from
light green to yellow (>0.5), illustrating that the individuals in this
branch have higher hs_CRP than the median of the group. This con-
nection is immediate with the two components visualized together
but would not have been possible with the tree model alone. In sum-
mary, the tree and heatmap integration provides a comprehensive
view of the data along with key characteristics of the decision tree.

3 Materials and methods

When the first argument x is a data.frame object representing the
dataset instead of the decision tree, treeheatr automatically com-
putes a conditional tree with default parameters for visualization.
Conditional decision trees (Hothorn et al., 2006) are non-
parametric models performing recursive binary partitioning with
well-defined theoretical background. Conditional trees support un-
biased selection among covariates and produce competitive predic-
tion accuracy for many problems (Hothorn et al., 2006). The
default parameter setting often results in smaller trees that are less
prone to overfit. treeheatr utilizes the partykit R package to fit the
conditional tree and ggparty R package to compute its edge and
node information.

While ggparty assumes fixed leaf node widths, treeheatr uses a
flexible node layout to accommodate the different number of sam-
ples shown in the heatmap at each leaf node. This new node layout
structure supports various leaf node widths, prevents crossings of
different tree branches and generalizes as the trees grow in size. This
new layout weighs the x-coordinate of the parent node according to
the levels of the child nodes to avoid branch crossing. This relative
weight can be adjusted with the lev_fac parameter in heat_-
tree(). lev_fac ¼ 1 sets the parent node’s x-coordinate perfectly
in the middle of those of its child nodes. The default level_fac ¼

Outcome

Lymphocyte
hs_CRP

LDH

0.25 0.50 0.75 1.00

≤ 12.7

≤ 5.5

> 5.5

≤ 35.5> 35.5

> 12.7

≤ 339

≤ 52.5 > 52.5

> 339

Lymphocyte

Lymphocyte

hs_CRP

LDH

hs_CRP

Deceased Survived Deceased Survived SurvivedDeceas

Fig. 1. A decision tree-heatmap for predicting whether or not a patient survived from COVID-19 in Wuhan, China. The heatmap colors present the relative value of a sample

compared to the rest of the group on each feature

treeheatr 283



1.3 seems to provide optimal node layout independent of the tree
size. The user can define a customized layout for a specific set of
nodes and combine that layout with the automatic layout for the
remaining nodes.

By default, heatmap samples (columns) are automatically reor-
dered within each leaf node using a seriation method (Hahsler et al.,
2008) using all features and outcome label, unless clust_target
¼ FALSE. treeheatr uses the daisy() function in the cluster R pack-
age with the Gower metric (Gower, 1971) to compute the dissimi-
larity matrix of a dataset that may have both continuous and
nominal categorical feature types. Heatmap features (rows) are
ordered in a similar manner. We note that, while there is no defini-
tive guideline for proper weighting of features of different types, the
goal of the seriation step is to reduce the amount of stochasticity in
the heatmap and not to make precise inference about each grouping.

In a visualization, it is difficult to strike the balance between
enhancing understanding and overloading information. We believe
showing a heatmap at the leaf node space provides additional infor-
mation of the data in an elegant way that is not overwhelming and
may even simplify the model’s interpretation. We left it for the user
to decide what type of information to be displayed at the inner
nodes via different geom objects (e.g. geom_node_plot, geo-
m_edge_label, etc.) in the ggparty package. For example, one
may choose to show at these decision nodes the distribution of the
features or their corresponding Bonferroni-adjusted P-values com-
puted in the conditional tree algorithm (Hothorn et al., 2006).

Striving for simplicity, treeheatr utilizes direct labeling to avoid
unnecessary legends. For example, in classification, the leaf node
labels have colors corresponding with different classes, e.g. purple
for Deceased and green for Survived in the COVID-19 dataset
(Fig. 1). As for feature values, by default, the color scale ranges from
0 to 1 and indicates the relative value of a sample compared to the
rest of the group on each feature. Linking the color values of a par-
ticular feature to the corresponding edge labels can reveal additional
information that is not available with the decision tree alone.

In addition to the main dataset, the user can supply to heat_-
tree() a validation dataset via the data_test argument. As a re-
sult, heat_tree() will train the conditional tree on the original
training dataset, draw the decision tree-heatmap on the testing data-
set, and, if desired, print next to the tree its performance on the test
set according to specified metrics (e.g. balanced accuracy for classifi-
cation or root mean-squared error for regression problem).

The integration of heatmap nicely complements the current tech-
niques of visualizing decision trees. Node purity, a metric measuring
the tree’s performance, can be visualized from the distribution of
true outcome labels at each leaf node in the first row. Comparing
these values with the leaf node label gives a visual estimate of how
accurate the tree predictions are. Further, without explicitly choos-
ing two features to show in a 2-D scatter plot, we can still infer cor-
relation structures among features in the heatmap. The additional
seriation may also reveal sub-structures within a leaf node.

4 Conclusion

In this article, we presented a new type of integrated visualization of
decision trees and heatmaps, which provides a comprehensive data
overview as well as model interpretation. We demonstrated that this
integration uncovers meaningful patterns among the predictive fea-
tures and highlights the important elements of decision trees includ-

ing feature splits and several leaf node characteristics such as
prediction value, impurity and number of leaf samples. Its detailed
vignette makes treeheatr a useful teaching tool to enhance students’
understanding of this fundamental model before diving into more
complex tree-based machine learning methods. treeheatr is scalable
to large datasets. For example, heat_tree() runtime on the wave-
form dataset with 5000 observations and 40 features was approxi-
mately 80 s on a machine with a 2.2 GHz Intel Core i7 processor
and 8 GB of RAM. However, as with other visualization tools, the
tree’s interpretation becomes more difficult as the feature space
expands. Thus, for high-dimensional datasets, it is potentially bene-
ficial to perform feature selection to reduce the number of features
or random sampling to reduce the number of observations prior to
plotting the tree. Moreover, when the single tree does not perform
well and the average node purity is low, it can be challenging to in-
terpret the heatmap because clear signal cannot emerge if the fea-
tures have low predictability.

Future work on treeheatr includes enhancements such as support
for left-to-right orientation and highlighting the tree branches that
point to a specific sample. We will also investigate other data pre-
process and seriation options that might result in more robust mod-
els and informative visualizations.

Acknowledgements

The treeheatr package was made possible by leveraging integral R packages

including ggplot2 (Wickham, 2009), partykit (Hothorn et al., 2015), ggparty

and many others. The authors thank Daniel Himmelstein for his helpful com-

ments on the package’s licensing and continuous integration configuration.

Finally, the authors thank two anonymous reviewers whose helpful feedback

helped improve the package and clarify this manuscript.

Funding

This work was supported by the National Institutes of Health Grant Nos.

LM010098 and AI116794.

Conflict of Interest: none declared.

References

Galili,T. et al. (2018) heatmaply: an R package for creating interactive cluster

heatmaps for online publishing. Bioinformatics, 34, 1600–1602.

Gower,J.C. (1971) A general coefficient of similarity and some of its proper-

ties. Biometrics, 27, 857.

Hahsler,M. et al. (2008) Getting things in order: an introduction to the R

package seriation. J. Stat. Softw., 25, 1-34.

Hastie,T. et al. (2009) The elements of statistical learning: data mining, infer-

ence, and prediction, 2nd edn. Springer, New York, NY.

Hothorn,T. et al. (2006) Unbiased recursive partitioning: a conditional infer-

ence framework. J. Comput. Graph. Stat., 15, 651–674.

Hothorn,T. et al. (2015) partykit: a modular toolkit for recursive partytioning

in R. J. Mach. Learn. Res., 16, 3905–3909.

Wickham,H. (2009) Ggplot2: elegant graphics for data analysis. Springer,

New York.

Wilkinson,L. et al. (2009) The history of the cluster heat map. Am. Stat., 63,

179–184.

Yan,L. et al. (2020) An interpretable mortality prediction model for

COVID-19 patients. Nat. Mach. Intell., 2, 283–288.

284 T.T.Le and J.H.Moore


